Estimating Flood Characteristics Using Geomorphologic Flood Index with Regards to Rainfall Intensity-Duration-Frequency-Area Curves and CADDIES-2D Model in Three Iranian Basins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Input Data
2.2.1. Digital Elevation Model (DEM)
2.2.2. Hydrometric Data
2.3. Methodology
- The ratios of water conveyed from central to the downstream neighboring cells (intercellular-volume) are computed using a fast weight-based method;
- The water volume moved between the central cell and the neighbors is confined by the Manning’s and the critical flow equations;
- The adaptive time step and velocity, are both assessed within a larger updated time step to increase simulation speed and performance.
2.3.1. Geomorphic Flood Index (GFI)
2.3.2. Modification of the Water Depth ()
2.3.3. Intensity-Duration-Frequency-Area (IDFA) Curves
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Samela, C.; Troy, T.J.; Manfreda, S. Geomorphic classifiers for flood-prone areas delineation for data-scarce environments. Adv. Water Resour. 2017, 102, 13–28. [Google Scholar] [CrossRef]
- Guidolin, M.; Duncan, A.; Ghimire, B.; Gibson, M.; Keedwell, E.; Chen, A.S.; Djordjevic, S.; Savic, D. CADDIES: A new framework for rapid development of parallel cellular automata algorithms for flood simulation. In Proceedings of the 10th International Conference on Hydroinformatics HIC, Hamburg, Germany, 14–18 July 2012. [Google Scholar]
- Hunter, N.M.; Bates, P.D.; Horritt, M.S.; Wilson, M.D. Simple spatially-distributed models for predicting flood inundation: A review. Geomorphology 2007, 90, 208–225. [Google Scholar] [CrossRef]
- Yen, B.; Tsai, C.-S. On noninertia wave versus diffusion wave in flood routing. J. Hydrol. 2001, 244, 97–104. [Google Scholar] [CrossRef]
- Guidolin, M.; Chen, A.S.; Ghimire, B.; Keedwell, E.C.; Djordjević, S.; Savić, D.A. A weighted cellular automata 2D inundation model for rapid flood analysis. Environ. Model. Softw. 2016, 84, 378–394. [Google Scholar] [CrossRef] [Green Version]
- Wolfram, S. Cellular automata as models of complexity. Nature 1984, 311, 419–424. [Google Scholar] [CrossRef]
- Itami, R.M. Simulating spatial dynamics: Cellular automata theory. Landsc. Urban Plan. 1994, 30, 27–47. [Google Scholar] [CrossRef]
- Dottori, F.; Todini, E. A 2D flood inundation model based on cellular automata approach. In Proceedings of the XVIII International Conference on Water Resources CMWR, Barcelona, Spain, 21–24 June 2010. [Google Scholar]
- Dottori, F.; Todini, E. Developments of a flood inundation model based on the cellular automata approach: Testing different methods to improve model performance. Phys. Chem. Earthparts A/B/C 2011, 36, 266–280. [Google Scholar] [CrossRef]
- Ghimire, B.; Chen, A.S.; Guidolin, M.; Keedwell, E.C.; Djordjević, S.; Savić, D.A. Formulation of a fast 2D urban pluvial flood model using a cellular automata approach. J. Hydroinform. 2013, 15, 676–686. [Google Scholar] [CrossRef] [Green Version]
- Nardi, F.; Biscarini, C.; Di Francesco, S.; Manciola, P.; Ubertini, L. Comparing a large-scale DEM-based floodplain delineation algorithm with standard flood maps: The Tiber River Basin case study. Irrig. Drain. 2013, 62, 11–19. [Google Scholar] [CrossRef]
- Chen, A.S.; Khoury, M.; Vamvakeridou-Lyroudia, L.; Stewart, D.; Wood, M.; Savic, D.A.; Djordjevic, S. 3D visualisation tool for improving the resilience to urban and coastal flooding in Torbay, UK. Procedia Eng. 2018, 212, 809–815. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Zhang, C.; Li, M.; Peng, Y. Urban Flood Simulation and Risk Analysis Based on Cellular Automaton. J. Water Resour. Res. 2018, 7, 360–369. [Google Scholar] [CrossRef]
- Webber, J.L.; Burns, M.J.; Fu, G.; Butler, D.; Fletcher, T.D. Evaluating City Scale Surface Water Management Using a Rapid Assessment Framework in Melbourne, Australia. In New Trends in Urban Drainage Modelling, Proceedings of the International Conference on Urban Drainage Modelling, Palermo, Italy, 23–26 September 2018; Springer: Cham, Switzerland, 2018; pp. 920–925. [Google Scholar]
