Bacterial Concrete as a Sustainable Building Material?
Abstract
:1. Introduction
- reduce the consumption of resources;
- minimise the impact on the environment;
- do not pose a threat to human health.
2. Concrete
- freeze-thaw action;
- shrinkage;
- hardening of concrete;
- low tensile strength of concrete, etc.
- autogenous healing;
- autonomous healing.
- biologically controlled mineralization (BCM);
- biologically induced mineralization (BIM).
3. Self-Healing Mechanism
4. Influence of Bacteria/Biomineralization on Concrete Properties
4.1. Influence of Bacteria on Concrete Properties
4.2. Self-Healing Properties Induced by Bacteria
4.3. Other Mechanisms
5. The Cost of Producing Self-Healing Concrete
6. Suggestions for the Future
- the construction community is not accustomed to microbiological processes;
- bacteria are considered to be harmful to health;
- the product and performance of MICP may be varied geographically and environmentally and require adaptation to the local conditions;
- standard protocols need to be developed concerning the testing and acceptance criteria;
- survival of bacteria in the alkaline pH environment of concrete;
- encapsulation of bacterial cells using polyurethaneas well as silica gel and microcapsules;
- reduction in production cost.
7. Conclusions
- The majority of Bacillus bacteria have a positive effect on the compressive strength of concrete and on bending strength compared to conventional samples.
- The use of a mixture (consortium) of Bacillus pseudofirmus and Bacillus cohnii resulted increase in compressive strength.
- The Bacillus sphaericus species showed a reduction in water absorption.
- Inorganic porous materials such as ceramite, zeolites and others are used to protect the bacteria from high pH.
- In lightweight aggregate concrete, the use of Sporosarcina pasteuria increased resistance to chloride ion penetration.
- Expanded perlite particles immobilized by bacterial spores and wrapped in a low alkali material ensure the best crack healing and reduced water permeability.
- The use of various substances, e.g., silica gel, protects bacteria from alkaline reactions.
- The use of autoclaved bacteria or their dispute reduces porosity and thus permeability.
- Bacillus Pasteurii reduce water absorption. The durability of concrete is increased and the permeability of chlorides is reduced.
- The encapsulation of Bacillus Sphaericus in closed microcapsules showed a greater effectiveness of crack treatment and lower water permeability.
- The PP and PVA fiber used caused a decrease in bacterial concentration. The surface repair level for samples with bacteria and fibers was slightly lower than for the bacteria themselves.
- The diffusion of chlorine ions decreased by for Sporosarcina pasteurii and Skutarcina ureae using zeolite and glass fiber reinforcement.
- RCA and 50% FA as bacterial immobilizers showed the most effective repair of cracks up to 1.1 mm wide and allowed to recover the compression strength of 85%.
Funding
Conflicts of Interest
References
- Franzoni, E. Materials selection for green buildings: Which tools for engineers and architects? Procedia Eng. 2011, 21, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Melchert, L. The dutch sustainable building policy: A model for developing countries? Build. Environ. 2007, 42, 893–901. [Google Scholar] [CrossRef]
- Häkkinen, T.; Belloni, K. Barriers and drivers for sustainable building. Build. Res. Inform. 2011, 39, 239–255. [Google Scholar] [CrossRef]
