Climatic Causes of Maize Production Loss under Global Warming in Northeast China
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area and Data
2.2. Methods
2.2.1. Low Temperature
2.2.2. Droughts and Rainstorms
2.2.3. Yield Loss Rate
- Yi is the maize yield in a given year, i;
- Yt is the maize yield during the three years previous to the given year.
3. Results
3.1. Change of Climate Hazards
3.2. Climatic Reasons for Maize Production Loss
4. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate change has likely already affected global food production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef] [PubMed]
- Puma, M.J.; Bose, S.; Chon, S.Y.; Cook, B.I. Assessing the evolving fragility of the global food system. Environ. Res. Lett. 2015, 10, 24007. [Google Scholar] [CrossRef]
- Gaupp, F.; Hall, J.; Hochrainer-Stigler, S.; Dadson, S. Changing risks of simultaneous global breadbasket failure. Nat. Clim. Chang. 2019, 10, 54–57. [Google Scholar] [CrossRef]
- CSY (China Statistical Yearbook). China Statistical Yearbook, National Bureau of Statistics of China; China Statistics Press: Beijing, China, 2019. (In Chinese)
- FAO (Food and Agriculture Organization of the United Nations). 2020. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 14 September 2020).
- CSY (China Agriculture Yearbook). China Agriculture Yearbook; China Agriculture Press: Beijing, China, 2018. (In Chinese)
- Chen, C.; Wang, E.; Yu, Q.; Zhang, Y. Quantifying the effects of climate trends in the past 43 years (1961–2003) on crop growth and water demand in the North China Plain. Clim. Chang. 2009, 100, 559–578. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X.; Lv, S.; Liu, Z.; Wang, J. Variability of available climate resources and disaster risks for different maturity types of spring maize in Northeast China. Reg. Environ. Chang. 2013, 14, 17–26. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, X. Maize yield gaps caused by non-controllable, agronomic, and socioeconomic factors in a changing climate of Northeast China. Sci. Total Environ. 2016, 541, 756–764. [Google Scholar] [CrossRef]
- Song, Y.L.; Wang, J.L. The Assessment of Influence of Agro-Meteorological Disasters on Agriculture under Climate Change in China; China Meteorological Press: Beijing, China, 2017. (In Chinese)
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Song, Y.; Linderholm, H.W.; Chen, D.; Walther, A. Trends of the thermal growing season in China, 1951–2007. Int. J. Clim. 2009, 30, 33–43. [Google Scholar] [CrossRef]
- Ren, G.; Zhou, Y. Urbanization Effect on Trends of Extreme Temperature Indices of National Stations over Mainland China, 1961–2008. J. Clim. 2014, 27, 2340–2360. [Google Scholar] [CrossRef]
- NCC (National Climate Center). Monitoring Bulletin of Climate Change in China, National Climate Center of China Meteorological Administrator; Science Press: Beijing, China, 2016; p. 16. (In Chinese) [Google Scholar]
- Xu, Y.; Gao, X.; Giorgi, F.; Zhou, B.; Shi, Y.; Wu, J.; Zhang, Y. Projected Changes in Temperature and Precipitation Extremes over China as Measured by 50-yr Return Values and Periods Based on a CMIP5 Ensemble. Adv. Atmos. Sci. 2018, 35, 376–388. [Google Scholar] [CrossRef]
- Song, Y.L.; Achberger, C.; Linderholm, H.W. Rain-season trends in precipitation and their effect in different climate regions of China during 1961–2008. Environ. Res. Lett. 2011, 6, 034025. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Cui, L.L.; Wang, J.B.; Du, H.Q.; Wen, K.M. Changes in the temperature and precipitation extremes in China during 1961–2015. Quatern. Int. 2019, 527, 64–78. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J. Changes in Drought Characteristics over China Using the Standardized Precipitation Evapotranspiration Index. J. Clim. 2015, 28, 5430–5447. [Google Scholar] [CrossRef]
- Leng, G.; Tang, Q.; Rayburg, S. Climate change impacts on meteorological, agricultural and hydrological droughts in China. Glob. Planet. Chang. 2015, 126, 23–34. [Google Scholar] [CrossRef]
- Hallett, S.; Jones, R.J. Compilation of an accumulated temperature database for use in an environmental information system. Agric. For. Meteorol. 1993, 63, 21–34. [Google Scholar] [CrossRef]
- Chen, C.; Lei, C.; Deng, A.; Qian, C.; Hoogmoed, W.; Zhang, W. Will higher minimum temperatures increase corn production in Northeast China? An analysis of historical data over 1965–2008. Agric. For. Meteorol. 2011, 151, 1580–1588. [Google Scholar] [CrossRef]
- Meng, Q.; Hou, P.; Lobell, D.B.; Wang, H.; Cui, Z.; Zhang, F.; Chen, X. The benefits of recent warming for maize production in high latitude China. Clim. Chang. 2013, 122, 341–349. [Google Scholar] [CrossRef]
- Frich, P.; Alexander, L.; Della-Marta, P.; Gleason, B.; Haylock, M.; Tank, A.M.K.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Peñuelas, J.; Filella, I.; Comas, P. Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Glob. Chang. Boil. 2002, 8, 531–544. [Google Scholar] [CrossRef] [Green Version]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Root, T.L.; Price, J.T.; Hall, K.R.; Schneider, S.H.; Rosenzweig, C.; Pounds, J.A. Fingerprints of global warming on wild animals and plants. Nature 2003, 421, 57–60. [Google Scholar] [CrossRef]
- Linderholm, H.W. Growing season changes in the last century. Agric. For. Meteorol. 2006, 137, 1–14. [Google Scholar] [CrossRef]
- Linderholm, H.W.; Walther, A.; Chen, D. Twentieth-century trends in the thermal growing season in the Greater Baltic Area. Clim. Chang. 2007, 87, 405–419. [Google Scholar] [CrossRef]
- Palmer. Meteorological Drought; Research Paper No. 45; US Weather Bureau: Washington, DC, USA, 1965.