- Arnaud-Fassetta, G.; Astrade, L.; Bardou, E.; Corbonnois, J.; Delahaye, D.; Fort, M.; Gautier, E.; Jacob, N.; Peiry, J.-L.; Piégay, H. Fluvial geomorphology and flood-risk management. Géomorphologie Relief Process. Environ. 2009, 15, 109–128. [Google Scholar] [CrossRef] [Green Version]
- Manfreda, S.; Di Leo, M.; Sole, A. Detection of flood-prone areas using digital elevation models. J. Hydrol. Eng. 2011, 16, 781–790. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. J. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Manfreda, S.; Samela, C.; Sole, A.; Fiorentino, M. Flood-prone areas assessment using linear binary classifiers based on morphological indices. In Vulnerability, Uncertainty, and Risk: Quantification, Mitigation, and Management; ASCE: Reston, VA, USA, 2014; pp. 2002–2011. [Google Scholar]
- Manfreda, S.; Samela, C.; Gioia, A.; Consoli, G.G.; Iacobellis, V.; Giuzio, L.; Cantisani, A.; Sole, A. Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models. Nat. Hazards 2015, 79, 735–754. [Google Scholar] [CrossRef]
- Samela, C.; Manfreda, S.; Paola, F.D.; Giugni, M.; Sole, A.; Fiorentino, M. DEM-based approaches for the delineation of flood-prone areas in an ungauged basin in Africa. J. Hydrol. Eng. 2016, 21, 06015010. [Google Scholar] [CrossRef]
- Samela, C.; Manfreda, S.; Troy, T.J. Dataset of 100-year flood susceptibility maps for the continental US derived with a geomorphic method. Data Brief 2017, 12, 203–207. [Google Scholar] [CrossRef]
- Samela, C.; Albano, R.; Sole, A.; Manfreda, S. A GIS tool for cost-effective delineation of flood-prone areas. Comput. Environ. Urban Syst. 2018, 70, 43–52. [Google Scholar] [CrossRef]
- Cazanacli, D.; Paola, C.; Parker, G. Experimental steep, braided flow: Application to flooding risk on fans. J. Hydraul. Eng. 2002, 128, 322–330. [Google Scholar] [CrossRef]
- JPL, N. NASA Shuttle Radar Topography Mission Global 1 arc second. Version 3. In NASA EOSDIS LP DAAC; USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2013. [Google Scholar]
- Cronshey, R. Urban Hydrology for Small Watersheds; US Dept. of Agriculture, Soil Conservation Service, Engineering Division: Washington, DC, USA, 1986.
- Woodward, D.E.; Hawkins, R.H.; Jiang, R.; Hjelmfelt, J.; Allen, T.; Van Mullem, J.A.; Quan, Q.D. Runoff curve number method: Examination of the initial abstraction ratio. In Proceedings of the World Water & Environmental Resources Congress, Philadelphia, PA, USA, 23–26 June 2003; pp. 1–10. [Google Scholar]
- Zeng, Z.; Tang, G.; Hong, Y.; Zeng, C.; Yang, Y. Development of an NRCS curve number global dataset using the latest geospatial remote sensing data for worldwide hydrologic applications. Remote Sens. Lett. 2017, 8, 528–536. [Google Scholar] [CrossRef]
- Manfreda, S.; Samela, C. A digital elevation model based method for a rapid estimation of flood inundation depth. J. Flood Risk Manag. 2019, 12, e12541. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization. Manual for Depth-Area-Duration Analysis of Storm Precipitation; World Meteorological Organization: Geveva, Switzerland, 1969. [Google Scholar]
- Pilgrim, D.; Cordery, I.; French, R. Temporal patterns of design rainfall for Sydney. Civ. Eng. Trans. 1969, CEII, 9–14. [Google Scholar]
- Bureau, U.W. Manual for Depth-Area-Duration analysis of storm precipitation. Coop. Stud. Tech. Pap. 1946, 1, 99. [Google Scholar]
- Koutsoyiannis, D.; Kozonis, D.; Manetas, A. A mathematical framework for studying rainfall intensity-duration-frequency relationships. J. Hydrol. 1998, 206, 118–135. [Google Scholar] [CrossRef]
- Hershfield, D.M.; Wilson, W.T. A comparison of extreme rainfall depths from tropical and nontropical storms. J. Geophys. Res. 1960, 65, 959–982. [Google Scholar] [CrossRef]
- Ghahreman, B. Derivation of Intensity-Duration-Frequency-Area (IDFA) Curves for Mashhad City. Comput. Methods Eng. 1998, 17, 69–81. [Google Scholar]
- Myers, V.A.; Zehr, R.M. A Methodology for Point-to-Area Rainfall Frequency Ratios; Department of Commerce, National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 1980; Volume 55.
