The Role of Single End-Users and Producers on GHG Mitigation in Pakistan—A Case Study
Abstract
:1. Introduction
2. Methodology
2.1. Location Selection
2.2. Selection of Solar Panels
2.3. Load Categorization
2.4. User Selection
2.5. Tilt and Azimuth Angle
2.6. PV System
3. Results
3.1. Initial Cost
3.2. Investment Analysis
3.3. GHG Emission Analysis
3.4. Proposed Project GHG Mitigation Effectiveness
3.5. Study Significance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2007: Synthesis Report. 2007. Available online: http://www.ipcc.ch/ (accessed on 3 August 2009).
- 2006 IPCC Guidelines For National Greenhouse Gas Inventories; Eggleston, S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. (Eds.) Institute for Global Environmental Strategies: Hayama, Japan, 2006; Volume 5. [Google Scholar]
- Farangi, M.; Soleimani, E.A.; Zahedifar, M.; Amiric, O.; Poursafar, J. The environmental and economic analysis of grid-connected photovoltaic power systems with silicon solar panels, in accord with the new energy policy in Iran. Energy 2020, 202, 117771. [Google Scholar] [CrossRef] [PubMed]
- Njoku, H.O.; Omeke, O.M. Potentials and financial viability of solar photovoltaic power generation in Nigeria for greenhouse gas emissions mitigation. Clean Technol. Environ. Policy 2020, 22, 481–492. [Google Scholar] [CrossRef]
- Goal 13: Take Urgent Action to Combat Climate Change and Its Impacts. Available online: https://www.un.org/sustainabledevelopment/climate-change/ (accessed on 28 September 2020).
- Karmaker, A.K.; Rahman, M.; Hossain, A.; Ahmed, R. Exploration and corrective measures of greenhouse gas emission from fossil fuel power stations for Bangladesh. J. Clean. Prod. 2020, 244, 118645. [Google Scholar] [CrossRef]
- Zheng, X.; Streimikiene, D.; Balezentis, T.; Mardani, A.; Cavallaro, F.; Liao, H. A review of greenhouse gas emission profiles, dynamics, and climate change mitigation efforts across the key climate change players. J. Clean. Prod. 2019, 234, 1113–1133. [Google Scholar] [CrossRef]
- Mirjat, N.H.; Uqaili, M.A.; Harijan, K.; Das Valasai, G.; Shaikh, F.; Waris, M. A review of energy and power planning and policies of Pakistan. Renew. Sustain. Energy Rev. 2017, 79, 110–127. [Google Scholar] [CrossRef] [Green Version]
- National Transmission and Despatch Company Limited, Energy Resources Report 2017–2018. Available online: http://ntdc.gov.pk/energy (accessed on 9 August 2020).
- Kassem, Y.; Çamur, H.; Alhuoti, S.M.A. Solar energy technology for Northern Cyprus: Assessment, statistical analysis, and feasibility study. Energies 2020, 13, 940. [Google Scholar] [CrossRef] [Green Version]
- Kamran, M.; Mudassar, M.; Abid, I.; Fazal, M.R.; Ahmed, S.R.; Abid, M.I.; Anjum, S.H. Reconsidering the power structure of Pakistan. Int. J. Renew. Energy Res. 2019, 9, 480–492. [Google Scholar]
- Lin, B.; Raza, M.Y. Analysis of energy related CO2 emissions in Pakistan. J. Clean. Prod. 2019, 219, 981–993. [Google Scholar] [CrossRef]
- Analysis of Pakistan’s Electric Power Sector. Available online: https://www.diva-portal.org/smash/get/diva2:917526/FULLTEXT01.pdf (accessed on 12 September 2020).
