Validation of the Smart City as a Sustainable Development Knowledge Tool: The Challenge of Using Technologies in Education during COVID-19
Abstract
:1. Introduction
- (1)
- Design and validate an instrument in order to analyze the impact of an online learning questionnaire, a Smart City tool, on teaching during a lockdown. This is important because no instrument currently exists to examine these parameters. A questionnaire was designed and validated in compliance with the established psychometric requisites for reliability. In order to confirm these characteristics, structural equation modeling (SEM) was used. This methodology enables latent analysis, which is consistent with the use of multivariate regression to relate patterns of answers to a group of factors that are not directly observed but exist in the people assessed [57].
- (2)
- Obtain descriptive results for use of the Smart City tool of online learning in teaching during a lockdown.
2. Materials and Methods
2.1. Method
2.2. Participants
2.3. Instrument
2.4. Procedure
Data Collection Procedure
2.5. Data Analysis
3. Results
- -
- Model (M1). This model arose from the exploratory factor analysis and served as a theoretical model. The parsimony normed fit index (PNFI) was close to 1 (0.750), and the CFI (comparative index of goodness of fit), TLI (Tucker-Lewis index), and NFI (normed fit index) comparative fit indices were 0.906, 0.920, and 0.901, respectively. Although they all showed good results, it was necessary to study others. It is worth highlighting that the root mean approximation square error (RMSEA) was slightly above the critical limit at 0.059 [62,63,75,77,78,79,80].
- -
- Model (M2). This model was created from the first model (Figure 2) by eliminating inappropriate items [76]. It retained 21 of the 24 items and four of the five factors of Model 1: knowledge of computer programs and their use in the teaching practice of teachers, impacts that ICTs have on the teaching process during their professional activity, results that are obtained from ICTs according to the style of learning, and use of ICTs in their personal environment. It was interesting to note that the calculated RMSEA, which was equal to 0.46, was an optimal value, and the CFI, TLI, and NFI comparative fit indices were 0.951, 0.961, and 0.952, respectively (Table 4 and Figure 3) [62,63,75,77,78,79,80].
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Questionnaire on the Knowledge and Use of the Smart City and Its Usefulness in Online Learning (SCOLQ)
- Sex: ___ Female/___ Male
- Educational level you teach:
Primary education | ||
Secondary education | ||
University | ||
Other |
Smart Education | NONE | SOME | QUITE A BIT | A LOT |
I1/I have knowledge of basic programs. | ||||
I2/I have knowledge of personal interaction programs. | ||||
I3/I have knowledge of blogs, chats, or forums. | ||||
I5/I know of and use online video portals. | ||||
I7/I use basic programs. | ||||
I8/I use personal interaction. | ||||
I9/I use blogs, chats, or forums. | ||||
Smart Learning Environment | ||||
I11/I use online video portals. | ||||
I12/I use ICTs to share resources about educational and sustainability activities and sports and cultural events. | ||||
I13/I expand academic information. | ||||
I14/I look for information about academic and sustainability activities and sports and cultural events in my city | ||||
Impact that ICTs have on the teaching process | ||||
I16/They help my teaching process. | ||||
I17/They improve the academic results of my students. | ||||
I18/They replace traditional resources. | ||||
I19/They encourage e-learning use. | ||||
I20/It means that online teaching is more dynamic and time-efficient. | ||||
Use of the Smart City and its usefulness in the e-learning | ||||
I23/I enjoy preparing my lessons using ICTs. | ||||
I24/I use ICTs to achieve effectiveness in my teaching practice. | ||||
I26/Before working with ICTs, I analyze their pros and cons. | ||||
I27/I find out what other teachers think through communication platforms. | ||||
I28/I try to reach conclusions about my work using ICTs. |
References
- Vieta, E.; Pérez, V.; Arango, C. La psiquiatría en las secuelas de COVID-19. Rev. Psiquiatr. Salud Mental 2020, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Olmos-Gómez, M.D.C. Sex and careers of university students in educational practices as factors of individual differences in learning environment and psychological factors during COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 5036. [Google Scholar] [CrossRef] [PubMed]
- AMETIC. Smartcities. Foro TIC Para La Sostenibilidad. 2012. Available online: http://ametic.es/sites/default/files/Informe_Smart_Cities.pdf (accessed on 16 September 2020).
- Fernández, J.M. Ciudades Inteligentes. La mitificación de las nuevas tecnologías como respuestas a los retos de las ciudades contemporáneas. Econ. Ind. 2015, 395, 17–28. [Google Scholar]
- Bin, S.; Alamery, A.H.; Al Nafesa, A.; Aleid, B.; Brazanji, N.A. School closure during novel influenza: A systematic review. J. Infect. Public Health 2018, 11, 657–661. [Google Scholar] [CrossRef]
- UNESCO. COVID-19 Impact on Education. Available online: https://www.iesalc.unesco.org/en/2020/03/09/coronavirus-covid-19-and-higher-education-impact-and-recommendations/ (accessed on 16 August 2020).