- Chen, Z.S.; Martinez, L.; Chang, J.P.; Wang, X.J.; Xionge, S.H.; Chin, K.S. Sustainable building material selection: A QFD- and ELECTRE III-embedded hybrid MCGDM approach with consensus building. Eng. Appl. Artif. Intell. 2019, 85, 783–807. [Google Scholar] [CrossRef]
- Invidiata, A.; Lavagna, M.; Ghisi, E. Selecting design strategies using multi-criteria decision making to improve the sustainability of buildings. Build. Environ. 2018, 139, 58–68. [Google Scholar] [CrossRef]
- Stanaszek-Tomal, E.; Kozak, A. Mineral and organic coatings modified nano-TiO2 addition as elements of sustainable building. In Energy Efficient, Sustainable Building Materials and Products; Hager, I., Ed.; Wydawnictwo PK: Kraków, Polska, 2017; pp. 89–117. [Google Scholar]
- Thormark, C. The effect of materials choice on the total energy need and recycling potential of a building. Build. Environ. 2006, 41, 1019–1026. [Google Scholar] [CrossRef]
- Akadiri, P.O.; Chinyio, E.A.; Olomolaiye, P.O. Design of a sustainable building: A conceptual framework for implementing sustainability in the building sector. Buildings 2012, 2, 126–152. [Google Scholar] [CrossRef] [Green Version]
- Roodman, D.M.; Lenssen, N. A Building Revolution: How Ecology and Health Concerns are Transforming Construction; Worldwatch Paper 124; Worldwatch Institute: Washington, DC, USA, 1995; p. 5. [Google Scholar]
- Achal, V.; Mukherjee, A. A review of microbial precipitation for sustainable construction. Constr. Build. Mater. 2015, 93, 1224–1235. [Google Scholar] [CrossRef]
- Sisomphon, K.; Copuroglu, O.; Koenders, E.A.B. Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cem. Concr. Compos. 2012, 34, 566–574. [Google Scholar] [CrossRef]
- Huang, H.; Ye, G.; Damidot, D. Characterization and quantification of self-healing behaviors of microcracks due to further hydration in cement paste. Cem. Concr. Res. 2013, 52, 71–81. [Google Scholar] [CrossRef]
- Qureshi, T.; Kanellopoulos, A.; Al-Tabbaa, A. Autogenous self-healing of cement with expansive minerals-I: Impact in early age crack healing. Constr. Build. Mater. 2018, 192, 768–784. [Google Scholar] [CrossRef] [Green Version]
- Saifee, S.N.; Lad, D.M.; Juremalani, J.R. Critical appraisal on Bacterial Concrete. IJRDO J. Mech. Civ. Eng. 2015, 1, 10–14. [Google Scholar]
- Meera, C.M.; Subha, V. Strength and Durability assessment Of Bacteria Based Self-Healing Concrete. IOSR J. Mech. Civ. Eng. 2016, 50, 1–7. [Google Scholar]
- Ravindranatha, R.; Kannan, R.N.; Likhit, M.L. Self healing material bacterial concrete. Int. J. Res. Eng. Technol. 2014, 3, 656–659. [Google Scholar]
- Manikandan, A.T.; Padmavathi, A. An Experimental Investigation on Improvement of Concrete Serviceability by using Bacterial Mineral Precipitation. Int. J. Res. Sci. Innov. 2015, 2, 46–49. [Google Scholar]
- Jagadeesha Kumar, B.G.; Prabhakara, R.; Pushpa, H. Effect of Bacterial Calcite Precipitation on Compressive Strength of Mortar Cube. Int. J. Eng. Adv. Technol. (IJEAT) 2013, 2, 486–491. [Google Scholar]
- Depaa, R.A.B.; Kala, T.F. Experimental Investigation of self healing behavior of concrete using silica fume and GGBFS as mineral admixtures. Indian J. Sci. Technol. 2015, 8. [Google Scholar] [CrossRef]
- Reddy, V.S.; Seshagiri Rao, M.V.; Sushma, S. Feasibility Study on Bacterial Concrete as an innovative self crack healing system. Int. J. Mod. Trends Eng. Res. 2015, 2, 642–647. [Google Scholar]
- Goyal, M.; Chaitanya, P.K. Behaviour of Bacterial Concrete as Self-Healing Material. Int. J. Emerg. Technol. Adv. Eng. 2015, 5, 100–103. [Google Scholar]
