Schedules Optimization with the Use of Value Engineering and NPV Maximization
Abstract
:1. Introduction
2. Construction Projects Value Management
2.1. Definitions and Values
- better understanding of the contracting authority’s needs (including: improved communication, improved identification, assessment and risk management, better understanding of the project by stakeholders, and increased involvement of the contracting authority in works on the project);
- getting rid of unnecessary costs (including: energy saving, avoiding over-specification of the subject of the contract, improving costs in the sense of LCC, using alternative solutions and materials, and reducing unnecessary expenses);
- reduction of the project time (including: simplification of technological solutions and improvement of the probability of completing the project on time);
- improvement of communication and efficiency (including: informed decision-making, better understanding of the project, increased involvement in works, and reduction of the risk of disputes);
- improvement of the company’s innovativeness (including: searching for new solutions, alternative materials, improvement of standards and company policy, and greater competitiveness on the market).
- Function: task to be fulfilled by the object of the contract (e.g., building),
- Quality: the client’s needs, expectations,
- Cost (LCC): cost in terms of the entire life cycle of the project.
2.2. Assessment of the Facility’s Ability to Perform the Required Functions
2.3. Requirements for Construction Objects—Set of Chosen Research Criteria
- Safety: 1.1 Structural safety—1.1.1 Whole structure; 1.1.2 Frame/wall system; 1.1.3 Floor/diaphragm system; 1.1.4 Member; 1.1.5 Connection; 1.1.6 Foundation; 1.2 Fire safety—1.2.1 Whole building; 1.2.2 Frame/wall system; 1.2.3 Floor system/roof; 1.2.4 Other building parts (e.g., door); 1.2.5 Member/materials; 1.2.6 Services; 1.3 Safety in use—1.3.1 Whole building; 1.3.2 Frame/wall system; 1.3.3 Roof/floor system; 1.3.4 Other building parts/members/materials; 1.3.5 Services.
- Comfort: 2.1 Acoustical comfort—2.1.1 Whole building; 2.1.2 Frame/wall system; 2.1.3 Floor system/roof; 2.1.4 Components; 2.1.5 Connections; 2.1.6 Materials; 2.1.7 Services; 2.2 Visual comfort—2.2.1 Whole building; 2.2.2 Windows; 2.2.3 Shading devices (blinds); 2.2.4 Light caps; 2.2.5 Light shelves; 2.2.6 Wall; 2.3 Hygrothermal comfort—2.3.1 Whole building; 2.3.2 Frame/wall system; 2.3.3 Roof/floor system; 2.3.4 Member/materials; 2.3.5 Services; 2.4 Structural serviceability—2.4.1 Whole building; 2.4.2 Frame/wall system; 2.4.3 Floor system/roof; 2.4.4 Member/materials; 2.4.5 Services.
- Health and Hygiene: 3.1 Air quality—3.1.1 Whole building; 3.1.2 Frame/wall system; 3.1.3 Floor system/roof; 3.1.4 Components; 3.1.5 Materials; 3.1.6 Services; 3.2 Water Supply and other services; 3.3 Waste Disposal.
- Durability: 4.1 Structure—4.1.1 Whole building; 4.1.2 Frame/wall system; 4.1.3 Roof/floor system; 4.1.4 Member/materials; 4.1.5 Foundation; 4.2 External enclosure—4.2.1 Below ground; 4.2.2 Above ground; 4.3 Internal enclosure—4.3.1 Below ground; 4.3.2 Above ground; 4.4 Built-in furnishings and equipment; 4.5 Services.
- Sustainability: 5.1 Energy conservation—5.1.1 Whole building; 5.1.2 Frame/wall system; 5.1.3 Roof/floor system; 5.1.4 Foundations; 5.1.5 Components/Materials; 5.2 Green-house gas depletion—5.2.1 Whole building; 5.2.2 Structure; 5.2.3 Other parts/materials; 5.2.4 Services; 5.3 Economics; 5.4 Deconstruction/demolition and disposal.
