Development of Models for Prompt Responses from Natural Disasters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
2.2. Estimation Models
2.2.1. Linear Regression Model
- (1)
- Linearity: the linear relationship between x and y;
- (2)
- Independence: the lack of correlation between observations;
- (3)
- Homoscedasticity: the equality for the variance of residuals across the regression line;
- (4)
- Normality: the normal distribution for any fixed value of x and y.
2.2.2. SVM Model
2.2.3. Gaussian Process Regression Model
2.3. PCA
2.4. Evaluation Criteria
2.5. Seismic Probabilistic Risk Assessment
3. Results
3.1. Estimation of Maximum Displacement
3.1.1. Comparison with Proposed Models
3.1.2. Consideration of PCA
3.2. Application of Fragility Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- 2004 Indian Ocean Earthquake and Tsunami. Available online: https://en.wikipedia.org/wiki/2004_Indian_Ocean_earthquake_and_tsunami (accessed on 16 September 2020).
- 2008 Sichuan Earthquake. Available online: https://en.wikipedia.org/wiki/2008_Sichuan_earthquake (accessed on 16 July 2020).
- 2011 Tōhoku Earthquake and Tsunami. Available online: https://en.wikipedia.org/wiki/2011_T%C5%8Dhoku_earthquake_and_tsunami (accessed on 9 September 2020).
- 2016 Ecuador Earthquake. Available online: https://en.wikipedia.org/wiki/2016_Ecuador_earthquake (accessed on 25 August 2020).
- 2019 Peru Earthquake. Available online: https://en.wikipedia.org/wiki/2019_Peru_earthquake#:~:text=An%20earthquake%20measuring%20Mw,earthquake%20in%202019%20by%20magnitude (accessed on 31 August 2020).
- EPRI. Methodology for Developing Seismic Fragilities; Technical Report; Electric Power Research Institute: Palo Alto, CA, USA, 1994. [Google Scholar]
- Wang, Z.; Pedroni, N.; Zentner, I.; Zio, E. Seismic fragility analysis with artificial neural networks: Application to nuclear power plant equipment. Eng. Struct. 2018, 162, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Kirçil, M.S.; Polat, Z.; Naganuma, T. Fragility analysis of mid-rise R/C frame buildings. Eng. Struct. 2006, 28, 1335–1345. [Google Scholar] [CrossRef]
- Kunnath, S.K.; Nghiem, Q.; El-Tawil, S. Modeling and response prediction in performance-based seismic evaluation: Case studies of instrumented steel moment-frame buildings. Earthq. Spectra 2004, 20, 883–915. [Google Scholar] [CrossRef]
- Vamvatsikos, D. Seismic Performance, Capacity and Reliability of Structures as Seen through Incremental Dynamic Analysis. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2002. [Google Scholar]
- Araya-Letelier, G.; Parra, P.F.; Lopez-Garcia, D.; Garcia-Valdes, A.; Candia, G.; Lagos, R. Collapse risk assessment of a Chilean dual wall-frame reinforced concrete office building. Eng. Struct. 2019, 183, 770–779. [Google Scholar] [CrossRef]
- Shafei, B.; Zareian, F.; Lignos, D.G. A simplified method for collapse capacity assessment of moment-resisting frame and shear wall structural systems. Eng. Struct. 2011, 33, 1107–1116. [Google Scholar] [CrossRef]
- EPRI. Seismic Probabilistic Risk Assessment Implementation Guide; Technical Report; Electric Power Research Institute: Palo Alto, CA, USA, 2013. [Google Scholar]
- Shinozuka, M.; Feng, M.Q.; Lee, J.; Naganuma, T. Statistical analysis of fragility curves. J. Eng. Mech. 2000, 126, 1224–1231. [Google Scholar] [CrossRef] [Green Version]
- Shinozuka, M.; Feng, M.Q.; Kim, H.-K.; Kim, S.-H. Nonlinear static procedure for fragility curve development. J. Eng. Mech. 2000, 126, 1287–1295. [Google Scholar] [CrossRef] [Green Version]
- Porter, K.; Kennedy, R.; Bachman, R. Creating fragility functions for performance-based earthquake engineering. Earthq. Spectra 2007, 23, 471–489. [Google Scholar] [CrossRef]
- Haselton, C.B.; Baker, J.W.; Liel, A.B.; Deierlein, G.G. Accounting for ground-motion spectral shape characteristics in structural collapse assessment through an adjustment for epsilon. J. Struct. Eng. 2011, 137, 332–344. [Google Scholar] [CrossRef] [Green Version]
