How Tillage and Fertilization Influence Soil N2O Emissions after Forestland Conversion to Cropland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Measurements of N2O Emissions
2.4. Crop Yield Measurements
2.5. Auxiliary Measurements of Soil Parameters
2.6. Contribution Rates of Tillage and Fertilization to Increased Soil N2O Emissions
2.7. Statistical Analysis
3. Results
3.1. Environmental Conditions and Soil Properties
3.2. Soil N2O Emissions
3.3. Relationships between N2O Fluxes and Soil Environmental Variables
4. Discussion
4.1. Effects of Land Use Conversion on Soil N2O Emissions and Yield-Scaled N2O Emissions
4.2. Factors Regulating the Increased Soil N2O Emissions Induced by Tillage and Fertilization
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2013: The Physical Science Basis; Stocker, T.F., Qin, D.H., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Tian, H.; Lu, C.; Ciais, P.; Michalak, A.M.; Canadell, J.G.; Saikawa, E.; Huntzinger, D.N.; Gurney, K.R.; Sitch, S.; Zhang, B.; et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 2016, 531, 225–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Tang, S.; He, D.; Wu, X.; Shaaban, M.; Wang, M.; Zhao, J.; Khan, I.; Zheng, X.; Hu, R.; et al. Conversion from rice to vegetable production increases N2O emission via increased soil organic matter mineralization. Sci. Total Environ. 2017, 583, 190–201. [Google Scholar] [CrossRef] [PubMed]
- FAO. An FAO Perspective. In World Agriculture: Towards 2015/2030; FAO: Rome, Italy, 2003. [Google Scholar]
- Zhou, M.; Zhu, B.; Wang, S.; Zhu, X.; Vereecken, H.; Brüggemann, N. Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits: A global meta-analysis. Glob. Chang. Biol. 2017, 23, 4068–4083. [Google Scholar] [CrossRef] [PubMed]
- Bateman, E.J.; Baggs, E.M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fert. Soil. 2005, 41, 379–388. [Google Scholar] [CrossRef]
- Müller, C.; Laughlin, R.J.; Spott, O.; Rütting, T. Quantification of N2O emission pathways via a 15N tracing model. Soil Biol. Biochem. 2014, 72, 44–54. [Google Scholar] [CrossRef]
- Dong, Z.; Zhu, B.; Hua, K.; Jiang, Y. Linkage of N2O emissions to the abundance of soil ammonia oxidizers and denitrifiers in purple soil under long-term fertilization. Soil Sci. Plant. Nutr. 2015, 61, 799–807. [Google Scholar] [CrossRef]
- Wu, X.; Liu, H.; Fu, B.; Wang, Q.; Xu, M.; Wang, H.; Yang, F.; Liu, G. Effects of land-use change and fertilization on N2O and NO fluxes, the abundance of nitrifying and denitrifying microbial communities in a hilly red soil region of southern China. Appl. Soil Ecol. 2017, 120, 111–120. [Google Scholar] [CrossRef]
- Campanha, M.M.; de Oliveira, A.D.; Marriel, I.E.; Neto, M.M.G.; Malaquias, J.V.; Landau, E.C.; de Albuquerque Filho, M.R.; Ribeiro, F.P.; de Carvalho, A.M. Effect of soil tillage and N fertilization on N2O mitigation in maize in the Brazilian Cerrado. Sci. Total Environ. 2019, 692, 1165–1174. [Google Scholar] [CrossRef]