- Tarpley, J.D.; Schneider, S.R.; Money, R.L. Global Vegetation Indices from the NOAA-7 Meteorological Satellite. J. Clim. Appl. Meteorol. 1984, 23, 491–494. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, American Meteorological Society, Boston, MA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Wu, H.; Hayes, M.J.; Weiss, A.; Hu, Q. An evaluation of the Standardized Precipitation Index, the China-Z Index and the statistical Z-Score. Int. J. Clim. 2001, 21, 745–758. [Google Scholar] [CrossRef]
- Lyon, B. The strength of El Niño and the spatial extent of tropical drought. Geophys. Res. Lett. 2004, 31, 31. [Google Scholar] [CrossRef] [Green Version]
- Narasimhan, B.; Srinivasan, R. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agric. For. Meteorol. 2005, 133, 69–88. [Google Scholar] [CrossRef]
- Nalbantis, I.; Tsakiris, G. Assessment of Hydrological Drought Revisited. Water Resour. Manag. 2008, 23, 881–897. [Google Scholar] [CrossRef]
- Lu, E. Determining the start, duration, and strength of flood and drought with daily precipitation: Rationale. Geophys. Res. Lett. 2009, 36, L12707. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Begueria, S.; Lopez-Moreno, J.I.; Angulo, M.; El Kenawy, A. A new global 0.5 degrees gridded dataset (1901–2006) of a multiscalar drought index: Comparison with current drought index datasets based on the palmer drought severity index. J. Hydrometeorol. 2010, 11, 1033–1043. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.C.; Hain, C.; Wardlow, B.; Pimstein, A.; Mecikalski, J.R.; Kustas, W. Evaluation of Drought Indices Based on Thermal Remote Sensing of Evapotranspiration over the Continental United States. J. Clim. 2011, 24, 2025–2044. [Google Scholar] [CrossRef]
- Woli, P.; Jones, J.W.; Ingram, K.T.; Fraisse, C.W. Agricultural Reference Index for Drought (ARID). Agron. J. 2012, 104, 287–300. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A. Multivariate Standardized Drought Index: A parametric multi-index model. Adv. Water Resour. 2013, 57, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Clim. 2013, 34, 3001–3023. [Google Scholar] [CrossRef] [Green Version]
- Lu, E.; Cai, W.; Jiang, Z.; Zhang, Q.; Zhang, C.; Higgins, R.W.; Halpert, M.S. The day-to-day monitoring of the 2011 severe drought in China. Clim. Dyn. 2013, 43, 1–9. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, J.; Wang, C.; Guo, E. Characteristic Analysis of Droughts and Waterlogging Events for Maize Based on a New Comprehensive Index through Coupling of Multisource Data in Midwestern Jilin Province, China. Remote Sens. 2019, 12, 60. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Guo, J.; Mu, J. Exploring the relationships between climatic variables and climate-induced yield of spring maize in Northeast China. Agric. Ecosyst. Environ. 2015, 207, 79–90. [Google Scholar] [CrossRef]
- Yan, M.H.; Liu, X.T.; Zhang, W.; Li, X.J.; Liu, S. Spatio-temporal changes of ≥10 °C accumulated temperature in northeastern China since 1961. Chin. Geogr. Sci. 2011, 21, 17–26. [Google Scholar] [CrossRef]
- Yang, X.; Fei, J.; Huang, X.; Cheng, X.; Carvalho, L.M.V.; He, H. Characteristics of Mesoscale Convective Systems over China and Its Vicinity Using Geostationary Satellite FY2. J. Clim. 2015, 28, 4890–4907. [Google Scholar] [CrossRef]
- Diaz-Nieto, J.; Lerner, D.; Saul, A.J.; Blanksby, J. GIS Water-Balance Approach to Support Surface Water Flood-Risk Management. J. Hydrol. Eng. 2012, 17, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Adnan, M.S.G.; Haque, A.; Hall, J.W. Have coastal embankments reduced flooding in Bangladesh? Sci. Total Environ. 2019, 682, 405–416. [Google Scholar] [CrossRef]
- Singh, R.K.; Prasad, V.H.; Bhatt, C.M. Remote sensing and GIS approach for assessment of the water balance of a watershed/Evaluation par télédétection et SIG du bilan hydrologique d’un bassin versant. Hydrol. Sci. J. 2004, 49, 131–141. [Google Scholar] [CrossRef]
- Yang, F.Y.; Zheng, Q.H.; Luo, J.M.; Li, W.K. Practical Agrometeorological Indicators; China Meteorological Press: Beijing, China, 2015.