- Lignos, D.G.; Krawinkler, H.; Whittaker, A.S. Prediction and validation of sidesway collapse of two scale models of a 4-story steel moment frame. Earthq. Eng. Struct. Dyn. 2011, 40, 807–825. [Google Scholar] [CrossRef]
- Baker, J.W. Efficient analytical fragility function fitting using dynamic structural analysis. Earthq. Spectra 2015, 31, 579–599. [Google Scholar] [CrossRef]
- Bakalis, K.; Vamvatsikos, D. Seismic fragility functions via nonlinear response history analysis. J. Struct. Eng. 2018, 144, 4018181. [Google Scholar] [CrossRef]
- Unnikrishnan, V.U.; Prasad, A.M.; Rao, B.N. Development of fragility curves using highdimensional model representation. Earthq. Eng. Struct. Dyn. 2013, 42, 419–430. [Google Scholar] [CrossRef]
- Seo, J.; Dueas-Osorio, L.; Craig, J.I.; Goodno, B.J. Metamodel-based regional vulnerability estimate of irregular steel moment-frame structures subjected to earthquake events. Eng. Struct. 2012, 45, 585–597. [Google Scholar] [CrossRef]
- Saha, S.K.; Matsagar, V.; Chakraborty, S. Uncertainty quantification and seismic fragility of base-isolated liquid storage tanks using response surface models. Probab. Eng. Mech. 2016, 43, 20–35. [Google Scholar] [CrossRef]
- Lagaros, N.D.; Fragiadakis, M. Fragility assessment of steel frames using neural networks. Earthq. Spectra 2007, 23, 735–752. [Google Scholar] [CrossRef]
- Mangalathu, S.; Jeon, J.-S.; DesRoches, R. Critical uncertainty parameters influencing seismic performance of bridges using lasso regression. Earthq. Eng. Struct. Dyn. 2018, 47, 748–801. [Google Scholar] [CrossRef]
- Jia, G.; Taflanidis, A.A. Kriging metamodeling for approximation of high-dimensional wave and surge responses in real-time storm/hurricane risk assessment. Comput. Methods Appl. Mech. Eng. 2013, 261, 24–38. [Google Scholar] [CrossRef]
- Ferrario, E.; Pedroni, N.; Zio, E.; Lopez-Caballero, F. Application of metamodel-based techniques for the efficient seismic analysis of structural systems. In Proceedings of the European Safety and Reliability Conference ESREL 2015, Zurich, Switzerland, 7–10 August 2015; CRC Press: Boca Raton, FL, USA, 2015; pp. 1193–1200. [Google Scholar]
- Calabresea, A.; Lai, C.G. Fragility functions of blockwork wharves using artificial neural networks. Soil Dyn. Earthq. Eng. 2013, 52, 88–102. [Google Scholar] [CrossRef]
- Ghosh, J.; Padgett, J.E.; Dueas-Osorio, L. Surrogate modeling and failure surface visualization for efficient seismic vulnerability assessment of highway bridges. Probab. Eng. Mech. 2013, 34, 189–199. [Google Scholar] [CrossRef]
- Gehl, P.; D’Ayala, D. Development of bayesian networks for the multi-hazard fragility assessment of bridge systems. Struct. Saf. 2016, 60, 37–46. [Google Scholar] [CrossRef]
- Basilevsky, A. Statistical Factor Analysis and Related Methods: Theory and Applications; John Wiley & Sons Inc.: London, UK, 1994. [Google Scholar]
- Chokmani, K.; Ouarda, T.B.M.J. Physiographical space-based kriging for regional flood frequency estimation at ungauged sites. Water Resour. Res. 2004, 40, W12514. [Google Scholar]
- Ouarda, T.B.M.J.; Shu, C. Regional low-flow frequency analysis using single and ensemble artificial neural networks. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Miller, R.G. A trustworthy jackknife. Ann. Math. Stat. 1964, 35, 1594–1605. [Google Scholar] [CrossRef]
- Shao, J.; Tu, D. The Jackknife and Bootstrap; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Kalkan, E.; Kunnath, S.K. Effects of fling step and forward directivity on seismic response of buildings. Earthq. Spectra 2006, 22, 367–390. [Google Scholar] [CrossRef]
- Anderson, J.C.; Bertero, V.V. Implications of the Landers and Big Bear Earthquakes on Earthquake Resistant Design of Structures; Earthquake Engineering Research Center, University of California: Berkeley, CA, USA, 1997. [Google Scholar]
- Information for Strong-Motion Station Burbank—6-Story Commercial Bldg CGS—CSMIP Station 24370. Available online: https://strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE24370&network=CGS (accessed on 16 July 2020).
