Assessing Climate Change Impacts and Adaptation Options for Farm Performance Using Bio-Economic Models in Southwestern France
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Approach
2.2. Model Descriptions at Farm and Field Level
2.2.1. Bio-Economic Farm Models
2.2.2. FarmDESIGN
2.2.3. MODAM
2.3. Scenarios
2.4. Data
2.4.1. Crop Yields and Irrigation Requirements
2.4.2. Farm Characteristics
2.4.3. Costs and Gross Margins
2.5. Model Validation
- Has the model been constructed with approved materials, i.e., approved constituent hypotheses (in scientific terms)?
- Does its behavior approximate well what is observed in respect to real world observations?
- Does it work, i.e., does it fulfill its designated task, or serve its intended purpose?
3. Results
3.1. Impact of Climate and Water Availability Scenarios on Operating Profit, Soil Organic Matter and Labor Use
3.2. Impacts at Farm Level
3.2.1. Changes between Baseline 2015 and the “2015 Irrigation” Scenario
3.2.2. Adaptation Options in the “2085 Irrigation” Scenario
3.2.3. Adaptation Options in the “2085 Rainfed” Scenario
3.3. Optimal Crop Shares
4. Discussion
4.1. Model Results Versus Qualitative Findings
4.2. Discussion of the Modeling Approach
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Calzadilla, A.; Rehdanz, K.; Betts, R.; Falloon, P.; Wiltshire, A.; Tol, R.J. Climate change impacts on global agriculture. Clim. Chang. 2013, 120, 357–374. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen-Sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Christensen, J.H.; Christensen, O.B. Climate modelling: Severe summertime flooding in Europe. Nature 2003, 421, 805. [Google Scholar] [CrossRef] [PubMed]
- Reidsma, P.; Ewert, F.; Lansink, A.O.; Leemans, R. Adaptation to climate change and climate variability in European agriculture: The importance of farm level responses. Eur. J. Agron. 2010, 32, 91–102. [Google Scholar] [CrossRef]
- Olesen, J.E.; Bindi, M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002, 16, 239–262. [Google Scholar] [CrossRef]
- Ministere de l’Ecologie, du Developpement Durable et de l’Energie. Hydrologie souterraine - Synthèse. Available online: https://www.gesteau.fr/sites/default/files/gesteau/content_files/document/explore2070-hydrologie-souterraine.pdf (accessed on 11 September 2020).
- Vidal, J.P.; Martin, E.; Franchistéguy, L.; Baillon, M.; Soubeyroux, J.M. A 50-year high-resolution atmospheric reanalysis over France with the Safran system. Int. J. Climatol. 2010, 30, 1627–1644. [Google Scholar] [CrossRef] [Green Version]
- Willaume, M.; Rollin, A.; Casagrande, M. Farmers in southwestern France think that their arable cropping systems are already adapted to face climate change. Reg. Environ. Chang. 2014, 14, 333–345. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001; Volume 2. [Google Scholar]
- Groot, J.; Cortez-Arriola, J.; Rossing, W.; Améndola Massiotti, R.; Tittonell, P. Capturing Agroecosystem Vulnerability and Resilience. Sustainability 2016, 8, 1206. [Google Scholar] [CrossRef] [Green Version]
- Jepsen, M.R.; Kuemmerle, T.; Müller, D.; Erb, K.; Verburg, P.H.; Haberl, H.; Vesterager, J.P.; Andrič, M.; Antrop, M.; Austrheim, G.; et al. Transitions in European land-management regimes between 1800 and 2010. Land Use Policy 2015, 49, 53–64. [Google Scholar] [CrossRef]
- Matson, P.A.; Parton, W.J.; Power, A.G.; Swift, M.J. Agricultural Intensification and Ecosystem Properties. Science 1997, 277, 504–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pretty, J. Agricultural sustainability: Concepts, principles and evidence. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 447–465. [Google Scholar] [CrossRef] [Green Version]
- Debaeke, P.; Aboudrare, A. Adaptation of crop management to water-limited environments. Eur. J. Agron. 2004, 21, 433–446. [Google Scholar] [CrossRef]
