Efficacy of Supplemental Irrigation and Nitrogen Management on Enhancing Nitrogen Availability and Urease Activity in Soils with Sorghum Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Treatments
2.2. Supplemental Irrigation Management
2.3. Nitrogen Management
2.4. Suction Lysimeters and Soil Moisture Tensiometers Installations
2.5. Collection and Analyses of Porewater Samples
2.6. Sampling and Analyses of Soil (TNS, TINS, and UA) and Plant Samples
2.7. Data Reduction and Statistical Analysis
3. Results
3.1. Urease Activity in Soils
3.2. Total Nitrogen and Total Inorganic Nitrogen in Soils
3.3. Porewater Concentration of Total Inorganic Nitrogen
3.4. Uptake of Sorghum Aboveground Biomass and Grain
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sigua, G.C.; Stone, K.C.; Bauer, P.J.; Szogi, A.A. Biomass and nitrogen-use efficiency of grain sorghum with nitrogen and supplemental irrigation. Agron. J. 2018, 110, 1119–1127. [Google Scholar] [CrossRef]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Ruffy, T.W. Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Glob. Food Secur. 2012, 1, 94–98. [Google Scholar] [CrossRef]
- Gonzales-Dugo, V.; Durand, J.L.; Gastal, F. Water deficit and nitrogen nutrition of crops. Agron. Sustain. Dev. 2010, 30, 529–544. [Google Scholar] [CrossRef] [Green Version]
- Gheysari, M.; Mirlatifi, S.M.; Bannayan, M.; Homaee, M.; Hoogenboom, G. Interaction of water and nitrogen on maize grown for silage. Agric. Water Manag. 2009, 96, 809–821. [Google Scholar] [CrossRef]
- Su, Y.Z.; Zhang, Z.H.; Yang, R. Amount of irrigation and nitrogen application for maize grown on sandy farmland in the marginal oasis in the middle of Heihe River Basin. Acta Agron. Sin. 2007, 33, 2007–2015. [Google Scholar]
- Sigua, G.C.; Stone, K.C.; Bauer, P.J.; Szogi, A.A.; Shumaker, P.P. Impact of irrigation scheduling on pore water nitrate and phosphate in coastal plain region of the United States. Agric. Water Manag. 2017, 186, 75–85. [Google Scholar] [CrossRef]
- Gholamhoseini, M.; Agha Alikhani, M.; Sanavy, S.A.M.; Mirlafiti, S.M. Interaction of irrigation, weed and nitrogen on corn yield, nitrogen use efficiency and nitrate leaching. Agric. Water Manag. 2013, 126, 9–18. [Google Scholar] [CrossRef]
- Li, X.; Hu, C.; Delgado, J.A.; Zhang, Y.; Ouyang, Z. Increase nitrogen use efficiency as a key mitigation alternative to reduce nitrate leaching in north China plain. Agric. Water Manag. 2007, 89, 137–147. [Google Scholar] [CrossRef]
- Fang, Q.; Yu, E.; Wang, Y.; Chen, G.; Zhang, J.; Wang, J.; Li, L. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain. Plant Soil 2006, 284, 335–350. [Google Scholar] [CrossRef]
- Katterer, T.; Hansson, A.C.; Andren, O. Wheat root biomass and nitrogen dynamics-effects of daily irrigation and fertilization. Plant Soil 1993, 151, 21–30. [Google Scholar] [CrossRef]
- Zougmore, R.; Mando, A.L.; Stroosnijder, S. Effect of soil and water conservation and nutrient management on the soil-plant water balance in semi-arid Burkina Faso. Agric. Water Manag. 2004, 65, 103–120. [Google Scholar] [CrossRef]