3. Methodology of Research
4. Original Model of Scheduling Construction Projects
4.1. Considered Problem and Assumptions Description
4.2. Model
- and are, respectively, revenues and indirect costs for the period ending on h, h = 1, 2, …, H,
- TI is a known time period (interval)—in the constructed TI model it corresponds to one working month and is expressed in days,
- is a variable that models payment delays, where payment delay is (working days), ,
- are cash flows related to the performance of activity in mode,
- is an interest rate,
- is the assessment of the fulfillment of the assumed functions (in meaning VM) in connection with the performance of activities in mode,
- are the weights of individual parts of the optimization objective function subject ,
- is a deadline for completion of construction.
- are the weights of individual parts of the objective function subject to optimization—these weights highly depend on preferences of a given construction company. They are assessed and proposed by the experts based on historical data and companies’ needs.
- are the weights of individual parts of the objective function responsible for constraints (penalties)—experts in each construction company should select proper weights according to the contractual parameters and companies’ records.
- is the NPV value for the currently examined case,
- is the maximum NPV value found for the UPS (Unconstrained Project Scheduling) version of the examined example,
- is the minimal NPV value found for the UPS version of the examined example.
- is the value rating for the currently studied case,
- is the maximum value rating found for the UPS version of the tested example,
- is the minimum value grade found for the UPS version of the tested example.
- is the maximum monthly demand for financial resources allowed by the contractor.
- Variables corresponding to variants of individual activities ( (integer), where each variant is assigned: duration, value assessment, and demand for renewable and nonrenewable resources;
- integer variables introducing delays in the deadlines of starting tasks (;
- binary variables introducing (=1) or not (=0) additional organizational links between activities ( these variables help to rank tasks.
- is a set of additional activity predecessors , .
4.3. Procedure Algorithm/Computer Model
5. Results—Case Study—Residential Estate Schedule Optimization
5.1. Schedule Update
5.2. UPS Optimization
5.3. MRCPS Optimization and Design Selection
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Magalhães-Mendes, J. A two-level genetic algorithm for the multi-mode resource-constrained project scheduling problem. Int. J. Syst. Appl. Eng. Dev. 2011, 5, 271–278. [Google Scholar]
- Kulejewski, J.; Ibadov, N. Construction project scheduling with imprecisely defined constraints. Technol. J. Const. 2010, 107, 231–247. [Google Scholar]
- Węglarz, J. Project Scheduling—Recent Models, Algorithms and Applications; Springer: New York, NY, USA, 2012. [Google Scholar]
- Zhou, J.; Love, P.E.; Wang, X.; Teo, K.L.; Irani, Z. A review of methods and algorithms for optimizing construction scheduling. J. Oper. Res. Soc. 2013, 64, 1091–1105. [Google Scholar] [CrossRef] [Green Version]
- Hejducki, Z.; Podolski, M. Harmonogramowanie przedsięwzięć budowlanych z zastosowaniem algorytmów metaheurystycznych. Zeszyty Naukowe/Wyższa Szkoła Oficerska Wojsk Lądowych im. gen. T. Kościuszki. 2012, 4, 68–79. [Google Scholar]