- Howden, S.M.; Soussana, J.-F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting Agriculture to Climate Change. Proc. Natl. Acad. Sci. USA 2007, 104, 19691–19696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteve, P.; Varela-Ortega, C.; Blanco-Gutiérrez, I.; Downing, T.E. A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture. Ecol. Econ. 2015, 120, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Steidl, J.; Schuler, J.; Schubert, U.; Dietrich, O.; Zander, P. Expansion of an Existing Water Management Model for the Analysis of Opportunities and Impacts of Agricultural Irrigation under Climate Change Conditions. Water 2015, 7, 6351–6377. [Google Scholar] [CrossRef]
- Groot, J.C.J.; Oomen, G.J.M.; Rossing, W.A.H. Multi-objective optimization and design of farming systems. Agric. Syst. 2012, 110, 63–77. [Google Scholar] [CrossRef]
- Zander, P.; Kächele, H. Modelling multiple objectives of land use for sustainable development. Agric. Syst. 1999, 59, 311–325. [Google Scholar] [CrossRef]
- Janssen, S.; Van Ittersum, M.K. Assessing farm innovations and responses to policies: A review of bio-economic farm models. Agric. Syst. 2007, 94, 622–636. [Google Scholar] [CrossRef]
- Payraudeau, S.; van der Werf, H.M.G. Environmental impact assessment for a farming region: A review of methods. Agric., Ecosyst. Environ. 2005, 107, 1–19. [Google Scholar] [CrossRef]
- Anderson, J.R.; Dillon, J.L.; Hardaker, J.B. Socioeconomic modelling of farming systems. In Agricultural Systems Research for Developing Countries, Proceedings of an International Workshop, Richmond, NSW, Australia, 12–15 May 1985; ACIAR Proceedings Series; Australian Centre for International Agricultural Research, Hawkesbury Agricultural College: Richmond, NSW, Australia, 1985; pp. 77–88. [Google Scholar]
- Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Schuler, J.; Sattler, C. The estimation of agricultural policy effects on soil erosion--An application for the bio-economic model MODAM. Land Use Policy 2010, 27, 61–69. [Google Scholar] [CrossRef]
- Schuler, J.; Sattler, C.; Helmecke, A.; Zander, P.; Uthes, S.; Bachinger, J.; Stein-Bachinger, K. The economic efficiency of conservation measures for amphibians in organic farming - Results from bio-economic modelling. J. Environ. Manag. 2013, 114, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P. An overview of the crop model STICS. Eur. J. Agron. 2003, 18, 309–332. [Google Scholar] [CrossRef]
- Bubnová, R.; Hello, G.; Bénard, P.; Geleyn, J.-F. Integration of the Fully Elastic Equations Cast in the Hydrostatic Pressure Terrain-Following Coordinate in the Framework of the ARPEGE/Aladin NWP System. Mon. Weather Rev. 1995, 123, 515–535. [Google Scholar]
- RGA. Recensement Agricole. Available online: https://agriculture.gouv.fr/recensement-agricole-2010 (accessed on 9 June 2020).
- Préfet de la Region Occitanie. Application de l’équilibre de la fertilisation azotée - annexes de l’arrêté référentiel Midi-Pyrénées. Available online: http://www.occitanie.developpement-durable.gouv.fr/IMG/pdf/20151229_ap_ref-azote_annexes-compilees-final-3.pdf (accessed on 29 July 2020).
- APCA. Mutual aid and exchange rate scale, issue 2014-2015. Available online: https://www.terre-net.fr/ulf/data/Amelie/140829_bar%C3%A8mes_entraide_2015-15_grilles1.PDF (accessed on 19 November 2019).
- Parker, P.; Letcher, R.; Jakeman, A.; Beck, M.B.; Harris, G.; Argent, R.M.; Hare, M.; Pahl-Wostl, C.; Voinov, A.; Janssen, M.; et al. Progress in integrated assessment and modelling1A Summary of a workshop on Integrated Assessment and Modelling, held at EcoSummit 2000: Integrating the Sciences, Halifax, June 18–22, 2000. See Costanza and Jorgensen (2001) for a further report on Ecosummit.1. Environ. Model. Softw. 2002, 17, 209–217. [Google Scholar]
- Verburg, P.H.; Rounsevell, M.D.A.; Veldkamp, A. Scenario-based studies of future land use in Europe. Agric. Ecosyst. Environ. 2006, 114, 1–6. [Google Scholar] [CrossRef]
- Préfet de la Region Occitanie. Précédents mémentos de la statistique agricole d’Occitanie - Mémento 2016 - Donnés téléchargeables. Available online: http://draaf.occitanie.agriculture.gouv.fr/IMG/xls/memento2016pagesregionales_cle44c3e9.xls (accessed on 29 July 2020).