- Ganesh Babu, N. An experimental study on strength and fracture properties of self healing concrete. Int. J. Civ. Eng. Technol. (IJCIET) 2016, 7, 398–406. [Google Scholar]
- Chahal, N.; Siddique, R.; Rajor, A. Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Constr. Build. Mater. 2012, 28, 351–356. [Google Scholar] [CrossRef]
- Ramakrishnan, V.; Deo, K.S.; Duke, E.F.; Bang, S.S. SEM investigation of microbial calcite precipitation in cement. In Proceedings of the 21st International Conference on Cement Microscopy, Las Vegas, NV, USA, 25–29 April 1999; pp. 406–414. [Google Scholar]
- Ghosh, P.; Mandal, S.; Chattopadhyay, B.D.; Pal, S. Use of microorganism to improve the strength of cement mortar. Cem. Concr. Res. 2005, 35, 1980–1983. [Google Scholar] [CrossRef]
- Jonkers, H.M.; Schlangen, H.E.J.G. Crack repair by concrete immobilized bacteria. In Proceedings of the First International Conference on Self Healing Materials, Noordwijk Aan Zee, The Netherlands, 18–20 April 2007; pp. 1–7. [Google Scholar]
- Jonkers, H.M.; Schlangen, H.E.J.G. Development of a bacteria-based self healing concrete. In Tailor Made Concrete Structures; Walraven, S., Ed.; Taylor & Francis Group: London, UK, 2008; pp. 425–430. [Google Scholar]
- Achal, V.; Mukherjee, A.; Reddy, M.S. Biocalcification by Sporosarcina pasteurii using Corn steep liquor as nutrient source. Ind. Biotechnol. 2010, 6, 170–174. [Google Scholar] [CrossRef]
- Achal, V.; Mukherjee, A.; Reddy, M.S. Isolation and characterization of urease producing and calcifying bacteria from cement. J. Microbiol. Biotechnol. 2010, 20, 1571–1576. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Park, Y.; Chun, W.; Kim, W.; Ghim, S. Calcite forming bacteria for compressive strength improvement in mortar. J. Microbiol. Biotechnol. 2010, 20, 782–788. [Google Scholar] [CrossRef]
- Afifudin, H.; Hamidah, M.; Hana, H.; Kartini, K. Microorganism precipitation in enhancing concrete properties. Appl. Mech. Mater. 2011, 99, 1157–1165. [Google Scholar] [CrossRef]
- Ramachandran, S.K.; Ramakrishnan, V.; Bang, S.S. Remediation of concrete using microorganisms. ACI Mater. J. 2001, 98, 3–9. [Google Scholar]
- De Muynck, W.; Cox, K.; De Belie, N.; Verstraete, W. Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr. Build. Mater. 2008, 22, 875–885. [Google Scholar] [CrossRef]
- Wang, J.; Mignon, A.; Trenson, G.; Van Vlierbergh, S.; Boon, N.; De Belie, N. A chitosan based pHresponsive hydrogel for encapsulation of bacteria for self-sealing concrete. Cem. Concr. Compos. 2018, 93, 309–322. [Google Scholar] [CrossRef]
- Wang, J.; Snoeck, D.; Van Vlierberghe, S.; Verstraete, W.H.; De Belie, N. Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Constr. Build. Mater. 2014, 68, 110–119. [Google Scholar] [CrossRef]
- Jagannathan, P.; Satya Narayanana, K.S.; Devi Arunachalamb, K.; Kumar Annamalaib, S. Studies on the mechanical properties of bacterial concrete with two bacterial species. Mater. Today Proc. 2018, 5, 8875–8879. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Ghorbel, E.; Fares, H.; Cousture, A. Bacterial self-healing of concrete and durability assessment. Cem. Concr. Compos. 2019, 104, 103–340. [Google Scholar] [CrossRef]
- Balam, N.H.; Mostofinejad, D.; Eftekhar, M. Effects of bacterial remediation on compressive strength, water absorption, and chloride permeability of lightweight aggregate concrete. Constr. Build. Mater. 2017, 145, 107–116. [Google Scholar] [CrossRef]