- Jaśkowski, P.; Sobotka, A. Scheduling construction projects using evolutionary algorithm. J. Constr. Eng. Manag. 2006, 132, 861–870. [Google Scholar] [CrossRef]
- Liao, T.W.; Egbelu, P.J.; Sarker, B.R.; Leu, S.S. Metaheuristics for project and construction management–A state-of-the-art review. Autom. Constr. 2011, 20, 491–505. [Google Scholar] [CrossRef]
- Rosłon, J.; Zawistowski, J. Construction Projects’ Indicators Improvement Using Selected Metaheuristic Algorithms. Procedia Eng. 2016, 153, 595–598. [Google Scholar] [CrossRef] [Green Version]
- Van Peteghem, V.; Vanhoucke, M. A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. Eur. J. Oper. Res. 2010, 201, 409–418. [Google Scholar] [CrossRef]
- Rosłon, J. The multi-mode, resource-constrained project scheduling problem in construction: State of art review and research challenges. Tech. Trans. 2017, 10, 67–74. [Google Scholar]
- Biruk, S. Harmonogramowanie przedsięwzięcia budowlanego przy ograniczonej w czasie dostępności podwykonawców. Zesz. Nauk. Wyższa Szkoła Oficer. Wojsk Lądowych im. gen. T. Kościuszki 2012, 4, 96–103. [Google Scholar]
- Demeulemeester, E.; Herroelen, W. The discrete time/resource trade-off problem in project networks: A branch-and-bound approach. IIE Trans. 2000, 32, 1059–1069. [Google Scholar] [CrossRef]
- Menesi, W.; Abdel-Monem, M.; Hegazy, T.; Abuwarda, Z. Multi-objective schedule optimization using constraint programming. In Proceedings of the 5th International/11th Construction Specialty Conference, Vancouver, BC, Canada, 8–10 June 2015. [Google Scholar]
- Akram, S.; Kostrzewa, B.; Minasowicz, A.; Mukherjee, A.; Nowak, P. Value management in construction. Civ. Eng. Fac. Wars. Univ. Technol. 2011. [Google Scholar]
- Leśniak, A.; Zima, K. Zarządzanie wartością przedsięwzięć budowlanych w warunkach polskich. Czas. Tech. Bud. 2010, 107, 259–266. [Google Scholar]
- Hammersley, H. Value Management in Construction, Association of Local Authority Business Consultants Presentation. Available online: www.value-managers.co.uk (accessed on 8 June 2018).
- Dell’Isola, A. Value Engineering: Practical Applications for Design, Construction, Maintenance and Operations; Rsmeans: Kingston, MA, USA, 1997. [Google Scholar]
- Kelly, J.; Male, S.; Graham, D.; Male, S.; Graham, D. Value Management of Construction Projects; Blackwell Science: Oxford, UK, 2004. [Google Scholar]
- Leung, M.Y.; Ng, S.T.; Cheung, S.O. Improving satisfaction through conflict stimulation and resolution in value management in construction projects. J. Manag. Eng. 2002, 18, 68–75. [Google Scholar] [CrossRef]
- Neasbey, M.; Barton, R.; Knott, J. Value management. Building in Value: Pre-Design Issues, 1st ed; Routledge: London, UK, 1999; pp. 232–247. [Google Scholar]
- Othman, A.A.E. Value and risk management for dynamic brief development in construction. Doctoral Dissertation, Loughborough University, Loughborough, UK, 2004. [Google Scholar] [CrossRef]
- Institution of Civil Engineers (ICE). Creating Value in Engineering–ICE Design and Practice Guides; ICE Publishing: London, UK, 1996. [Google Scholar]
- Foliente, G.C.; Becker, R. CIB PBBCS Proactive Programme–Task 1. In Compendium of Building Performance Models; National Information Service for Earthquake Engineering: Berkeley, CA, USA, 2001. [Google Scholar]