- Simon, H.A. Methodological foundations of economics. Praxiologics and the philosophy of economics; Transaction Publishers: New York, NY, USA, 1992; pp. 25–41. [Google Scholar]
- Groot, J.C.J.; Rossing, W.A.H.; Jellema, A.; Stobbelaar, D.J.; Renting, H.; Van Ittersum, M.K. Exploring multi-scale trade-offs between nature conservation, agricultural profits and landscape quality—A methodology to support discussions on land-use perspectives. Agric. Ecosyst. Environ. 2007, 120, 58–69. [Google Scholar] [CrossRef]
- Falco, S.D.; Adinolfi, F.; Bozzola, M.; Capitanio, F. Crop Insurance as a Strategy for Adapting to Climate Change. J. Agric. Econ. 2014, 65, 485–504. [Google Scholar] [CrossRef]
- Magrini, M.-B.; Anton, M.; Cholez, C.; Corre-Hellou, G.; Duc, G.; Jeuffroy, M.-H.; Meynard, J.-M.; Pelzer, E.; Voisin, A.-S.; Walrand, S. Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional benefits? Analyzing lock-in in the French agrifood system. Ecol. Econ. 2016, 126, 152–162. [Google Scholar] [CrossRef]
- Bozzola, M.; Massetti, E.; Mendelsohn, R.; Capitanio, F. A Ricardian analysis of the impact of climate change on Italian agriculture. Europ. Rev. Agr. Econ. 2017, 45, 57–79. [Google Scholar] [CrossRef] [Green Version]
- Kanellopoulos, A.; Reidsma, P.; Wolf, J.; van Ittersum, M.K. Assessing climate change and associated socio-economic scenarios for arable farming in the Netherlands: An application of benchmarking and bio-economic farm modelling. Eur. J. Agron. 2014, 52, 69–80. [Google Scholar] [CrossRef]
Name | FarmDESIGN | MODAM |
---|---|---|
Criterion | Static | Static |
Multi-objective | Single objective with additional indicators | |
Whole farm | Whole farm | |
Solver type | Evolutionary optimization | Linear programming |
Objectives | Operating profit | Operating profit |
Soil organic matter | Soil organic matter (indicator) | |
Labor use | Labor use (indicator) |
Scenario | Baseline | Description |
---|---|---|
“2015 irrigation” | Irrigated maize (40 ha); winter wheat rainfed (36 ha); sunflower rainfed (16 ha); peas rainfed (8 ha) | Current climate; irrigation possible for all crops; all legumes can be cultivated to satisfy CAP greening rule (≥ 8% leguminous crop). |
“2085 irrigation” | Irrigated maize (30 ha); winter wheat rainfed (42 ha); sunflower rainfed (19 ha); peas rainfed (9 ha) | Future climate; irrigation possible for all crops; but rainfed crops are also possible. |
“2085 rainfed” | Maize rainfed (30 ha); winter wheat rainfed (42 ha); sunflower rainfed (19 ha); peas rainfed (9 ha) | Future climate; no irrigation possible. |
Crop/Type | Max. Share in Rotation |
---|---|
Barley | 0.3 |
Faba bean | 0.2 |
Maize | 1 |
Pea | 0.25 |
Rapeseed | 0.3 |
Sorghum | 0.5 |
Soybean | 0.25 |
Sunflower | 0.3 |
Winter wheat | 0.5 |
Crops multiplying Sclerotinia sclerotiorum * | 0.3 |
Observed | Rainfed | Irrigated | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time Slot | 2011–14 | 2015 | 2085 | 2015 | 2085 | ||||||||||||||
Y | Y | GM | SOM | L | Y | GM | SOM | L | Y | GM | SOM | L | W | Y | GM | SOM | L | W | |
t/ha | t/ha | €/ha | kg/ha | h | t/ha | €/ha | kg/ha | h | t/ha | €/ha | kg/ha | h | mm | t/ha | €/ha | kg/ha | h | mm | |
Crop | |||||||||||||||||||
Barley | 4.9 | 6.2 | 233 | 1585 | 4.5 | 6.3 | 212 | 1649 | 4.5 | 6.8 | 244 | 1860 | 6.9 | 55 | 6.7 | 257 | 1834 | 7.2 | 60 |
Faba bean | 1.8 | 2.5 | 179 | –617 | 3.7 | 3.5 | 569 | –362 | 3.7 | 2.9 | 197 | –515 | 7.1 | 75 | 4.6 | 455 | –82 | 8.4 | 105 |
Maize | 6.9 (10.5) | 5.1 | 799 | 729 | 4.1 | 4.5 | 588 | 495 | 4.1 | 11.2 | 72 | 3195 | 13.1 | 200 | 10.6 | –34 | 2957 | 16.0 | 265 |