- Raza, W.; Hammad, S.; Shams, U.; Maryam, A.; Mahmood, S.; Nadeem, R. Renewable energy resources current status and barriers in their adaptation for Pakistan. J. Bioprocess. Chem. Eng. 2015, 3, 1–9. [Google Scholar]
- Solangi, K.; Islam, M.; Saidur, R.; Rahim, N.; Fayaz, H. A review on global solar energy policy. Renew. Sustain. Energy Rev. 2011, 15, 2149–2163. [Google Scholar] [CrossRef]
- Ulfat, I.; Javed, F.; Abbasi, F.; Kanwal, F.; Usman, A.; Jahangir, M.; Ahmed, F. Estimation of solar energy potential for Islamabad, Pakistan. Energy Procedia 2012, 18, 1496–1500. [Google Scholar] [CrossRef] [Green Version]
- RETScreen International (2005) RETScreen Software Online User Manual. CANMET Energy Technology Centre, Varennes, Quebec, Canada. Available online: http://www.nrcan.gc.ca/energy/software-tools/7465. (accessed on 4 August 2020).
- Adaramola, M.; Paul, S.S.; Oyewola, O.M. Assessment of decentralized hybrid PV solar-diesel power system for applications in Northern part of Nigeria. Energy Sustain. Dev. 2014, 19, 72–82. [Google Scholar] [CrossRef]
- Loughlin, D.H.; Yelverton, W.H.; Dodder, R.L.; Miller, C.A. Methodology for examining potential technology breakthroughs for mitigating CO2 and application to centralized solar photovoltaics. Clean Technol. Environ. Policy 2012, 15, 9–20. [Google Scholar] [CrossRef]
- Asumadu-Sarkodie, S.; Owusu, P.A. The potential and economic viability of solar photovoltaic power in Ghana. Energy Sources Part A Recover. Util. Environ. Eff. 2016, 38, 709–716. [Google Scholar] [CrossRef]
- Harder, E.; Gibson, J.M. The costs and benefits of large-scale solar photovoltaic power production in Abu Dhabi, United Arab Emirates. Renew. Energy 2011, 36, 789–796. [Google Scholar] [CrossRef]
- Rehman, S.; Ahmed, M.; Mohamed, M.H.; Al-Sulaiman, F.A. Feasibility study of the grid connected 10 MW installed capacity PV power plants in Saudi Arabia. Renew. Sustain. Energy Rev. 2017, 80, 319–329. [Google Scholar] [CrossRef]
- Khan, J.; Arsalan, M. Estimation of rooftop solar photovoltaic potential using geo-spatial techniques: A perspective from planned neighborhood of Karachi–Pakistan. Renew. Energy 2016, 90, 188–203. [Google Scholar] [CrossRef]
- Al-Turjman, F.; Qadir, Z.; Abujubbeh, M.; Batunlu, C. Feasibility analysis of solar photovoltaic-wind hybrid energy system for household applications. Comput. Electr. Eng. 2020, 86, 106743. [Google Scholar] [CrossRef]
- Yendaluru, R.S.; Karthikeyan, G.; Jaishankar, A.; Babu, S. Techno-economic feasibility analysis of integrating grid-tied solar PV plant in a wind farm at Harapanahalli, India. Environ. Prog. Sustain. Energy 2019, 39, 13374. [Google Scholar] [CrossRef]
- Hussain, M.; Butt, A.R.; Uzma, F.; Ahmed, R.; Islam, T.; Yousaf, B. A comprehensive review of sectorial contribution towards greenhouse gas emissions and progress in carbon capture and storage in Pakistan. Greenh. Gases Sci. Technol. 2019, 9, 617–636. [Google Scholar] [CrossRef]
- Khalid, A.; Junaidi, H. Study of economic viability of photovoltaic electric power for Quetta–Pakistan. Renew. Energy 2013, 50, 253–258. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.; Solangi, Y.A.; Zameer, H.; Shah, S.A.A. Off-Grid Solar PV Power Generation System in Sindh, Pakistan: A Techno-Economic Feasibility Analysis. Processes 2019, 7, 308. [Google Scholar] [CrossRef] [Green Version]
- Irfan, M.; Zhao, Z.-Y.; Ahmad, M.; Rehman, A. A techno-economic analysis of off-grid solar PV system: A case study for Punjab Province in Pakistan. Processes 2019, 7, 708. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.A.A.; Valasai, G.D.; Memon, A.A.; Laghari, A.N.; Jalbani, N.B.; Strait, J.L. Techno-Economic Analysis of Solar PV Electricity Supply to Rural Areas of Balochistan, Pakistan. Energies 2018, 11, 1777. [Google Scholar] [CrossRef] [Green Version]
- Provisional Summary Results of 6th Population and Housing Census-2017. Available online: http://www.pbs.gov.pk/content/provisional-summary-results-6th-population-and-housing-census-2017-0 (accessed on 18 August 2020).