- Sargent, R.G. An assessment procedure and a set of criteria for use in the evaluation of computerized models and computer-based modeling tools. In Final Technical Report RADC-TR-80-409; U.S. Air Force: Washington, WA, USA, 1981. [Google Scholar]
- Rosłon, J. Optymalizacja harmonogramu przedsięwzięcia budowlanego z uwzględnieniem koncepcji zarządzania wartością przedmiotu inwestycji. Ph.D. Thesis, Warsaw University of Technology, Warsaw, Poland, 2020. [Google Scholar]
- Schlesinger, S. Terminology for Model Credibility. Simulation 1979, 32, 103–104. [Google Scholar]
- Sargent, R.G. A tutorial on verification and validation of simulation models. In Proceedings of the 1984 Win-Ter Simulation Conference; Sheppard, S., Pooch, U.W., Pegden, C.D., Eds.; IEEE: Piscataway, NJ, USA, 1984; pp. 114–121. [Google Scholar]
- Książek, M.V.; Nowak, P.O.; Rosłon, J.H. Choice of investment variant for roads safety improvement. Logistyka 2014, 3, 3440–3449. [Google Scholar]
- Książek, M.V.; Nowak, P.O.; Kivrak, S.; Rosłon, J.H.; Ustinovichius, L. Computer-aided decision-making in construction project development. J. Civ. Eng. Manag. 2015, 21, 248–259. [Google Scholar] [CrossRef] [Green Version]
- Książek, M.; Nowak, P.; Rosłon, J. Ocena wielokryterialna wybranych rozwiązań konstrukcyjnych stropów. Logistyka 2014, 5, 862–871. [Google Scholar]
- Książek, M.; Nowak, P.; Rosłon, J.; Wieczorek, T. Multicriteria assessment of selected solutions for the building structural walls. Procedia Eng. 2014, 91, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Ustinovichius, L.; Zavadskas, E.; Migilinskas, D.; Malewska, A.; Nowak, P.; Minasowicz, A. Verbal analysis of risk elements in construction contracts. In International Conference on Cooperative Design, Visualization and Engineering; Springer: Berlin/Heidelberg, Germany, 2006; pp. 295–302. [Google Scholar]
- Rosłon, J.; Nowak, P.; Nicał, A.K. Modern approach to education in construction industry. In Edulearn Proceedings; Gómez Chova, L., López Martínez, A., Candel Torres, I., Eds.; IATED Academy: Valencia, Spain, 2018; pp. 1971–1977. [Google Scholar]
- Nowak, P.; Rosłon, J. Optimisation of Construction Processes; Polcen: Warsaw, Poland, 2017. [Google Scholar]
- Rosłon, J.; Edward, J.K. A hybrid approach for solving multi-mode resource-constrained project scheduling problem in construction. Open Eng. 2019. [Google Scholar] [CrossRef]
Value Creation | Weight (%) | Measure | Fulfilment of a Function (1-Weak, 10-Excellent) | Weighted Result |
---|---|---|---|---|
Finance | 15 | Cost | 3 | 45 |
Project management | 15 | KPI | 4 | 60 |
Business efficiency | 20 | Score | 4 | 80 |
Image | 10 | Research | 2 | 20 |
Maintenance costs | 15 | Cost | 3 | 45 |
External requirements | 10 | Audit | 8 | 80 |
Sustainable development | 15 | Score | 6 | 90 |
Total ratio of value | (100%) | 420 |
1 Safety | 2 Comfort | ||
---|---|---|---|
1.1 Structural safety | q1 | 2.1 Acoustical comfort | q4 |
1.2 Fire safety | q2 | 2.2 Visual comfort (lighting) | q5 |
1.3 Safety in use | q3 | 2.3 Hygrothermal comfort | q6 |
2.4. Structural serviceability | q7 |
1 Safety | 2 Comfort | ||||||
---|---|---|---|---|---|---|---|
1.1 Structural safety | 1.2 Fire safety | 1.3 Safety in use | 2.1 Acoustical comfort | 2.2 Visual comfort (lighting) | 2.3 Hygrothermal comfort | 2.4 Structural serviceability | |
Variant 1 | p11 | p12 | p13 | p14 | p15 | p16 | p17 |