Pea | 3.3 | 3.6 | 271 | –456 | 4.2 | 5.3 | 582 | –80 | 4.2 | 4.8 | 132 | –190 | 7.4 | 70 | 6.7 | 489 | 230 | 9.8 | 125 |
Rapeseed | 2.8 | 3.9 | 798 | 876 | 5 | 3.3 | 555 | 549 | 5 | 4.3 | 706 | 845 | 6.6 | 35 | 3.6 | 484 | 713 | 6.1 | 25 |
Sorghum | 5.7 | 5.6 | 292 | 1403 | 4.1 | 5.2 | 222 | 1213 | 4.1 | 8 | 151 | 2542 | 9.9 | 130 | 7.8 | 93 | 2447 | 11.1 | 155 |
Soybean | 2.8 | 3.1 | 704 | –595 | 2.3 | 2.9 | 965 | –562 | 2.3 | 4 | 644 | –358 | 10.2 | 175 | 4.9 | 568 | –39 | 12.4 | 225 |
Sunflower | 2.1 | 3.3 | 689 | –705 | 3.5 | 3.4 | 712 | –689 | 3.5 | 3.7 | 678 | –638 | 7.6 | 90 | 3.8 | 717 | –622 | 8.0 | 100 |
Winter wheat | 5.4 | 4.8 | 224 | 513 | 2.7 | 6 | 475 | 2224 | 2.7 | 5.7 | 160 | 845 | 5.6 | 65 | 7 | 384 | 2804 | 5.4 | 60 |
Crop | % of Total Arable Land |
---|---|
Barley | 9.7 |
Maize irrigated | 9.5 |
Maize rainfed | 3.6 |
Rapeseed | 4.2 |
Sorghum | 2.6 |
Soy | 3.0 |
Sunflower | 20.3 |
Wheat | 27.2 |
Scenario | Indicator | FarmDESIGN Results at Extreme Indicator Values | MODAM | |||
---|---|---|---|---|---|---|
Baseline | Max Profit | Max SOM | Min Labor | Max Profit | ||
2015 irrigation | Operating Profit (€/year) | 62,434 | 65,485 | 54,261 | 35,149 | 70,492 |
SOM (kg/ha/year) | 1313 | 1564 | 2027 | 964 | 1432 | |
Labor use (h/year) | 711 | 717 | 703 | 381 | 711 | |
Irrigation water used (m³/year) | 80,000 | 79,958 | 79,985 | 10,655 | 80,000 | |
2085 irrigation | Operating Profit (€/year) | 64,410 | 66,734 | 54,554 | 51,197 | 68,929 |
SOM balance (kg/ha/year) | 1683 | 1586 | 2324 | 1246 | 1772 | |
Labor use (h/year) | 699 | 694 | 705 | 328 | 682 | |
Irrigation water used (m³/year) | 79,500 | 79,576 | 79,861 | 205 | 80,000 | |
2085 rainfed | Operating Profit (€/year) | 39,279 | 50,911 | 31,774 | 39,792 | 51,454 |
SOM balance (kg/ha/year) | 945 | 1194 | 1667 | 981 | 1235 | |
Labor use (h/year) | 341 | 341 | 360 | 300 | 330 | |
Irrigation water used (m³/year) | 0 | 0 | 0 | 0 | 0 |
Relative Changes from Scenario | Indicator | Base | Max Operating Profit |
---|---|---|---|
2015 irrigation to 2085 irrigation | Operating Profit | 3% | –2% |
Organic matter balance | 28% | 24% | |
Labor use | –2% | –4% | |
Irrigation water used | –1% | 0% | |
2085 irrigation to 2085 rainfed | Operating Profit | –39% | –25% |
Organic matter balance | –44% | –30% | |
Labor use | –51% | –52% | |
Irrigation water used | –100% | –100% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schuler, J.; Adelhart Toorop, R.; Willaume, M.; Vermue, A.; Schläfke, N.; Uthes, S.; Zander, P.; Rossing, W. Assessing Climate Change Impacts and Adaptation Options for Farm Performance Using Bio-Economic Models in Southwestern France. Sustainability 2020, 12, 7528. https://doi.org/10.3390/su12187528
Schuler J, Adelhart Toorop R, Willaume M, Vermue A, Schläfke N, Uthes S, Zander P, Rossing W. Assessing Climate Change Impacts and Adaptation Options for Farm Performance Using Bio-Economic Models in Southwestern France. Sustainability. 2020; 12(18):7528. https://doi.org/10.3390/su12187528
Chicago/Turabian StyleSchuler, Johannes, Roos Adelhart Toorop, Magali Willaume, Anthony Vermue, Nicole Schläfke, Sandra Uthes, Peter Zander, and Walter Rossing. 2020. "Assessing Climate Change Impacts and Adaptation Options for Farm Performance Using Bio-Economic Models in Southwestern France" Sustainability 12, no. 18: 7528. https://doi.org/10.3390/su12187528
APA StyleSchuler, J., Adelhart Toorop, R., Willaume, M., Vermue, A., Schläfke, N., Uthes, S., Zander, P., & Rossing, W. (2020). Assessing Climate Change Impacts and Adaptation Options for Farm Performance Using Bio-Economic Models in Southwestern France. Sustainability, 12(18), 7528. https://doi.org/10.3390/su12187528