- Chen, D.; Li, Y.; Wang, C.; Liu, X.; Wang, Y.; Shen, J.; Qin, J.; Wu, J. Dynamics and underlying mechanisms of N2O and NO emissions in response to a transient land-use conversion of Masson pine forest to tea field. Sci. Total Environ. 2019, 693, 133549. [Google Scholar] [CrossRef]
- Petitjean, C.; Hénault, C.; Perrin, A.S.; Pontet, C.; Metay, A.; Bernoux, M.; Jehanno, T.; Viard, A.; Roggy, J.C. Soil N2O emissions in French Guiana after the conversion of tropical forest to agriculture with the chop-and-mulch method. Agr. Ecosyst. Environ. 2015, 208, 64–74. [Google Scholar] [CrossRef]
- van Lent, J.; Hergoualc’h, K.; Verchot, L.V. Reviews and syntheses: Soil N2O and NO emissions from land use and land-use change in the tropics and subtropics: A meta-analysis. Biogeosciences 2015, 12, 7299–7313. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Liu, G.; Li, Y.; Wu, X.; Liu, D.; Dai, X.; Xu, M.; Yang, F. Effects of land use conversion and fertilization on CH4 and N2O fluxes from typical hilly red soil. Environ. Sci. Pollut. Res. 2016, 23, 20269–20280. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Liu, Y.; Zhu, Q.; Lai, X.; Liao, K. Comparing the variations and controlling factors of soil N2O emissions and NO3−-N leaching on tea and bamboo hillslopes. Catena 2020, 188, 104463. [Google Scholar] [CrossRef]
- Sosulski, T.; Szara, E.; Szymańska, M.; Stępień, W.; Rutkowska, B.; Szulc, W. Soil N2O emissions under conventional tillage conditions and from forest soil. Soil Till. Res. 2019, 190, 86–91. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, X.; Ke, Y.; Zhu, B. Effects of afforestation on soil nitrous oxide emissions in a subtropical montane agricultural landscape: A 3-year field experiment. Agric. For. Meteorol. 2019, 266, 221–230. [Google Scholar] [CrossRef]
- Grandy, A.S.; Robertson, G.P. Initial cultivation of a temperate-region soil immediately accelerates aggregate turnover and CO2 and N2O fluxes. Glob. Chang. Biol. 2006, 12, 1507–1520. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Álvaro-Fuentes, J.; Arrúe, J.L.; Cantero-Martínez, C. Tillage and nitrogen fertilization effects on nitrous oxide yield-scaled emissions in a rainfed Mediterranean area. Agric. Ecosyst. Environ. 2014, 189, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Bayer, C.; Gomes, J.; Zanatta, J.A.; Vieira, F.C.B.; de Cássia Piccolo, M.; Dieckow, J.; Six, J. Soil nitrous oxide emissions as affected by long-term tillage, cropping systems and nitrogen fertilization in Southern Brazil. Soil Till. Res. 2015, 146, 213–222. [Google Scholar] [CrossRef]
- Ayoubi, S.; Karchegani, P.M.; Mosaddeghi, M.R.; Honarjoo, N. Soil aggregation and organic carbon as affected by topography and land use change in western Iran. Soil Till. Res. 2012, 121, 18–26. [Google Scholar] [CrossRef]
- Badagliacca, G.; Benítez, E.; Amato, G.; Badalucco, L.; Giambalvo, D.; Laudicina, V.A.; Ruisi, P. Long-term effects of contrasting tillage on soil organic carbon, nitrous oxide and ammonia emissions in a Mediterranean Vertisol under different crop sequences. Sci. Total Environ. 2018, 619, 18–27. [Google Scholar] [CrossRef]