Variant 2 | p21 | p22 | p23 | p24 | p25 | p26 | p27 |
Task | Variant 1 | Variant 2 | Variant 3 | Variant 4 | |
---|---|---|---|---|---|
Id | Name | Variant Description | Variant Description | Variant Description | Variant Description |
1 | Start | – | – | – | – |
2 | Building A: ground works and foundations | Heavy insulation | Waterproof concrete-“White bathtub” technology | – | – |
3 | Building A: building shell | Monolithic reinforced concrete frame | Reinforced concrete full monolithic structure | Prefabricated reinforced concrete structure | – |
4 | Building A: finishing works—interior | Standard B | Standard A | Standard B, acceleration of works | – |
5 | Building A: finishing works-exterior | Standard B | Standard A | Standard B, acceleration of works | – |
6 | Building A: water, sewage and gas installations | Standard B | Standard A | – | – |
7 | Building A: central heating installations | Standard B | Standard A | – | – |
8 | Building A: ventilation technology installations | Default standard | – | – | – |
9 | Building A: electrical and telecommunication installations and devices | Standard: lift A, installations A | Standard: lift A, installations B | Standard: lift B, installations A | Standard: lift B, installations B |
10–17 | Building B: same tasks as in building A | Same variants for building B as in building A | |||
18–25 | Building C: same tasks as in building A | Same variants for building C as in building A | |||
26 | End of works | – | – | – | – |
Task | Variant 1 | Variant 2 | Variant 3 | Variant 4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Id | Id | Cost [1000 EUR] | Time t | Value V | Cost [1000 EUR] | Time t | Value V | Cost [1000 EUR] | Time t | Value V | Cost [1000 EUR] | Time t | Value V |
1 | Start | 0 | 0 | 1.00 | – | – | – | – | – | – | – | – | – |
2 | Building A: ground works and foundations | 1895 | 135 | 1.00 | 1668 | 120 | 0.90 | – | – | – | – | – | – |
3 | Building A: building shell | 6738 | 145 | 1.00 | 5980 | 135 | 0.97 | 7774 | 100 | 0.93 | – | – | – |
4 | Building A: finishing works—interior | 1946 | 150 | 0.90 | 2102 | 170 | 1,00 | 2003 | 145 | 0.90 | – | – | – |
5 | Building A: finishing works —exterior | 1518 | 60 | 0.93 | 1702 | 70 | 1,00 | 1612 | 55 | 0.92 | – | – | – |
6 | Building A: water, sewage, and gas installations | 752 | 110 | 0.89 | 1163 | 125 | 1.00 | – | – | – | – | – | – |
7 | Building A: central heating installations | 652 | 95 | 0.96 | 678 | 100 | 1.00 | – | – | – | – | – | – |
8 | Building A: ventilation technology installations | 106 | 75 | 1.00 | – | – | – | – | – | – | – | – | – |
9 | Building A: electrical and telecommunication installations and devices | 2233 | 130 | 1.00 | 1363 | 105 | 0.82 | 1921 | 125 | 0.85 | 1051 | 100 | 0.67 |
10– 17 | Building B: same tasks as in building A | Same values for building B as in building A | |||||||||||
18– 25 | Building C: same tasks as in building A | Same values for building C as in building A | |||||||||||
26 | End of works | 0 | 0 | 1.00 | – | – | – | – | – | – | – | – | – |
1 Safety | 2 Comfort | 3 Health and Hygiene | 4 Stability | 5 Sustainable Development | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 Safety of structure | 1.2 Fire safety (fire resistance (min)) | 1.3 Safety of use | 2.1 Acoustic comfort (acoustic insulation Rw (dB) | 2.2 Visual comfort (lighting) | 2.3 Hygrothermal comfort | 2.4 Utility | 3.1 Air quality | 3.2 Water supply and other utilities | 3.3 Waste disposal | 4.1 Sustainable | 5.1 Energy saving | 5.2 Greenhouse gas emissions | 5.3 Economics (running costs) | 5.4 Dismantling and utilization | |