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World—A Review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Ullah, A.; Imran, H.; Maqsood, Z.; Butt, N.Z. Investigation of optimal tilt angles and effects of soiling on PV energy production in Pakistan. Renew. Energy 2019, 139, 830–843. [Google Scholar] [CrossRef]
- Helioscope: Advance Solar Design Software. Available online: https://www.helioscope.com/ (accessed on 1 August 2020).
- Yazdanie, M.; Rutherford, P.D. Renewable energy in Pakistan: Policy strengths, challenges & the path forward. ETH Zurich 2010, 2, 112–119. [Google Scholar]
- Quetta Electric Supply Company. Available online: http://www.qesco.com.pk/htmls/tariffs.html (accessed on 1 August 2020).
- Pakistan’s 2020–21 Budget. Available online: http://www.finance.gov.pk/budget/Annual_budget_Statement_English_202021.pdf (accessed on 1 August 2020).
- Electric Power Consumption (kWh per Capita)—Pakistan. Available online: https://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC?end=2014&locations=PK&most_recent_value_desc=true&start=1971&view=chart (accessed on 25 August 2020).
Location | Latitude N | Longitude E | Elevation (m) | Annual Average Daily Solar Radiation- Horizontal (kWh/m2/d) | Annual Average Air Temperature (°C) | Annual Average Wind Speed (m/s) | Relative Radiation Percentage |
---|---|---|---|---|---|---|---|
Karachi | 24.9 | 67.1 | 22 | 5.34 | 26.1 | 3.5 | 96.4 |
Lahore | 31.5 | 74.4 | 217 | 4.68 | 24.4 | 2.1 | 84.5 |
Faisalabad | 31.4 | 73.1 | 181 | 5.03 | 26.6 | 2.4 | 90.8 |
Rawalpindi/Islamabad | 33.6 | 73.1 | 508 | 4.02 | 21.6 | 2.4 | 72.3 |
Gujranwala | 32.2 | 74.2 | 237 | 5.33 | 25.4 | 2.2 | 96.2 |
Peshawar | 34 | 71.5 | 0 | 5.16 | 22.7 | 1.9 | 93.1 |
Multan | 30.2 | 71.4 | 0 | 5.09 | 25.3 | 2.9 | 91.9 |
Hyderabad | 25.4 | 68.4 | 53.9 | 5.27 | 27.5 | 4.7 | 95.1 |
Quetta | 30.2 | 66.9 | 0 | 5.54 | 15.7 | 3 | 100 |
Model | BLD-290W |
---|---|
Normal Operating Cell Temperature; ambient temperature | 20 °C |
Temperature Coefficient of Pmax | −0.38%/°C |
Temperature Coefficient of Voc | −0.36%/°C |
Temperature Coefficient of Isc | 0.07%/°C |
Load Type | Load Rating (Watts) | Load Nature |
---|---|---|
Fan | 75 | Seasonal |
Light | 12 | Continuous |
Fridge | 600/480 | Continuous |
LED TV | 80 | Continuous |
AC | 1676 | Seasonal |
Washing Machine | 1000 | Occasional |
Iron | 2000 | Occasional |
1.5 hp water pump | 1119 | Continuous |
Vacuum Cleaner | 1400 | Continuous |
Microwave Oven | 1200 | Occasional |
Electric Heater | 1500 | Seasonal |
Miscellaneous | 250 | Continuous |