- Dong, Z.; Zhu, B.; Jiang, Y.; Tang, J.; Liu, W.; Hu, L. Seasonal N2O emissions respond differently to environmental and microbial factors after fertilization in wheat-maize agroecosystem. Nutr. Cycl. Agroecosys. 2018, 112, 215–229. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, B.; Butterbach-Bahl, K.; Zheng, X.; Wang, T.; Wang, Y. Nitrous oxide emissions and nitrate leaching from a rain-fed wheat-maize rotation in the Sichuan Basin, China. Plant. Soil 2013, 362, 149–159. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, X.; Wang, Y.; Zhu, B. A three-year experiment of annual methane and nitrous oxide emissions from the subtropical permanently flooded rice paddy fields of China: Emission factor, temperature sensitivity and fertilizer nitrogen effect. Agric. For. Meteorol. 2018, 250, 299–307. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Glob. Biogeochem. Cy. 2002, 16, 1058–1071. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, T.; Kuang, F.; Luo, Z.; Tang, J.; Xu, T. Measurements of nitrate leaching from a hillslope cropland in the central Sichuan basin, China. Soil Sci. Soc. Am. J. 2009, 73, 1419–1426. [Google Scholar] [CrossRef]
- Dong, Z.; Zhu, B.; Zeng, Z. The influence of N-fertilization regimes on N2O emissions and denitrification in rain-fed cropland during the rainy season. Environ. Sci. Proc. Imp. 2014, 16, 2545–2553. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, B.; Brüggemann, N.; Bergmann, J.; Wang, Y.; Butterbach-Bahl, K. N2O and CH4 emissions, and NO3− leaching on a crop-yield basis from a subtropical rain-fed wheat-maize rotation in response to different types of nitrogen fertilizer. Ecosystems 2014, 17, 286–301. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, M.; Li, T.; Ke, Y.; Zhu, B. Land use change effects on ecosystem carbon budget in the Sichuan Basin of Southwest China: Conversion of cropland to forest ecosystem. Sci. Total Environ. 2017, 609, 556–562. [Google Scholar] [CrossRef]
- Zheng, X.; Mei, B.; Wang, Y.; Xie, B.; Wang, Y.; Dong, H.; Xu, H.; Chen, G.; Cai, Z.; Yue, J.; et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant. Soil 2008, 311, 211–234. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, X.; Pihlatie, M.; Vesala, T.; Liu, C.; Haapanala, S.; Mammarella, I.; Rannik, Ü.; Liu, H. Comparison between static chamber and tunable diode laser-based eddy covariance techniques for measuring nitrous oxide fluxes from a cotton field. Agric. For. Meteorol. 2013, 171, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Lu, R. Soil Agro-Chemical Analyses; Agricultural Technical Press of China: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Six, J.; Paustian, K.; Elliott, E.T.; Combrink, C. Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 2000, 64, 681–689. [Google Scholar]
- Whalen, J.K.; Hu, Q.; Liu, A. Compost applications increase water-stable aggregates in conventional and no-tillage systems. Soil Sci. Soc. Am. J. 2003, 67, 1842–1847. [Google Scholar]
- Zhang, K.; Wu, H.; Li, M.; Yan, Z.; Li, Z.; Wang, J.; Zhang, X.; Yan, L.; Kang, X. Magnitude and Edaphic Controls of Nitrous Oxide Fluxes in Natural Forests at Different Scales. Forests 2020, 11, 251. [Google Scholar]