- McDonald, R.I.; Girvetz, E.H. Two challenges of U.S. irrigation due to climate change: Increasing irrigated area in wet states and increasing irrigation rates in dry states. PLoS ONE 2013, 8, e65589. [Google Scholar] [CrossRef] [PubMed]
- Fischer, G.; Tubiello, F.N.; van Velthuizen, H.; Wiberg, D.A. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technol. Forecast. Soc. Chang. 2007, 74, 1083–1107. [Google Scholar] [CrossRef] [Green Version]
- Stone, K.C.; Sigua, G.C.; Bauer, P.J. Supplemental irrigation for grain sorghum production in the US eastern Coastal Plain. Appl. Eng. Agric. 2018, 34, 395–402. [Google Scholar] [CrossRef]
- Stone, K.C.; Bauer, P.J.; Busscher, W.J.; Millen, J.A.; Evans, D.E.; Strickland, E.E. Variable-rate irrigation management using an expert system in the eastern coastal plain. Irrig. Sci. 2015, 33, 167–175. [Google Scholar] [CrossRef]
- Liu, X.J.; Ju, X.T.; Zhang, F.S. Nitrogen dynamics and budgets in a winter-maize cropping system in the North China Plain. Field Crop. Res. 2003, 83, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Cappelli, A.; Guerrini, L.; Parenti, A.; Palladino, G.; Cini, E. Effects of wheat tempering and stone rotational speed on particle size, dough rheology and bread characteristics for a stone-milled weak flour. J. Cereal Sci. 2020, 91, 102879. [Google Scholar] [CrossRef]
- Cappelli, A.; Oliva, N.; Cini, E. Stone milling versus roller milling: A systematic review of the effects on wheat flour quality, dough rheology, and bread characteristics. Trends Food Sci. Technol. 2020, 97, 147–155. [Google Scholar] [CrossRef]
- Cappelli, A.; Bettaccini, L.; Cini, E. The kneading process: A systematic review of the effects on dough rheology and resulting bread characteristics, including improvement strategies. Trends Food Sci. Technol. 2020, 104, 91–101. [Google Scholar] [CrossRef]
- Cappelli, A.; Guerrini, L.; Cini, E.; Parenti, A. Improving whole wheat dough tenacity and extensibility: A new kneading process. J. Cereal Sci. 2019, 90, 102852. [Google Scholar] [CrossRef]
- Omary, M.; Camp, C.R.; Sadler, E.J. Center pivot irrigation system modification to provide variable water application depths. Appl. Eng. Agric. 1996, 13, 235–239. [Google Scholar] [CrossRef]
- ASTM International. Anions in Water by Suppressed ion Chromatography. ASTM Standard D4327-11. Available online: https://www.astm.org/DATABASE.CART/HISTORICAL/D4327-11.htm (accessed on 10 March 2013).
- ASTM International. Determination of Dissolved Alkali and Alkaline Earth Cations and Ammonium in Water and Wastewater by Ion Chromatography. ASTM Standard D6919-09. Available online: https://www.astm.org/DATABASE.CART/HISTORICAL/D6919-09.htm (accessed on 10 March 2013).
- Kandeler, E.; Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT User’s Guide. Release 6.03. Available online: https://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_91/stat_ug_7313.pdf (accessed on 10 February 2013).
- Sigua, G.C.; Hubbard, R.; Coleman, S.W. Nitrogen in soils, plants and shallow groundwater beneath a bahiagrass-based pasture with cow-calf operations. Nutr. Cycl. Agroecosyst. J. 2009, 86, 175–187. [Google Scholar] [CrossRef]
- Cosentino, S.L.; Mantineo, M.; Testa, G. Water and nitrogen balance of sweet sorghum (Sorghum bicolor moench (L)) under semi-arid conditions. Ind. Crops Prod. 2012, 36, 329–342. [Google Scholar] [CrossRef]
- Pandey, R.K.; Maranville, J.W.; Admou, A. Tropical wheat response to irrigation and nitrogen in a Sahelian environment. I. Grain yield, yield components and water use efficiency. Eur. J. Agron. 2001, 15, 93–105. [Google Scholar] [CrossRef]
- Ruppel, S.; Makswitat, E. Effect of nitrogen fertilization and irrigation on soil microbial activities and population dynamics—A field study. J. Plant Nutr. Soil Sci. 1999, 162, 75–81. [Google Scholar] [CrossRef]
- Dash, M.C.; Mishra, P.; Mohanty, R.K.; Bath, N. Effects of specific conductance and temperature on urease activity in some Indian soils. Soil Biol. Biochem. 1981, 13, 73–74. [Google Scholar] [CrossRef]
- Yang, L.; Li, T.; Li, F.; Lemcoff, J.H.; Cohen, S. Fertilization regulates soil enzymatic activity and fertility dynamics in cucumber fields. Sci. Hortic. 2008, 116, 21–26. [Google Scholar] [CrossRef]
- Wang, Y.Z. Significance of several soil enzymatic activities for indicating soil fertility. Chin. J. Soil Sci. 1982, 11, 16–23. [Google Scholar]
- Klose, S.; Moore, J.M.; Tabatabai, M.A. Arysulfatase activity of the microbial biomass in soils as affected by cropping systems. Biol. Fertil. Soils 1999, 29, 46–54. [Google Scholar] [CrossRef]
- Kandeler, E.; Kampichler, C.; Horak, O. Influence of heavy metals on the functional diversity of soil microbial communities. Biol. Fertil. Soils 1996, 23, 229–306. [Google Scholar] [CrossRef]
- Domsch, K.H.; Jagnow, G.; Anderson, T.H. An ecological concept for assessment of side-effects of agrochemicals on soil microorganisms. Residue Rev. 1983, 86, 65–105. [Google Scholar]
- Wang, Z.H.; Li, S.X.; Malhi, S. Effects of fertilization and other agronomic measures on nutritional quality of crops. J. Sci. Food Agric. 2008, 88, 7–23. [Google Scholar] [CrossRef]
- Beuters, P.; Scherer, H.W.; Spout, O.; Vetterlein, D. Impact of potassium on plant uptake on non-exchangeable NH4+-N. Plant. Soil 2014, 387, 37–44. [Google Scholar] [CrossRef]
- Hons, F.M.; Moresco, R.F.; Wiedenfield, R.P.; Green, J.T. Applied nitrogen and phosphorus effects on yield and nutrient uptake by high-energy sorghum produced for grain and biomass. Agron. J. 1986, 78, 1069–1078. [Google Scholar] [CrossRef]
- Roy, R.N.; Wright, B.C. Sorghum growth and nutrient uptake in relation to soil fertility, II. N, P, and K uptake pattern by various plant parts. Agron. J. 1974, 66, 5–10. [Google Scholar] [CrossRef]
- Herron, G.M.; Grimes, D.W.; Musick, J.T. Effects of soil moisture and nitrogen fertilization of irrigated grain sorghum on dry matter production and nitrogen uptake at selected stages of plant development. Agron. J. 1973, 55, 393–396. [Google Scholar] [CrossRef]
- Smith, J.; North, S.; Quayle, W.; Jones, D.; Fisher, R.; Griffin, D.; Lurbe, C.; Brinkhoff, J.; Hornbuckle, J. The Impact of Irrigation and Nitrogen Management on Nitrogen Uptake and Yield in Maize. Available online: https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2016/07/the-impact-of-irrigation-and-nitrogen-management-on-nitrogen-uptake-and-yield-in-maize (accessed on 10 March 2013).
- Vetterlein, D.; Marschner, H. Interaction between water and nutrient supply under semi-arid conditions. In Reiniers; Reyniers, F.N., Netoyo, L., Eds.; Bilkan Hydrique Agricole et Seschresse en Afrique Tropicale; John Libbey Eurotext: Paris, France, 1994; pp. 103–110. [Google Scholar]
- Gonzalez-Dugo, V.; Durand, J.L.; Gastal, F.; Picon-Cochard, C. Short-term response of the nitrogen nutrition status of tall fescue and Italian ryegrass swards under water deficit. Aust. J. Agric. Res. 2005, 56, 1269–1276. [Google Scholar] [CrossRef]
- Williams, M.; Yanai, R.D. Multi-dimensional sensitivity analysis and ecological implications of a nutrient uptake model. Plant Soil 1996, 180, 311–324. [Google Scholar] [CrossRef]
- Passiorra, J. A mathematical model for the uptake of ions from the soil solution. Plant Soil 1963, 18, 225–238. [Google Scholar] [CrossRef]
- Garwood, E.A.; Williams, T.E. Growth, water use and nutrient uptake from the subsoil by grass swards. J. Agric. Sci. 1967, 93, 13–24. [Google Scholar] [CrossRef]
- Whitfield, D.M.; Smith, C.J. Nitrogen uptake, water use, grain yield and protein content in wheat. Field Crops Res. 1992, 29, 1–14. [Google Scholar] [CrossRef]
- van Kuelen, H. Modelling the interaction of water and nitrogen. Plant Soil 1981, 58, 205–229. [Google Scholar] [CrossRef]
- Benjamin, J.G.; Ahuja, J.G.; Allmaras, R.R. Modelling corn rooting patterns and their effects on water uptake and nitrate leaching. Plant Soil 1996, 179, 223–232. [Google Scholar] [CrossRef]
- Sigua, G.C.; Stone, K.C.; Bauer, P.J.; Szogi, A.A. Nitrate leaching, water-use efficiency and yield of corn with different irrigation and nitrogen management systems in Coastal Plains, USA. WIT Trans. Ecol. Environ. 2016, 203, 159–170. [Google Scholar]
- Morgan, K.T.; Hanlon, E.A.; Obreza, T.A. A web-based irrigation scheduling model to improve water use efficiency and reduce nutrient leaching for Florida citrus. EDIS 2009, 4, 4. [Google Scholar]
- Kern, J.S. Geographic patterns of soil water-holding capacity in the contiguous United States. Soil Sci. Soc. Am. J. 1992, 59, 1126–1133. [Google Scholar] [CrossRef]
- Bhogal, A.; Rochford, A.D.; Sylvester-Bradley, R. Net changes in soil and crop nitrogen in relation to the performance of winter wheat given wide-ranging annual nitrogen application at Ropsley, U.K. J. Agric. Sci. 2000, 135, 139–149. [Google Scholar] [CrossRef]
Soil Properties | Soil Depth (cm) | |
---|---|---|
0–15 | 15–30 | |
| ||
Sand (g kg−1) | 807 | - |
Silt (g kg−1) | 167 | - |
Clay (g kg−1) | 26 | - |
Texture | Loamy Sand | - |
| ||
pH | 5.71 | 5.96 |
EC (dS m−1) | 0.25 | 0.14 |
TN (%) | 0.098 | 0.051 |
TC (%) | 1.278 | 0.741 |
TIN (NH4 +NO3-N) (mg kg−1) | 19.11 | 11.12 |
PO4-P (mg kg−1) | 6.67 | 3.18 |
Al (mg kg−1) | 1236.2 | 1354.5 |
Ca (mg kg−1) | 527.5 | 398.7 |
Fe (mg kg−1) | 22.5 | 22.2 |
K (mg kg−1) | 101.2 | 54.5 |
Mg (mg kg−1) | 82.3 | 48.1 |
Mn (mg kg−1) | 13.4 | 9.2 |
Na (mg kg−1) | 41.9 | 41.6 |
P (mg kg−1) | 51.4 | 38.6 |
| Kaolinite, chlorite, quartz |
Treatment | Total Nitrogen | Total Inorganic N | Urease Activity | Total Nitrogen | Total Inorganic N | Urease Activity |
---|---|---|---|---|---|---|
(%) | (mg/kg) | (ug N/g/h) | (%) | (mg/kg) | (ug N/g/h) | |
YEAR 1: 2013 | YEAR 2: 2014 | |||||
1. Irrigation (SI) | ||||||
a. 0% | 0.077 ± 0.03 | 9.9 ± 6.8 | 11.9 ± 6.7 | 0.066 ± 0.03 | 10.9 ± 8.3 | 11.7 ± 5.6 |
b. 50% | 0.073 ± 0.02 | 9.7 ± 8.6 | 10.3 ± 5.3 | 0.058 ± 0.02 | 10.2 ± 8.7 | 9.7 ± 4.9 |
c. 100% | 0.071 ± 0.02 | 10.2 ± 8.4 | 10.8 ± 5.9 | 0.067 ± 0.02 | 13.6 ± 7.9 | 10.6 ± 5.5 |
LSD0.05 | 0.003 | 1.80 | 0.89 | 0.003 | 1.80 | 0.89 |
2. Nitrogen (N) | ||||||
a. 0 kg N/ha | 0.074 ± 0.03 | 7.4 ± 4.9 | 11.9 ± 6.5 | 0.063 ± 0.02 | 6.1 ± 2.9 | 11.3 ± 5.6 |
b. 85 kg N/ha | 0.072 ± 0.03 | 9.0 ± 6.6 | 9.9 ± 5.2 | 0.065 ± 0.02 | 11.5 ± 11.2 | 10.0 ± 5.2 |
c. 170 kg/ha | 0.075 ± 0.03 | 13.4 ± 10.2 | 11.2 ± 6.1 | 0.072 ± 0.02 | 17.1 ± 13.4 | 10.6 ± 5.3 |
LSD0.05 | 0.003 | 1.79 | 0.89 | 0.003 | 1.79 | 0.89 |
3. Soil Depth (SD) | ||||||
a. 0–15 cm | 0.087 ± 0.02 | 12.6 ± 9.2 | 14.9 ± 5.7 | 0.084 ± 0.01 | 14.8 ± 12.7 | 15.0 ± 4.1 |
b. 15–30 cm | 0.060 ± 0.02 | 7.2 ± 5.3 | 7.1 ± 3.2 | 0.042 ± 0.01 | 8.3 ± 5.3 | 6.3 ± 1.7 |
LSD0.05 | 0.002 | 1.47 | 0.73 | 0.002 | 1.47 | 0.73 |
Source of Variations | Level of Significance | |||||
Year (Y) | *** | ** | ns | |||
Irrigation (SI) | *** | *** | *** | |||
Nitrogen (N) | *** | *** | *** | |||
Soil Depth (SD) | *** | *** | *** | |||
SI x N | ns | * | * |
Treatment | NH4 | NO3 | TINW | NH4 | NO3 | TINW |
---|---|---|---|---|---|---|
(%) | (mg/kg) | (ug N/g/h) | (%) | (mg/kg) | (ug N/g/h) | |
YEAR 1: 2013 | YEAR 2: 2014 | |||||
1. Irrigation (SI) | ||||||
a. 0% | 0.20 ± 0.01 | 18.69 ± 7.32 | 18.89 ± 2.07 | 0.28 ± 0.11 | 16.46 ± 2.79 | 16.74 ± 4.58 |
b. 50% | 0.21 ± 0.05 | 19.92 ± 8.13 | 20.13 ± 2.25 | 0.34 ± 0.02 | 16.19 ± 7.12 | 16.53 ± 7.00 |
c. 100% | 0.30 ± 0.15 | 17.49 ± 8.84 | 17.79 ± 2.79 | 0.22 ± 0.13 | 15.62 ± 5.59 | 17.95 ± 8.07 |
LSD0.05 | 0.14 | 5.79 | 5.78 | 0.14 | 5.79 | 5.78 |
2. Nitrogen (N) | ||||||
a. 0 kg N/ha | 0.21 ± 0.05 | 10.01 ± 6.02 | 10.22 ± 8.02 | 0.22 ± 0.12 | 16.58 ± 5.07 | 16.80 ± 5.07 |
b. 85 kg N/ha | 0.30 ± 0.08 | 17.24 ± 3.12 | 17.54 ± 3.12 | 0.34 ± 0.22 | 9.67 ± 2.07 | 10.01 ± 4.07 |
c. 170 kg/ha | 0.26 ± 0.39 | 24.56 ± 1.56 | 24.82 ± 1.55 | 0.29 ± 0.07 | 22.18 ± 6.07 | 22.47 ± 2.07 |
LSD0.05 | 0.14 | 5.77 | 5.76 | 0.14 | 5.77 | 5.76 |
3. Soil Depth (SD) | ||||||
a. 0–15 cm | 0.27 ± 0.09 | 24.20 ± 12.38 | 24.47 ± 10.38 | 0.35 ± 0.09 | 27.31 ± 12.07 | 27.66 ± 14.01 |
b. 15–30 cm | 0.22 ± 0.01 | 9.25 ± 8.66 | 12.47 ± 8.69 | 0.21 ± 0.10 | 14.52 ± 2.07 | 10.73 ± 1.11 |
LSD0.05 | 0.12 | 4.71 | 4.70 | 0.12 | 4.71 | 4.70 |
Source of Variations | Level of Significance | |||||
Year (Y) | ns | ns | ns | |||
Irrigation (SI) | ns | ns | ns | |||
Nitrogen (N) | ns | *** | *** | |||
Soil Depth (SD) | ns | *** | *** | |||
SI × N | ns | * | * | |||
N × SD | ns | * | * |
Treatment | Biomass | Grain | Biomass | Grain |
---|---|---|---|---|
(kg/ha) | ||||
YEAR 1: 2013 | YEAR 2: 2014 | |||
1. Irrigation (SI) | ||||
a. 0% | 44.69 ± 23.48 | 37.66 ± 16.62 | 68.32 ± 43.48 | 35.29 ± 12.62 |
b. 50% | 43.53 ± 23.78 | 41.82 ± 22.78 | 63.62 ± 36.13 | 30.47 ± 13.25 |
c. 100% | 49.58 ± 24.20 | 50.78 ± 24.06 | 86.13 ± 50.52 | 54.73 ± 15.49 |
LSD0.05 | 5.73 | 9.78 | 5.73 | 9.78 |
2. Nitrogen (N) | ||||
a. 0 kg N/ha | 31.96 ± 15.62 | 26.89 ± 11.32 | 59.64 ± 39.73 | 27.92 ± 13.68 |
b. 85 kg N/ha | 48.36 ± 22.37 | 42.91 ± 19.88 | 73.92 ± 39.52 | 42.35 ± 17.80 |
c. 170 kg/ha | 57.47 ± 25.22 | 60.47 ± 18.25 | 84.50 ± 50.77 | 50.22 ± 12.41 |
LSD0.05 | 5.73 | 9.78 | 5.73 | 9.78 |
Source of Variations | Level of Significance | |||
Year (Y) | ns | ns | ||
Irrigation (SI) | ns | ns | ||
Nitrogen (N) | ns | *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sigua, G.C.; Stone, K.C.; Bauer, P.J.; Szogi, A.A. Efficacy of Supplemental Irrigation and Nitrogen Management on Enhancing Nitrogen Availability and Urease Activity in Soils with Sorghum Production. Sustainability 2020, 12, 8358. https://doi.org/10.3390/su12208358
Sigua GC, Stone KC, Bauer PJ, Szogi AA. Efficacy of Supplemental Irrigation and Nitrogen Management on Enhancing Nitrogen Availability and Urease Activity in Soils with Sorghum Production. Sustainability. 2020; 12(20):8358. https://doi.org/10.3390/su12208358
Chicago/Turabian StyleSigua, Gilbert C., Kenneth C. Stone, Phil J. Bauer, and Ariel A. Szogi. 2020. "Efficacy of Supplemental Irrigation and Nitrogen Management on Enhancing Nitrogen Availability and Urease Activity in Soils with Sorghum Production" Sustainability 12, no. 20: 8358. https://doi.org/10.3390/su12208358
APA StyleSigua, G. C., Stone, K. C., Bauer, P. J., & Szogi, A. A. (2020). Efficacy of Supplemental Irrigation and Nitrogen Management on Enhancing Nitrogen Availability and Urease Activity in Soils with Sorghum Production. Sustainability, 12(20), 8358. https://doi.org/10.3390/su12208358