- Bhaskar, S.; Anwar, K.M.; Lachemi, M.; Wolfaardt, G.; Otini, M. Effect of self-healing on strength and durability of zeolite-immobilized bacterial cementitious mortar composites. Cem. Concr. Compos. 2017, 82, 23–33. [Google Scholar] [CrossRef]
- Wu, M.; Hu, X.; Zhang, Q.; Xue, D.; Zhao, Y. Growth environment optimization for inducing bacterial mineralization and its application in concrete healing. Constr. Build. Mater. 2019, 209, 631–643. [Google Scholar] [CrossRef]
- Achal, V.; Mukherjee, A.; Reddy, M.S. Effect of calcifying bacteria on permeation properties of concrete structures. J. Ind. Microbiol. Biotechnol. 2011, 38, 1229–1234. [Google Scholar] [CrossRef] [PubMed]
- Van Tittelboom, K.; De Belie, N.; De Muynck, W.; Verstraete, W. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 2010, 40, 157–166. [Google Scholar] [CrossRef]
- Wang, J.Y.; Soens, H.; Verstraete, W.; De Belie, N. Self-healing concrete by use of microencapsulated bacterial spores. Cem. Concr. Res. 2014, 56, 139–152. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X. Self-healing of concrete cracks by use of bacteria-containing low alkali cementitious material. Constr. Build. Mater. 2018, 167, 1–14. [Google Scholar] [CrossRef]
- Qiu, J.; Tng, D.Q.S.; Yang, E.-H. Surface treatment of recycled concrete aggregates through microbial carbonate precipitation. Constr. Build. Mater. 2014, 57, 144–150. [Google Scholar] [CrossRef]
- Siddique, R.; Singh, K.; Kunal, P.; Singh, M.; Corinaldesi, V.; Rajor, A. Properties of bacterial rice husk ash concrete. Constr. Build. Mater. 2016, 121, 112–119. [Google Scholar] [CrossRef]
- Alazhari, M.; Sharma, T.; Heath, A.; Cooper, R.; Paine, K. Application of expanded perlite encapsulated bacteria and growth media for self-healing concrete. Constr. Build. Mater. 2018, 160, 610–619. [Google Scholar] [CrossRef]
- Chen, H.; Qian, C.; Huang, H. Self-healing cementitious materials based on bacteria and nutrients immobilized respectively. Constr. Build. Mater. 2016, 126, 297–303. [Google Scholar] [CrossRef]
- June, J.; Politecnica, U.; Wang, J.Y.; Van Tittelboom, K.; De Belie, N.; Verstraete, W. Potential of applying bacteria to heal cracks in concrete. In Proceedings of the International Conference on Sustainable Construction Materials and Technologies, Università Politecnica delle Marche, Ancona, Italy, 28–30 June 2010; pp. 1807–1818, ISBN 978-1-4507-1490-7. [Google Scholar]
- Chen, H.-J.; Peng, C.-F.; Tang, C.-W.; Chen, Y.-T. Self-Healing Concrete by Biological Substrate. Materials 2019, 12, 4099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Liu, Y.; Feng, T.; Zhou, M.; Zhao, L.; Zhou, A.; Li, Z. Immobilizing bacteria in expanded perlite for the crack self-healing in concrete. Constr. Build. Mater. 2017, 148, 610–617. [Google Scholar] [CrossRef]
- Khaliq, W.; Ehsan, M.B. Crack healing in concrete using various bio influenced self-healing techniques. Constr. Build. Mater. 2016, 102, 349–357. [Google Scholar] [CrossRef]
- Wang, J.; Dewanckele, J.; Cnudde, V.; Van Vlierberghe, S.; Verstraete, W.; De Belie, N. X-ray computed tomography proof of bacterial-based self-healing in concrete. Cem. Concr. Compos. 2014, 53, 289–304. [Google Scholar] [CrossRef]
- Jiang, L.; Jia, G.; Jiang, C.; Li, Z. Sugar-coated expanded perlite as a bacterial carrier for crack-healing concrete applications. Constr. Build. Mater. 2019, 232, 117–222. [Google Scholar] [CrossRef]
- America, F.; Shoaeib, P.; Bahramia, N.; Vaezia, M.; Ozbakkalogluc, T. Optimum rice husk ash content and bacterial concentration in self-compacting concrete. Constr. Build. Mater. 2019, 222, 796–813. [Google Scholar] [CrossRef]