- van Groenigen, J.W.; Velthof, G.L.; Oenema, O.; van Groenigen, K.J.; van Kessel, C. Towards an agronomic assessment of N2O emissions: A case study for arable crops. Eur. J. Soil Sci. 2010, 61, 903–913. [Google Scholar]
- Grassini, P.; Cassman, K.G. High-yield maize with large net energy yield and small global warming intensity. Proc. Natl. Acad. Sci. USA 2012, 109, 1074–1079. [Google Scholar]
- Tang, Y.; Yu, L.; Guan, A.; Zhou, X.; Wang, Z.; Gou, Y.; Wang, J. Soil mineral nitrogen and yield-scaled soil N2O emissions lowered by reducing nitrogen application and intercropping with soybean for sweet maize production in southern China. J. Integr. Agric. 2017, 16, 2586–2596. [Google Scholar]
- Ussiri, D.A.; Lal, R.; Jarecki, M.K. Nitrous oxide and methane emissions from long-term tillage under a continuous corn cropping system in Ohio. Soil Till. Res. 2009, 104, 247–255. [Google Scholar]
- Gao, W.; Bian, X. Evaluation of the agronomic impacts on yield-scaled N2O emission from wheat and maize fields in China. Sustainability 2017, 9, 1201. [Google Scholar]
- Chen, G.; Kolb, L.; Cavigelli, M.A.; Weil, R.R.; Hooks, C.R.R. Can conservation tillage reduce N2O emissions on cropland transitioning to organic vegetable production? Sci. Total Environ. 2018, 618, 927–940. [Google Scholar]
- Pareja-Sánchez, E.; Cantero-Martínez, C.; Álvaro-Fuentes, J.; Plaza-Bonilla, D. Impact of tillage and N fertilization rate on soil N2O emissions in irrigated maize in a Mediterranean agroecosystem. Agric. Ecosyst. Environ. 2020, 287, 106687. [Google Scholar] [CrossRef]
- Grave, R.A.; da Silveira Nicoloso, R.; Cassol, P.C.; da Silva, M.L.B.; Mezzari, M.P.; Aita, C.; Wuaden, C.R. Determining the effects of tillage and nitrogen sources on soil N2O emission. Soil Till. Res. 2018, 175, 1–12. [Google Scholar] [CrossRef]
- Kalinitchenko, V.P.; Glinushkin, A.P.; Sokolov, M.; Batukaev, A.; Minkina, T.M.; Zinchenko, V.; Chernenko, V.; Startsev, V.; Mandzhieva, S.; Sushkova, S.; et al. Biogeosystem Technique for Healthy Soil, Water and Environment. In Proceedings of the ACS Fall 2019 National Meeting & Exposition, Chemistry & Water, San Diego, CA, USA, 25–29 August 2019. [Google Scholar]
- Kalinitchenko, V.P.; Glinushkin, A.P.; Minkina, T.M.; Mandzhieva, S.S.; Sushkova, S.N.; Sukovatov, V.A.; Il’ina, L.P.; Makarenkov, D.A. Chemical soil-biological engineering theoretical foundations, technical means, and technology for environmentally safe intra-soil waste recycling and long-term higher soil productivity. ACS Omega 2020, 5, 17553–17564. [Google Scholar] [CrossRef] [PubMed]
Soil Properties | CK | NC-T | NC-TF | LC-T | LC-TF |
---|---|---|---|---|---|
pH | 8.16 ± 0.04 a | 8.13 ± 0.01 a | 8.14 ± 0.02 a | 8.11 ± 0.04 a | 8.16 ± 0.02 a |
SOC (g kg−1) | 22.20 ± 0.42 a | 14.83 ± 0.24 b | 14.54 ± 0.37 b | 7.85 ± 0.23 c | 7.72 ± 0.27 c |
TN (g kg−1) | 1.62 ± 0.03 a | 1.32 ± 0.03 b | 1.29 ± 0.01 b | 0.83 ± 0.02 c | 0.79 ± 0.02 c |
C/N ratio | 13.70 ± 0.04 a | 11.22 ± 0.22 b | 11.30 ± 0.21 b | 9.51 ± 0.37 c | 9.72 ± 0.20 c |
BD (g cm−3) | 1.34 ± 0.01 a | 1.16 ± 0.01 c | 1.16 ± 0.01 c | 1.24 ± 0.03 b | 1.20 ± 0.01 b |