- CCIA (China Climate Impact Assessment). China Climate Impact Assessment. National Climate Center; China Meteorological Press: Beijing, China, 1994. (In Chinese)
- He, Q.; Zhou, G.; Lü, X.; Zhou, M. Climatic suitability and spatial distribution for summer maize cultivation in China at 1.5 and 2.0 °C global warming. Sci. Bull. 2019, 64, 690–697. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Li, J.; Wang, Y.; Zhang, X.Y.; Li, Y.H.; Jiao, M.; Zhou, B.; Wang, H.R. Impact Simulation of Drought on Maize Growth and Yield in Different Growth Stages. J. Agric. Catastrophol. 2019, 9, 47–49. (In Chinese) [Google Scholar] [CrossRef]
- Sun, L.; Shen, B.; Sui, B.; Huang, B. The influences of East Asian Monsoon on summer precipitation in Northeast China. Clim. Dyn. 2016, 48, 1647–1659. [Google Scholar] [CrossRef]
- Yu, H.J. Prevention and control of common diseases in corn planting process. Jilin Agric. 2016, 8, 96. (In Chinese) [Google Scholar]
- Su, B.; Huang, J.; Fischer, T.; Wang, Y.; Kundzewicz, Z.W.; Zhai, J.; Sun, H.; Wang, A.; Zeng, X.; Wang, G.; et al. Drought losses in China might double between the 1.5 °C and 2.0 °C warming. Proc. Natl. Acad. Sci. USA 2018, 115, 10600–10605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Zhou, T. Increasing impacts from extreme precipitation on population over China with global warming. Sci. Bull. 2020, 65, 243–252. [Google Scholar] [CrossRef] [Green Version]
Province | 1961–1970 | 1971–1980 | 1981–1990 | 1991–2000 | 2001–2010 | 2011–2017 |
---|---|---|---|---|---|---|
Heilongjiang | 0.5 (1965) | 0.4 (1974) | 0.7 (1985) | 0.5 (1998) | 0.4 (2003) | 0.6 (2017) |
Jilin | 0.8 (1961) | 0.6 (1973) | 0.7 (1986) | 1.0 (1994) | 0.9 (2010) | 0.8 (2012) |
Liaoning | 1.8 (1969) | 1.4 (1974) | 1.9 (1985) | 2.4 (1994) | 2.3 (2010) | 1.4 (2012) |
Province | Year | Yield Loss Rate (%) | Drought Index (AD) during May–September | Low Temperature Index during May–September | Rainstorm Days in August and September |
---|---|---|---|---|---|
Heilongjiang | 1969 | −32% | 10.2 | −249.3 | 0.3 |
Heilongjiang | 2001 | −16.7% | 30.8 | 47 | 0 |
Heilongjiang | 2007 | −18.1% | 34.4 | 90.5 | 0 |
Jilin | 1969 | −15.3% | 4.9 | −205 | 0.6 |
Jilin | 2000 | −32.9% | 24.7 | 229.4 | 0.8 |
Jilin | 2001 | −22.1% | 24 | 99.8 | 0 |
Liaoning | 1994 | −29.5% | 7 | 103.2 | 2.5 |
Liaoning | 2000 | −31.5% | 40.9 | 175.8 | 0 |
Liaoning | 2014 | −23.8% | 36.8 | −67.8 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Linderholm, H.W.; Luo, Y.; Xu, J.; Zhou, G. Climatic Causes of Maize Production Loss under Global Warming in Northeast China. Sustainability 2020, 12, 7829. https://doi.org/10.3390/su12187829
Song Y, Linderholm HW, Luo Y, Xu J, Zhou G. Climatic Causes of Maize Production Loss under Global Warming in Northeast China. Sustainability. 2020; 12(18):7829. https://doi.org/10.3390/su12187829
Chicago/Turabian StyleSong, Yanling, Hans W. Linderholm, Yi Luo, Jinxia Xu, and Guangsheng Zhou. 2020. "Climatic Causes of Maize Production Loss under Global Warming in Northeast China" Sustainability 12, no. 18: 7829. https://doi.org/10.3390/su12187829
APA StyleSong, Y., Linderholm, H. W., Luo, Y., Xu, J., & Zhou, G. (2020). Climatic Causes of Maize Production Loss under Global Warming in Northeast China. Sustainability, 12(18), 7829. https://doi.org/10.3390/su12187829