Rating criterion | 0 | 10 | 10 | 2 | 6 | 0 | 3 | 0 | 0 | 2 | 10 | 8 | 0 | 10 | 4 |
V1 | 1 | 10 | 10 | 10 | 10 | 1 | 10 | 1 | 1 | 7 | 10 | 7 | 1 | 10 | 9 |
V2 | 1 | 7 | 8 | 10 | 7 | 1 | 10 | 1 | 1 | 10 | 9 | 5 | 1 | 9 | 6 |
V3 | 1 | 9 | 7 | 8 | 10 | 1 | 8 | 1 | 1 | 6 | 7 | 10 | 1 | 6 | 10 |
V4 | 1 | 6 | 5 | 8 | 7 | 1 | 8 | 1 | 1 | 9 | 6 | 8 | 1 | 5 | 7 |
Criterion | Weight |
---|---|
1.1 Safety of structure | 0 |
1.2 Fire safety | 0.153846 |
1.3 Safety of use | 0.153846 |
2.1 Acoustic comfort | 0.030769 |
2.2 Visual comfort (lighting) | 0.092308 |
2.3 Hygrothermal comfort | 0 |
2.4 Utility | 0.046154 |
3.1 Air quality | 0 |
3.2 Water and other utilities supply | 0 |
3.3 Waste disposal | 0.030769 |
4.1 Durability | 0.153846 |
5.1 Energy saving | 0.123077 |
5.2 Emission of greenhouse gases | 0 |
5.3 Economics (operating costs) | 0.153846 |
5.4 Dismantling and utilization | 0.061538 |
1.1 | 1.2 | 1.3 | 2.1 | 2.2 | 2.3 | 2.4 | 3.1 | 3.2 | 3.3 | 4.1 | 5.1 | 5.2 | 5.3 | 5.4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W1 | 0.500 | 0.613 | 0.648 | 0.552 | 0.579 | 0.500 | 0.552 | 0.500 | 0.500 | 0.429 | 0.613 | 0.454 | 0.500 | 0.643 | 0.552 |
W2 | 0.500 | 0.429 | 0.519 | 0.552 | 0.405 | 0.500 | 0.552 | 0.500 | 0.500 | 0.613 | 0.552 | 0.324 | 0.500 | 0.579 | 0.368 |
W3 | 0.500 | 0.552 | 0.454 | 0.442 | 0.579 | 0.500 | 0.442 | 0.500 | 0.500 | 0.368 | 0.429 | 0.648 | 0.500 | 0.386 | 0.613 |
W4 | 0.500 | 0.368 | 0.324 | 0.442 | 0.405 | 0.500 | 0.442 | 0.500 | 0.500 | 0.552 | 0.368 | 0.519 | 0.500 | 0.321 | 0.429 |
1.1 | 1.2 | 1.3 | 2.1 | 2.2 | 2.3 | 2.4 | 3.1 | 3.2 | 3.3 | 4.1 | 5.1 | 5.2 | 5.3 | 5.4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W1 | 0.000 | 6.131 | 6.482 | 1.104 | 3.476 | 0.000 | 1.656 | 0.000 | 0.000 | 0.858 | 6.131 | 3.630 | 0.000 | 6.428 | 2.207 |
W2 | 0.000 | 4.292 | 5.186 | 1.104 | 2.433 | 0.000 | 1.656 | 0.000 | 0.000 | 1.226 | 5.518 | 2.593 | 0.000 | 5.785 | 1.472 |
W3 | 0.000 | 5.518 | 4.537 | 0.883 | 3.476 | 0.000 | 1.325 | 0.000 | 0.000 | 0.736 | 4.292 | 5.186 | 0.000 | 3.857 | 2.453 |
W4 | 0.000 | 3.679 | 3.241 | 0.883 | 2.433 | 0.000 | 1.325 | 0.000 | 0.000 | 1.104 | 3.679 | 4.149 | 0.000 | 3.214 | 1.717 |
Variant | Score V |
---|---|
W1 | 1.000 |
W2 | 0.821 |
W3 | 0.847 |
W4 | 0.667 |
Indicator | Value |
---|---|
2 794 730 EUR | |
1 419 593 EUR | |
1.000 | |
0.896 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosłon, J.; Książek-Nowak, M.; Nowak, P. Schedules Optimization with the Use of Value Engineering and NPV Maximization. Sustainability 2020, 12, 7454. https://doi.org/10.3390/su12187454
Rosłon J, Książek-Nowak M, Nowak P. Schedules Optimization with the Use of Value Engineering and NPV Maximization. Sustainability. 2020; 12(18):7454. https://doi.org/10.3390/su12187454
Chicago/Turabian StyleRosłon, Jerzy, Mariola Książek-Nowak, and Paweł Nowak. 2020. "Schedules Optimization with the Use of Value Engineering and NPV Maximization" Sustainability 12, no. 18: 7454. https://doi.org/10.3390/su12187454
APA StyleRosłon, J., Książek-Nowak, M., & Nowak, P. (2020). Schedules Optimization with the Use of Value Engineering and NPV Maximization. Sustainability, 12(18), 7454. https://doi.org/10.3390/su12187454