Clay (%) | 18.7 ± 0.3 b | 19.4 ± 0.2 b | 19.4 ± 0.2 b | 20.9 ± 0.3 a | 21.4 ± 0.2 a |
Silt (%) | 39.5 ± 0.5 b | 40.4 ± 0.6 b | 40.5 ± 0.8 b | 42.0 ± 0.3 a | 42.5 ± 0.3 a |
Sand (%) | 41.8 ± 0.2 a | 40.2 ± 0.4 a | 40.1 ± 0.8 a | 37.1 ± 0.2 b | 36.2 ± 0.2 b |
Treatment | Aggregate Size Distribution (%) | MWD (mm) | |||
---|---|---|---|---|---|
2–8mm | 0.25–2 mm | 0.053–0.25 mm | <0.053 mm | ||
CK | 52.77 ± 0.43 a | 36.39 ± 0.16 b | 6.83 ± 0.32 c | 4.01 ± 0.29 c | 3.06 ± 0.02 a |
NC-T | 27.93 ± 0.36 b | 42.44 ± 0.59 a | 16.50 ± 0.53 b | 13.13 ± 0.27 b | 1.90 ± 0.01 b |
NC-TF | 26.78 ± 0.41 b | 42.78 ± 0.34 a | 16.57 ± 0.78 b | 13.87 ± 0.40 b | 1.85 ± 0.02 b |
LC-T | 6.26 ± 0.14 c | 14.59 ± 0.16 c | 34.49 ± 0.30 a | 44.65 ± 0.21 a | 0.54 ± 0.01 c |
LC-TF | 7.09 ± 0.09 c | 17.09 ± 0.29 c | 33.86 ± 0.11 a | 41.96 ± 0.24 a | 0.61 ± 0.01 c |
Treatment | Cumulative N2O Emissions (kg N ha−1) | Grain Yield (Mg ha−1) | Yield-Scaled N2O Emission (kg N Mg−1 Grain) | ||
---|---|---|---|---|---|
Wheat Season | Maize Season | Whole Year | |||
CK | 0.08 ± 0.001 d | 0.13 ± 0.003 e | 0.21 ± 0.004 e | ||
NC-T | 0.15 ± 0.001 c | 0.33 ± 0.003 c | 0.48 ± 0.004 c | 1.45 ± 0.08 d | 0.33 ± 0.02 a |
NC-TF | 0.25 ± 0.013 b | 0.67 ± 0.005 b | 0.92 ± 0.010 b | 4.09 ± 0.32 b | 0.23 ± 0.01 b |
LC-T | 0.10 ± 0.001 cd | 0.27 ± 0.003 d | 0.38 ± 0.004 d | 2.40 ± 0.17 c | 0.16 ± 0.01 d |
LC-TF | 0.49 ± 0.007 a | 0.85 ± 0.006 a | 1.26 ± 0.007 a | 6.72 ± 0.44 a | 0.19 ± 0.01 c |
Treatment | Parameter | Coefficient | p-Value | Adjust R2 | p-Value |
---|---|---|---|---|---|
CK | Intercept | 0.00003 | 0.999 | ||
WFPS | 0.49 | <0.001 | |||
ST | 0.47 | <0.001 | 0.82 | <0.001 | |
NC-T | Intercept | 0.0001 | 1.000 | ||
NO3− | 0.38 | <0.001 | |||
NH4+ | 0.45 | <0.001 | |||
WFPS | 0.27 | <0.005 | 0.79 | <0.001 | |
NC-TF | Intercept | −0.000004 | 1.000 | ||
DOC | −0.38 | <0.001 | |||
NH4+ | 0.44 | <0.001 | |||
WFPS | 0.28 | <0.001 | 0.74 | <0.001 | |
LC-T | Intercept | −0.00005 | 0.999 | ||
NO3− | 0.35 | <0.01 | |||
NH4+ | 0.36 | <0.001 | |||
WFPS | 0.42 | <0.001 | 0.90 | <0.001 | |
LC-TF | Intercept | −0.0004 | 0.994 | ||
NH4+ | 0.63 | <0.001 | |||
WFPS | 0.4 | <0.001 | |||
NO3− | 0.16 | <0.001 | 0.79 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Zhu, B.; Bah, H.; Raza, S.T. How Tillage and Fertilization Influence Soil N2O Emissions after Forestland Conversion to Cropland. Sustainability 2020, 12, 7947. https://doi.org/10.3390/su12197947
Ren X, Zhu B, Bah H, Raza ST. How Tillage and Fertilization Influence Soil N2O Emissions after Forestland Conversion to Cropland. Sustainability. 2020; 12(19):7947. https://doi.org/10.3390/su12197947
Chicago/Turabian StyleRen, Xiao, Bo Zhu, Hamidou Bah, and Syed Turab Raza. 2020. "How Tillage and Fertilization Influence Soil N2O Emissions after Forestland Conversion to Cropland" Sustainability 12, no. 19: 7947. https://doi.org/10.3390/su12197947
APA StyleRen, X., Zhu, B., Bah, H., & Raza, S. T. (2020). How Tillage and Fertilization Influence Soil N2O Emissions after Forestland Conversion to Cropland. Sustainability, 12(19), 7947. https://doi.org/10.3390/su12197947