- Mollaei, Z.; Davary, K.; Hasheminia, S.M.; Faridhosseini, A.; Pourmohamad, Y. Enhancing flood hazard estimation methods on alluvial fans using an integrated hydraulic, geological and geomorphological approach. Nat. Hazards Earth Syst. Sci. 2018, 18, 1159–1171. [Google Scholar] [CrossRef] [Green Version]
- Albano, R.; Samela, C.; Crăciun, I.; Manfreda, S.; Adamowski, J.; Sole, A.; Sivertun, Å.; Ozunu, A. Large Scale Flood Risk Mapping in Data Scarce Environments: An Application for Romania. Water 2020, 12, 1834. [Google Scholar] [CrossRef]
Annual Rainfall (mm) | Average Temperature (°C) | Relative Humidity (%) | Latitude | Longitude | Mean Elevation (m) | Watershed Area (km2) | Average Slope (%) | |
---|---|---|---|---|---|---|---|---|
Sarbaz basin | 90 | 35 | 21 | 29° 25′ N | 38° 11′ E | 267 | 628 | 1.03 |
The upstream watershed of calibration area: | 505 | 58.57 | 12 | |||||
Frizi alluvial fan | 372 | 15 | 42 | 20° 36′ N | 58° 48′ E | 1193 | 505 | 1.04 |
The upstream watershed of calibration area: | 2060 | 342.08 | 21 | |||||
Shapour alluvial fan | 510 | 23 | 49 | 29° 25′ N | 51° 11′ E | 1311 | 2031 | 13.88 |
The upstream watershed of calibration area: | 1695 | 718.6 | 16.8 |
Basin Name | τ a | RFP * | RTP ** | RFP+(1 − RTP) *** | AUC b | Ratio of Calibration Area (%) | |
---|---|---|---|---|---|---|---|
Sarbaz | Modified GFI | −0.25 | 0.11 | 0.17 | 0.94 | 0.42 | 2.45 |
GFI | −0.24 | 0.12 | 0.16 | 0.95 | 0.40 | ||
Frizi | Modified GFI | −0.23 | 0.45 | 0.58 | 0.87 | 0.53 | 2.12 |
GFI | −0.25 | 0.47 | 0.55 | 0.89 | 0.51 | ||
Shapour | Modified GFI | −0.28 | 0.10 | 0.98 | 0.12 | 0.96 | 2.83 |
GFI | −0.30 | 0.11 | 0.95 | 0.14 | 0.93 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faridani, F.; Bakhtiari, S.; Faridhosseini, A.; Gibson, M.J.; Farmani, R.; Lasaponara, R. Estimating Flood Characteristics Using Geomorphologic Flood Index with Regards to Rainfall Intensity-Duration-Frequency-Area Curves and CADDIES-2D Model in Three Iranian Basins. Sustainability 2020, 12, 7371. https://doi.org/10.3390/su12187371
Faridani F, Bakhtiari S, Faridhosseini A, Gibson MJ, Farmani R, Lasaponara R. Estimating Flood Characteristics Using Geomorphologic Flood Index with Regards to Rainfall Intensity-Duration-Frequency-Area Curves and CADDIES-2D Model in Three Iranian Basins. Sustainability. 2020; 12(18):7371. https://doi.org/10.3390/su12187371
Chicago/Turabian StyleFaridani, Farid, Sirus Bakhtiari, Alireza Faridhosseini, Micheal J. Gibson, Raziyeh Farmani, and Rosa Lasaponara. 2020. "Estimating Flood Characteristics Using Geomorphologic Flood Index with Regards to Rainfall Intensity-Duration-Frequency-Area Curves and CADDIES-2D Model in Three Iranian Basins" Sustainability 12, no. 18: 7371. https://doi.org/10.3390/su12187371
APA StyleFaridani, F., Bakhtiari, S., Faridhosseini, A., Gibson, M. J., Farmani, R., & Lasaponara, R. (2020). Estimating Flood Characteristics Using Geomorphologic Flood Index with Regards to Rainfall Intensity-Duration-Frequency-Area Curves and CADDIES-2D Model in Three Iranian Basins. Sustainability, 12(18), 7371. https://doi.org/10.3390/su12187371