- Mondal, S.; Ghosh, A. Investigation into the optimal bacterial concentration for compressive strength enhancement of microbial concrete. Constr. Build. Mater. 2018, 183, 202–214. [Google Scholar] [CrossRef]
- Palin, D.; Wiktor, V.; Jonkers, H.M. A bacteria-based self-healing cementitious composite for application in low-temperature marine environments. Biomimetics 2017, 2, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, J.; Su, J.; Qian, C. Coupled effect of PP fiber, PVA fiber and bacteria on self-healing efficiency of early-age cracks in concrete. Constr. Build. Mater. 2019, 228, 116810. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W.; Pang, S.D. Healing cement mortar by immobilization of bacteria in biochar: An integrated approach of self-healing and carbon sequestration. Cem. Concr. Compos. 2018, 86, 238–254. [Google Scholar] [CrossRef]
- Shaheen, N.; Khushnood, R.A.; Khaliq, W.; Murtaza, H.; Muhammad, R.I.; Khan, H. Synthesis and characterization of bio-immobilized nano/micro inert and reactive additives for feasibility investigation in self-healing concrete. Constr. Build. Mater. 2019, 226, 492–506. [Google Scholar] [CrossRef]
- Khushnood, R.A.; Qureshi, Z.A.; Shaheen, N.; Ali, S. Bio-mineralized self-healing recycled aggregate concrete for sustainable infrastructure. Sci. Total Environ. 2020, 703, 135007. [Google Scholar] [CrossRef]
- Zajac, B.; Gołebiowska, I. Samoleczenie betonu. Cz. 1. Metody naturalne i chemiczne. Inż. Apar. Chem. 2016, 55, 160–161. [Google Scholar]
- Zajac, B.; Gołebiowska, I. Samoleczenie betonu. Cz. 2. Metody biologiczne i specjalne. Inż. Apar. Chem. 2016, 55, 160–161. [Google Scholar]
- Li, V.C.; Herbert, E. Robust the self-healing for sustainable infrastructure. J. Adv. Concr. Technol. 2012, 10, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Shim, K.B.; Kishu, T.; Choi, S.C.; Ahn, T.H. Cementitious materials for crack self-healing concrete. J. Ceram. Proc. Res. 2015, 16, 1–13. [Google Scholar]
- De Muynck, W.; De Belie, N.; Verstraete, W. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 2010, 36, 118–136. [Google Scholar] [CrossRef]
- Bravo Silva, F.; Boon, N.; De Belie, N.; Verstraete, W. Industrial application of biological self-healing concrete: Challenges and economical feasibility. J. Commer. Biotechnol. 2015, 21, 31–38. [Google Scholar] [CrossRef]
- Łukowski, P.; Adamczewski, G. Samozaleczanie i samo naprawa betonu. Inż. Bud. 2017, 8, 421–424. [Google Scholar]
Building Materials | Energy (MJ/kg) | kg CO2/kg |
---|---|---|
aggregate | 0.083 | 0.0048 |
concrete (1:1.5:3 e.g., floor panels in situ, construction) | 1.11 | 0.159 |
cement mortar (1:3) | 1.33 | 0.208 |
steel (general—average recycled content) | 20.10 | 1.37 |
bricks (all) | 3.0 | 0.24 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanaszek-Tomal, E. Bacterial Concrete as a Sustainable Building Material? Sustainability 2020, 12, 696. https://doi.org/10.3390/su12020696
Stanaszek-Tomal E. Bacterial Concrete as a Sustainable Building Material? Sustainability. 2020; 12(2):696. https://doi.org/10.3390/su12020696
Chicago/Turabian StyleStanaszek-Tomal, Elżbieta. 2020. "Bacterial Concrete as a Sustainable Building Material?" Sustainability 12, no. 2: 696. https://doi.org/10.3390/su12020696
APA StyleStanaszek-Tomal, E. (2020). Bacterial Concrete as a Sustainable Building Material? Sustainability, 12(2), 696. https://doi.org/10.3390/su12020696