- Agrasso, M.; Jiménez, M.D.P. Percepción de los problemas ambientales por el alumnado: Los recursos naturales. Didác. Cienc. Experim. Soc. 2003, 17, 91–105. [Google Scholar]
- Gutiérrez, J.; Calvo, S.; Benayas, J. Educación para el desarrollo sostenible: Evaluación de retos y oportunidades del decenio 2005–2014. Rev. Iberoam. Educ. 2006, 40, 25–69. [Google Scholar]
- Bahner, D.; Adkins, E.; Patel, N.; Donley, C.; Nagel, R.; Kman, N. How we use social media to supplement a novel curriculum in medical education. Med. Teach. 2012, 34, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Blattner, G.; Fiori, M.; College, D. Virtual social network communities: An investigation of language learners’ development of sociopragmatic awareness and multiliteracy skills. CALICO J. 2011, 29, 24–43. [Google Scholar] [CrossRef]
- Churchill, D. Web 2.0 in education: A study of the explorative use of blogs with a postgraduate class. Innov. Educ. Teach. Int. 2011, 48, 149–158. [Google Scholar] [CrossRef]
- Joubert, M.; Wishart, J. Participatory practices: Lessons learnt from two initiatives using online digital technologies to build knowledge. Comput. Educ. 2012, 59, 110–119. [Google Scholar] [CrossRef]
- Manca, S.; Ranieri, M. Is Facebook still a suitable technology-enhanced learning environment? An updated critical review of the literature from 2012 to 2015. J. Comput. Assist. Learn. 2016, 32, 503–528. [Google Scholar] [CrossRef]
- Price, D.; Lemoine, C.; South, N.; Hossain, R. First year nursing students use of social media within education: Results of a survey. Nurs. Educ. Today 2018, 61, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Joshi, A.; Sharma, H. A multi-analytical approach to predict the Facebook usage in higher education. Comput. Hum. Behav. 2016, 55, 340–353. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, F. I help, therefore, I learn: Service learning on web 2.0 in an EFL speaking class. Comput. Assist. Lang. Learn 2015, 28, 202–219. [Google Scholar] [CrossRef]
- Paskaleva, K.A. The smart city: A nexus for open innovation? Intell. Build. Int. 2011, 3, 153–171. [Google Scholar] [CrossRef]
- Hollands, R.G. Will the real smart city please and stand up? City 2008, 12, 303–320. [Google Scholar] [CrossRef]
- Allwinkle, S.; Cruickshank, P. Creating smarter cities: An overwiew. J. Urban Technol. 2011, 18, 1–16. [Google Scholar] [CrossRef]
- Dawes, S.S.; Pardo, T.A. Building collaborativa digital government systems. In Advances in Digital Government. Advances in Database Systems; McIver, W.J., Elmagarmid, A.K., Eds.; Springer: Boston, MA, USA, 2002; Volume 26. [Google Scholar] [CrossRef]
- Partridge, H.L. Developing a Human Perspective to the Digital Divide in the Smart City. In Proceedings of the Austrialian library and Information Association Biennial Conference, Gold Coast, QLD, Australia, 21–24 September 2004. [Google Scholar]
- Harrison, C.; Eckman, B.; Hamilton, R.; Hartswick, P.; Kalagnanam, J.; Paraszczak, J.; Williams, P. Foundations for smarter cities. IBM J. Res. Dev. 2010, 54, 1–16. [Google Scholar] [CrossRef]
- Giffinger, R.; Fertner, C.; Kramar, H.; Meijers, E. Ranking of European Medium-Sized Cities; Vienna University of Technology: Vienna, Austria, 2007. [Google Scholar]
- Shapiro, J.M. Smart Cities: Explaining the Relationship between City Growth and Human Capital; Harvard University: Cambridge, MA, USA, 2003. [Google Scholar]
- Caragliu, A.; Del Bo, C.; Nijkamp, P. Smart Cities in Europe. J. Urban Technol. 2011, 18, 65–82. [Google Scholar] [CrossRef]
- Klein, C.; Kaefer, G. From smart homes to smart cities: Opportunities and challenges from an industrial perspective. In Next Generation Teletraffic and Wired/Wireless Advanced Networking. NEW2AN 2008; Balandin, S., Moltchanov, D., Koucheryavy, Y., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5174. [Google Scholar]
- Aguaded, E. Smart city and Intercultural Education. Soc. Behav. Sci. 2017, 237, 326–333. [Google Scholar] [CrossRef]
- Parlamento Europeo. Mapping Smart Cities in the EU. Available online: https://www.europarl.europa.eu/RegData/etudes/etudes/join/2014/507480/IPOL-ITRE_ET(2014)507480_EN.pdf (accessed on 16 July 2020).
- Lanza, J.; Santana, J.R.; Sánchez, L.; Muñoz, L.; Galache, J.A.; Sotres, P.; Gutiérrez, V. Large-scale mobile sensing enabled Internet-of-Things testbed for smart city services. Int. J. Distrib. Sens. Netw. 2015, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, E.M. Hacia la smart city. Rev. Dig. CEMCI 2016, 32, 1–23. [Google Scholar]
- Carrasco-Sáez, J.L.; Careaga Butter, M.; Badilla-Quintana, M.G. The new pyramid of needs for the digital citizen: A transition towards smart human cities. Sustainability 2017, 9, 2258. [Google Scholar] [CrossRef] [Green Version]
- COVID; Team CDC; Response Team. Severe outcomes among patients with coronavirus disease 2019 (COVID-19)—United States, February 12–March 16, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Burbules, N. El aprendizaje ubicuo y el futuro de la enseñanza. Encount. Educ. 2012, 13, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.J.; Sung, Y.T.; Chang, K.E. A mobile-device-supported peer-assisted learning system for collaborative early EFL reading. