The Effects of Restoration Practices on a Small Watershed in China’s Loess Plateau: A Case Study of the Qiaozigou Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Processing
2.3.1. Runoff Modulus, Sediment Modulus and Sediment Concentration
2.3.2. Mann-Kendall Trend Test
2.3.3. Soil and Water Retention
3. Results
3.1. Restoration Practices in the Two Watersheds
3.2. Comparison of Runoff, Sediment, and Their Temporal Variation between the Two Watersheds
3.2.1. Annual RM and SM in the Two Watersheds from 1988 to 2018
3.2.2. Temporal Trends of Annual Runoff and Sediment in the Two Watersheds
3.3. The Effect of Restoration Practices on Soil and Water Retention
3.3.1. Relationships between Rainfall and the RM and SM in the Two Watersheds
3.3.2. Retention Rates of Soil and Water (RRsoil and RRwater) in Response to Restoration Practices
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ayub, M.A.; Usman, M.; Faiz, T.; Umair, M.; Haq, M.A.U.; Rizwan, M.; Ali, S.; Rehman, M.Z.U. Restoration of degraded soil for sustainable agriculture. In Soil Health Restoration and Management; Springer Science and Business Media LLC: Berilin, Germany, 2019; pp. 31–81. [Google Scholar]
- Cano, E.; Musarella, C.M.; Cano-Ortiz, A.; Fuentes, J.C.P.; Torres, A.R.; Del Río, S.; Pinto-Gomes, C.; Quinto-Canas, R.; Spampinato, G. Geobotanical study of the microforests of Juniperus oxycedrus subsp. badia in the Central and Southern Iberian Peninsula. Sustainability 2019, 11, 1111. [Google Scholar] [CrossRef] [Green Version]
- Chehabeddine, M.; Tvaronavičienė, M. Securing regional development. Insights Reg. Dev. 2020, 2, 430–442. [Google Scholar] [CrossRef]
- Rovira, A.; Ballinger, R.; Ibáñez, C.; Parker, P.; Dominguez, M.D.; Simon, X.; Lewandowski, A.; Hochfeld, B.; Tudor, M.; Vernaeve, L. Sediment imbalances and flooding risk in European deltas and estuaries. J. Soils Sediments 2014, 14, 1493–1512. [Google Scholar] [CrossRef]
- Owens, P.N.; Batalla, R.J.; Collins, A.J.; Gomez, B.; Hicks, D.M.; Horowitz, A.J.; Kondolf, G.M.; Marden, M.; Page, M.J.; Peacock, D.H.; et al. Fine-grained sediment in river systems: Environmental significance and management issues. River Res. Appl. 2005, 21, 693–717. [Google Scholar] [CrossRef]
- Wang, Z.; Hoffmann, T.; Six, J.; Kaplan, J.; Govers, G.; Doetterl, S.; Van Oost, K. Human-induced erosion has offset one-third of carbon emissions from land cover change. Nat. Clim. Chang. 2017, 7, 345–349. [Google Scholar] [CrossRef]
- Galy, V.; Peucker-Ehrenbrink, B.; Eglinton, T. Global carbon export from the terrestrial biosphere controlled by erosion. Nat. Cell Biol. 2015, 521, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Klik, A.; Mu, X.; Wang, F.; Gao, P.; Sun, W. Sediment yield estimation in a small watershed on the northern Loess Plateau, China. Geomorphology 2015, 241, 343–352. [Google Scholar] [CrossRef]
- Zhao, G.; Kondolf, G.M.; Mu, X.; Han, M.; He, Z.; Rubin, Z.; Wang, F.; Gao, P.; Sun, W. Sediment yield reduction associated with land use changes and check dams in a catchment of the Loess Plateau, China. Catena 2017, 148, 126–137. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; Piao, S.; Lü, Y.; Ciais, P.; Feng, X.; Wang, Y. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2015, 9, 38–41. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, L.; Xie, J.; Li, L.; Coulter, J.A.; Zhang, R.; Luo, Z.; Cai, L.; Carberry, P.; Whitbread, A. Conservation tillage increases yield and precipitation use efficiency of wheat on the semi-arid Loess Plateau of China. Agric. Water Manag. 2020, 231, 106024. [Google Scholar] [CrossRef]
- Teng, H.-F.; Hu, J.; Zhou, Y.; Zhou, L.-Q.; Shi, Z. Modelling and mapping soil erosion potential in China. J. Integr. Agric. 2019, 18, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.; Siddique, K.H.M.; Li, F.-M. Adoption of conservation tillage on the semi-arid Loess Plateau of Northwest China. Sustainability 2018, 10, 2621. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Huimin, Y.; Yunfeng, H.; Zhichao, X.; Yu, X.; Gaodi, X.; Jianxia, M.; Jijun, W. Overview of ecological restoration technologies and evaluation systems. J. Resour. Ecol. 2017, 8, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Morokong, T.; Blignaut, J. Benefits and costs analysis of soil erosion control using rock pack structures: The case of Mutale Local Municipality, Limpopo Province, South Africa. Land Use Policy 2019, 83, 512–522. [Google Scholar] [CrossRef]
- Golosov, V.; Belyaev, V.R. The history and assessment of effectiveness of soil erosion control measures deployed in Russia. Int. Soil Water Conserv. Res. 2013, 1, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Nicu, I.C. Natural risk assessment and mitigation of cultural heritage sites in North-eastern Romania (Valea Oii river basin). Area 2018, 51, 142–154. [Google Scholar] [CrossRef]
- Martínez-Mena, M.; Carrillo-López, E.; Boix-Fayos, C.; Almagro, M.; Franco, N.G.; Díaz-Pereira, E.; Montoya, I.; De Vente, J. Long-term effectiveness of sustainable land management practices to control runoff, soil erosion, and nutrient loss and the role of rainfall intensity in Mediterranean rainfed agroecosystems. Catena 2020, 187, 104352. [Google Scholar] [CrossRef]
- Ye, Y.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s response to a national land-system sustainability emergency. Nat. Cell Biol. 2018, 559, 193–204. [Google Scholar] [CrossRef]
- Wen, X.; Zhen, L. Soil erosion control practices in the Chinese Loess Plateau: A systematic review. Environ. Dev. 2020, 34, 100493. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, L.; Liu, Q.; Zhang, H.; Huang, X.; Fang, N. Soil erosion: From comprehensive control to ecological regulation. Bull. Chin. Acad. Sci. 2018, 33, 198–205, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Bai, J.; Yang, S.; Zhang, Y.; Liu, X.; Guan, Y. Assessing the impact of terraces and vegetation on runoff and sediment routing using the time-area method in the Chinese Loess Plateau. Water 2019, 11, 803. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Zhang, B.; Hill, R.L.; Wu, S.; Dong, Q.; Sun, L.; Zhang, K. Fish-scale pit effects on erosion and water runoff dynamics when positioned on a soil slope in the Loess Plateau region, China. Land Degrad. Dev. 2019, 30, 1813–1827. [Google Scholar] [CrossRef]
- Xu, G.; Cheng, S.; Li, P.; Li, Z.; Gao, H.; Yu, K.; Lu, K.; Shi, P.; Cheng, Y.; Zhao, B. Soil total nitrogen sources on dammed farmland under the condition of ecological construction in a small watershed on the Loess Plateau, China. Ecol. Eng. 2018, 121, 19–25. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Saito, Y.; Liu, J.P.; Sun, X.; Wang, Y. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): Impacts of climate change and human activities. Glob. Planet. Chang. 2007, 57, 331–354. [Google Scholar] [CrossRef]
- Liu, X.; Yang, S.; Dang, S.; Luo, Y.; Li, X.; Zhou, X. Response of sediment yield to vegetation restoration at a large spatial scale in the Loess Plateau. Sci. China Ser. E Technol. Sci. 2014, 57, 1482–1489. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Gao, P. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad. Dev. 2013, 24, 499–510. [Google Scholar] [CrossRef]
- Porada, P.; Van Stan, J.T.; Kleidon, A. Significant contribution of non-vascular vegetation to global rainfall interception. Nat. Geosci. 2018, 11, 563–567. [Google Scholar] [CrossRef]
- Bendix, J.; Hupp, C.R. Hydrological and geomorphological impacts on riparian plant communities. Hydrol. Process. 2000, 14, 2977–2990. [Google Scholar] [CrossRef]
- Hu, Y.; Dao, R.; Hu, Y. Vegetation change and driving factors: Contribution analysis in the Loess Plateau of China during 2000–2015. Sustainability 2019, 11, 1320. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Shao, M.; Li, Y. Soil desiccation in the Loess Plateau of China. Geoderma 2008, 143, 91–100. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Y.; Ren, Z.; Yu, Y.; Li, P.; Gong, J. Land-use changes and check dams reducing runoff and sediment yield on the Loess Plateau of China. Sci. Total Environ. 2019, 664, 984–994. [Google Scholar] [CrossRef] [PubMed]
- Bombino, G.; Boix-Fayos, C.; Gurnell, A.M.; Tamburino, V.; Zema, D.A.; Zimbone, S.M. Check dam influence on vegetation species diversity in mountain torrents of the Mediterranean environment. Ecohydrology 2013, 7, 678–691. [Google Scholar] [CrossRef]
- Castillo, V.M.; Mosch, W.; García, C.C.; Barberá, G.G.; Navarro-Cano, J.; López-Bermúdez, F. Effectiveness and geomorphological impacts of check dams for soil erosion control in a semiarid Mediterranean catchment: El Cárcavo (Murcia, Spain). Catena 2007, 70, 416–427. [Google Scholar] [CrossRef]
- Fu, S.; Liu, B.; Lu, B.; Yuan, A.; Wang, N. Effect of soil conservation practice on runoff and sediment in upper reach of Guanting Reservoir. Sci. Soil Water Conserv. 2009, 7, 18–23, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Sun, L.; Wu, S.; Hill, R.L.; Guo, H.; Feng, H. The effects of three micro-catchment practices on erosion and runoff dynamics for a typical soil slope on the Loess Plateau of China. Can. J. Soil Sci. 2019, 99, 46–59. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liang, Z.; Zhang, Z.; Zhang, L. Effects of soil and water conservation measures on runoff and sediment yield in red soil slope farmland under natural rainfall. Sustainability 2020, 12, 3417. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Li, Z.; Hou, X.; Yi, Y. Impacts on watershed-scale runoff and sediment yield resulting from synergetic changes in climate and vegetation. Catena 2019, 179, 129–138. [Google Scholar] [CrossRef]
- Dai, Z.; Fagherazzi, S.; Mei, X.; Gao, J. Decline in suspended sediment concentration delivered by the Changjiang (Yangtze) River into the East China Sea between 1956 and 2013. Geomorphology 2016, 268, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Qiu, L.-J.; Zheng, F.-L.; Yin, R.-S. SWAT-based runoff and sediment simulation in a small watershed, the loessial hilly-gullied region of China: Capabilities and challenges. Int. J. Sediment. Res. 2012, 27, 226–234. [Google Scholar] [CrossRef]
- Pandey, A.; Chowdary, V.; Mal, B.C.; Billib, M. Runoff and sediment yield modeling from a small agricultural watershed in India using the WEPP model. J. Hydrol. 2008, 348, 305–319. [Google Scholar] [CrossRef]
- Mishra, A.; Kar, S.; Singh, V.P. Determination of runoff and sediment yield from a small watershed in sub-humid subtropics using the HSPF model. Hydrol. Process. 2007, 21, 3035–3045. [Google Scholar] [CrossRef]
- Arnold, J.G.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol. Process. 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment Part I: Model development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Van Liew, M.W.; Arnold, J.G.; Garbrecht, J.D. Hydrologic simulation on agricultural watersheds: Choosing between two models. Trans. ASAE 2003, 46, 1539–1551. [Google Scholar] [CrossRef]
- Nearing, M.A.; Foster, G.R.; Lane, L.J.; Finkner, S.C. A Process-based soil erosion model for USDA-water erosion prediction project technology. Trans. ASAE 1989, 32, 1587–1593. [Google Scholar] [CrossRef]
- Xin, Z.; Qin, Y.; Yu, X. Spatial variability in soil organic carbon and its influencing factors in a hilly watershed of the Loess Plateau, China. Catena 2016, 137, 660–669. [Google Scholar] [CrossRef]
- Yang, Q.; Li, R. Review of quantitative assessment on soil erosion in China. Bull. Soil Water Conserv. 1998, 18, 13–18, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Liu, C.; Li, Z.; Chang, X.; He, J.; Nie, X.; Liu, L.; Xiao, H.; Wang, D.; Peng, H.; Zeng, G. Soil carbon and nitrogen sources and redistribution as affected by erosion and deposition processes: A case study in a loess hilly-gully catchment, China. Agric. Ecosyst. Environ. 2018, 253, 11–22. [Google Scholar] [CrossRef]
- Qin, R.; Li, G.; Li, P. Impacts of precipitation and land use change on runoff and sediment in Luoyugou watershed. J. Soil Water Conserv. 2018, 32, 29–40, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Chen, Y. Vegetation-Erosion Dynamic Process Research in Typical Watershed in the Loess Plateau. Ph.D. Dissertation, Beijing Forestry University, Beijing, China, 2008. (In Chinese with English Abstract). [Google Scholar]
- Zhang, X.; Yu, X.; Wu, S.; Cao, W. Effects of changes in land use and land cover on sediment discharge of runoff in a typical watershed in the hill and gully loess region of northwest China. Front. For. China 2008, 3, 334–341. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, Z.; Fang, N.; Guo, M. Linking watershed geomorphic characteristics to sediment yield: Evidence from the Loess Plateau of China. Geomorphology 2015, 234, 19–27. [Google Scholar] [CrossRef]
- Yan, Q.; Yuan, C.; Lei, T.; Lei, Q.; Zhang, M.; Su, G. Effects of precipitation and erosion control practices on the rainfall-runoff-sediment delivery relationships of typical watersheds in the hilly-gully region on the Loess Plateau. Sci. Soil Water Conserv. 2013, 11, 9–16, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, X. Response and Scaling on Eco-Hydrology to Land Use/Forest Vegetation Change in Typical Watersheds of Loess Plateau. Ph.D. Dissertation, Beijing Forestry University, Beijing, China, 2007. (In Chinese with English Abstract). [Google Scholar]
- Liu, C.; Li, Z.; Dong, Y.; Nie, X.; Liu, L.; Xiao, H.; Zeng, G. Do land use change and check-dam construction affect a real estimate of soil carbon and nitrogen stocks on the Loess Plateau of China? Ecol. Eng. 2017, 101, 220–226. [Google Scholar] [CrossRef]
- Chen, P.; Chen, L.; Yu, X.; Han, P. Influence of comprehensive control gully on water and sediment in small watershed. Res. Soil Water Conserv. 2010, 17, 100–104, (In Chinese with English Abstract). [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 2nd ed.; Charles Griffin and Company Ltd.: London and High Wycombe, UK, 1975. [Google Scholar]
- Guoli, G.; Jiyuan, L.; Quanqin, S.; Jun, Z. Sand-fixing function under the change of vegetation coverage in a wind erosion area in Northern China. J. Resour. Ecol. 2014, 5, 105–114. [Google Scholar] [CrossRef]
- Zuo, D.; Xu, Z.; Yao, W.; Jin, S.; Xiao, P.; Ran, D. Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China. Sci. Total Environ. 2016, 544, 238–250. [Google Scholar] [CrossRef]
- Yue, X.; Mu, X.; Zhao, G.; Shao, H.; Gao, P. Dynamic changes of sediment load in the middle reaches of the Yellow River basin, China and implications for eco-restoration. Ecol. Eng. 2014, 73, 64–72. [Google Scholar] [CrossRef]
- Adem, A.A.; Mekuria, W.; Belay, Y.; Tilahun, S.A.; Guzman, C.D. Exclosures improve degraded landscapes in the sub-humid Ethiopian Highlands: The Ferenj Wuha watershed. J. Environ. Manag. 2020, 270, 110802. [Google Scholar] [CrossRef]
- Zouré, C.; Queloz, P.; Koïta, M.; Niang, D.; Fowé, T.; Yonaba, R.; Consuegra, D.; Yacouba, H.; Karambiri, H. Modelling the water balance on farming practices at plot scale: Case study of Tougou watershed in Northern Burkina Faso. Catena 2019, 173, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, F.; Liu, G.; Yu, X.; Jia, G.; Gan, P. Modified vegetation-erosion dynamics model and its application in typical watersheds in the Loess Plateau. Int. J. Sediment. Res. 2011, 26, 78–86. [Google Scholar] [CrossRef]
- Gao, G.; Ma, Y.; Fu, B. Temporal Variations of flow–sediment relationships in a highly erodible catchment of the Loess Plateau, China. Land Degrad. Dev. 2015, 27, 758–772. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Milliman, J.D.; Xu, H. Temporal trend of precipitation and runoff in major Chinese rivers since 1951. Glob. Planet. Chang. 2010, 73, 219–232. [Google Scholar] [CrossRef]
- Lu, Q.; Lei, J.; Li, X.; Yang, Y.; Wang, F. China’s combating desertification: National solutions and global paradigm. Bull. Chin. Acad. Sci. 2020, 35, 656–664, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Fu, B.; Wang, S.; Liu, Y.; Liu, J.; Liang, W.; Miao, C. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 2017, 45, 223–243. [Google Scholar] [CrossRef]
- Ge, J.; Pitman, A.J.; Guo, W.; Zan, B.; Fu, C. Impact of revegetation of the Loess Plateau of China on the regional growing season water balance. Hydrol. Earth Syst. Sci. 2020, 24, 515–533. [Google Scholar] [CrossRef] [Green Version]
- Hui, B.; Hui, L.; Guo, Y. Situation of “Fully filled” warping dam and control strategies in the Loess Plateau Area. Yellow River 2020, 42, 108–112, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Vaezi, A.R.; Abbasi, M.; Keesstra, S.; Cerdà, A. Assessment of soil particle erodibility and sediment trapping using check dams in small semi-arid catchments. Catena 2017, 157, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Zhen, L.; Hu, Y.; Xiao, Y. Assessment and needs analysis on soil and water conservation technology in the typical region of the Loess Plateau: A case study of Ansai, China. Acta Ecol. Sin. 2019, 39, 5809–5819. [Google Scholar] [CrossRef]
- Ministry of Water Resources, PRC. Code for Design of Soil and Water Conservation Engineering (GB 51018-2014); China Planning Press: Beijing, China, 2014. (In Chinese)
- Bai, L.; Wang, N.; Jiao, J.; Chen, Y.; Tang, B.; Wang, H.; Chen, Y.; Yan, X.; Wang, Z. Soil erosion and sediment interception by check dams in a watershed for an extreme rainstorm on the Loess Plateau, China. Int. J. Sediment. Res. 2020, 35, 408–416. [Google Scholar] [CrossRef]
- Li, P.; Xu, G.; Lu, K.; Zhang, X.; Shi, P.; Bai, L.; Ren, Z.; Pang, G.; Xiao, L.; Gao, H.; et al. Runoff change and sediment source during rainstorms in an ecologically constructed watershed on the Loess Plateau, China. Sci. Total Environ. 2019, 664, 968–974. [Google Scholar] [CrossRef] [PubMed]
- Nu-Fang, F.; Zhi-Hua, S.; Lu, L.; Cheng, J. Rainfall, runoff, and suspended sediment delivery relationships in a small agricultural watershed of the Three Gorges area, China. Geomorphology 2011, 135, 158–166. [Google Scholar] [CrossRef]
Vegetation Cover (% of Land Area) a | Terrace Cover (% of Land Area) | Sloping Land Cover (% of Land Area) | Number of Check Dams | ||
---|---|---|---|---|---|
NW | 1985 | 3.03 | 2.83 | 77.46 | 0 |
Changes after 1985 | none | none | none | none | |
RW | 1985 | 17.77 | 0.53 | 71.94 | 0 |
2004 | 35.75 | 27.10 | 24.09 | 0 | |
2005 | / | / | / | 19 | |
Changes after 1985 | 17.98 | 26.57 | −47.85 | 19 | |
Difference between RW and NW (RW–NW) | Before 2005 | 32.72 | 24.27 | 53.37 | 0 |
After 2005 | 32.72 | 24.27 | 53.37 | 19 |
M–K Test (Z-Value) | Trend | Significance | ||
---|---|---|---|---|
Rainfall | 0.61 | Increasing | Not significant | |
Runoff modulus | RW | −1.70 | Decreasing | Not significant |
NW | −1.36 | Decreasing | Not significant | |
Sediment modulus | RW | −2.35 * | Decreasing | Significant at p < 0.05 |
NW | −1.73 | Decreasing | Not significant |
Period | M–K Test (Z-Value) | Trend | Significance | |
---|---|---|---|---|
RRwater | period Ⅰ | 0.12 | Increasing | Not significant |
period Ⅱ | −1.10 | Decreasing | Not significant | |
RRsoil | period Ⅰ | 0.12 | Increasing | Not significant |
period Ⅱ | −1.20 | Decreasing | Not significant |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Q.; Zhen, L.; Hu, Y. The Effects of Restoration Practices on a Small Watershed in China’s Loess Plateau: A Case Study of the Qiaozigou Watershed. Sustainability 2020, 12, 8376. https://doi.org/10.3390/su12208376
Luo Q, Zhen L, Hu Y. The Effects of Restoration Practices on a Small Watershed in China’s Loess Plateau: A Case Study of the Qiaozigou Watershed. Sustainability. 2020; 12(20):8376. https://doi.org/10.3390/su12208376
Chicago/Turabian StyleLuo, Qi, Lin Zhen, and Yunfeng Hu. 2020. "The Effects of Restoration Practices on a Small Watershed in China’s Loess Plateau: A Case Study of the Qiaozigou Watershed" Sustainability 12, no. 20: 8376. https://doi.org/10.3390/su12208376
APA StyleLuo, Q., Zhen, L., & Hu, Y. (2020). The Effects of Restoration Practices on a Small Watershed in China’s Loess Plateau: A Case Study of the Qiaozigou Watershed. Sustainability, 12(20), 8376. https://doi.org/10.3390/su12208376