- Papazafeiropoulos, G.; Plevris, V. OpenSeismoMatlab: A new open-source software for strong ground motion data processing. Heliyon 2018, 4, e00784. [Google Scholar] [CrossRef] [Green Version]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Kavzoglu, T.; Colkesen, I. A kernel functions analysis for support vector machines for land cover classification. Int. J. Appl. Earth. Obs. Geoinf. 2009, 11, 352–359. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.; Shin, J.-Y.; Park, D. A new approach for river network classification based on the beta distribution of tributary junction angles. J. Hydrol. 2019, 572, 66–74. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: Cambridge, UK, 2006. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis; Springer: New York, NY, USA, 2003. [Google Scholar]
- Jung, K.; Bae, D.-H.; Um, M.-J.; Kim, S.; Jeon, S.; Park, D. Evaluation of nitrate load estimations using neural networks and canonical correlation analysis with k-fold cross-validation. Sustainability 2020, 12, 400. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Naganuma, T.; Shizuma, T.; Shinozuka, M. A Study on Failure Probability of Highway Bridge by Earthquake Based on Statistical Method. In Proceedings of the 10th Japanese Earthquake Engineering Symposium, Minato City, Tokyo, 25–27 November 1998. [Google Scholar]
- Paolucci, E.; Lunedei, E.; Albarello, D. Application of the principal component analysis (PCA) to HVSR data aimed at the seismic characterization of earthquake prone areas. Geophys. J. Int. 2017, 211, 650–662. [Google Scholar] [CrossRef]
- ASCE/SEI 41-06. Seismic Rehabilitation of Existing Buildings; Ameriacan Society of Civil Engineers: Reston, VA, USA, 2007. [Google Scholar]
- Rezaei, S.; Akbari Hamed, A.; Basim, M.C. Seismic performance evaluation of steel structures equipped with dissipative columns. J. Build. Eng. 2020, 29, 101227. [Google Scholar] [CrossRef]
Ground Motion’s Type | Distance | No. of GMs | |
---|---|---|---|
Far-Field | 10~1000 km | 67 | |
Near-Field | Pulse | 0~10 km | 34 |
No-Pulse | 0~10 km | 34 | |
Total | 135 |
Without NM & SD | With NM & SD | |||
---|---|---|---|---|
RMSE | R2 | RMSE | R2 | |
LR | 5.41 | 0.51 | 5.41 | 0.51 |
SVM | 3.63 | 0.75 | 3.60 | 0.76 |
GPR | 0.11 | 0.9998 | 0.08 | 0.9999 |
PCA 95% | PCA 97% | PCA 100% | ||
---|---|---|---|---|
GPR Model | RMSE | 0.2905 | 0.0551 | 0.0769 |
R2 | 0.9986 | 0.9999 | 0.9999 |
Level | Exact Data | Prediction Data | ||
---|---|---|---|---|
Median | STD | Median | STD | |
IO | 0.28 | 0.82 | 0.28 | 0.83 |
LS | 0.89 | 0.85 | 0.89 | 0.83 |
CP | 0.96 | 0.85 | 0.97 | 0.82 |
Level | PGA values(g) | |||||
---|---|---|---|---|---|---|
Exact Data | Prediction Data | |||||
16% | 50% | 84% | 16% | 50% | 84% | |
IO | 0.1235 | 0.2801 | 0.6351 | 0.1227 | 0.2792 | 0.6349 |
LS | 0.3810 | 0.8875 | 2.0676 | 0.3885 | 0.8855 | 2.0183 |
CP | 0.4143 | 0.9633 | 2.2396 | 0.4261 | 0.9674 | 2.1963 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, K.; Park, D.; Park, S. Development of Models for Prompt Responses from Natural Disasters. Sustainability 2020, 12, 7803. https://doi.org/10.3390/su12187803
Jung K, Park D, Park S. Development of Models for Prompt Responses from Natural Disasters. Sustainability. 2020; 12(18):7803. https://doi.org/10.3390/su12187803
Chicago/Turabian StyleJung, Kichul, Daeryong Park, and Sangki Park. 2020. "Development of Models for Prompt Responses from Natural Disasters" Sustainability 12, no. 18: 7803. https://doi.org/10.3390/su12187803
APA StyleJung, K., Park, D., & Park, S. (2020). Development of Models for Prompt Responses from Natural Disasters. Sustainability, 12(18), 7803. https://doi.org/10.3390/su12187803