Load | Quantity (Units Installed) |
---|---|
Fan | 6 |
Light | 12 |
Fridge | 1 |
AC | 2 |
LED TV | 1 |
Washing Machine | 1 |
Iron | 1 |
Electric Heater | 2 |
Microwave | 1 |
Parameter | Angle |
---|---|
Tilt angle | −15° |
Azimuth angle | 180 |
Month | Daily Solar Radiation-Horizontal (kWh/m2/d) | Daily Solar Radiation −15° Tilt, 180° Azimuth (kWh/m2/d) | Daily Solar Radiation −30° Tilt (kWh/m2/d) |
---|---|---|---|
January | 3.42 | 4.24 | 4.83 |
February | 4.25 | 4.91 | 5.31 |
March | 4.78 | 5.17 | 5.30 |
April | 6.25 | 6.42 | 6.27 |
May | 7.03 | 6.9 | 6.46 |
June | 7.75 | 7.43 | 6.80 |
July | 7.00 | 6.79 | 6.29 |
August | 6.64 | 6.7 | 6.42 |
September | 6.42 | 6.88 | 6.97 |
October | 5.42 | 6.3 | 6.83 |
November | 4.11 | 5.11 | 5.82 |
December | 3.33 | 4.25 | 4.93 |
Annual | 5.54 | 5.93 | 6.02 |
Electricity generated/ exported to grid (RETScreen Software result) | 10,989 kWh | 11,951 kWh | 11,925 kWh |
Model | Inverex—Atom-7 KW |
---|---|
Max. Active Power | 7.7 kW |
Frequency | 50/60 Hz |
Output power factor | >0.99 |
Grid current total harmonics distortion | <3% |
Max efficiency | 98.3% |
MPPT efficiency | >99% |
Lifetime | >20 years |
Maximum Power (Pmax) | 290 Wp |
---|---|
Voltage at Max Power | 32.44 V |
Current at Max power | 8.94 A |
Open Circuit Voltage | 39.11 V |
Short Circuit Current | 9.54 A |
Panel efficiency | 17.82% |
Cell type | Mono crystalline |
Initial Cost | ||
---|---|---|
Feasibility Study | $49 | 1.1% |
Engineering | $1169 | 26% |
Power System | $1978 | 44% |
Balance of System and Miscellaneous | $1305 | 29% |
Total | $4501 USD | 100% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, W.; Sheikh, J.A.; Kouzani, A.Z.; Mahmud, M.A.P. The Role of Single End-Users and Producers on GHG Mitigation in Pakistan—A Case Study. Sustainability 2020, 12, 8351. https://doi.org/10.3390/su12208351
Ahmed W, Sheikh JA, Kouzani AZ, Mahmud MAP. The Role of Single End-Users and Producers on GHG Mitigation in Pakistan—A Case Study. Sustainability. 2020; 12(20):8351. https://doi.org/10.3390/su12208351
Chicago/Turabian StyleAhmed, Waqas, Jamil Ahmed Sheikh, Abbas Z. Kouzani, and M. A. Parvez Mahmud. 2020. "The Role of Single End-Users and Producers on GHG Mitigation in Pakistan—A Case Study" Sustainability 12, no. 20: 8351. https://doi.org/10.3390/su12208351
APA StyleAhmed, W., Sheikh, J. A., Kouzani, A. Z., & Mahmud, M. A. P. (2020). The Role of Single End-Users and Producers on GHG Mitigation in Pakistan—A Case Study. Sustainability, 12(20), 8351. https://doi.org/10.3390/su12208351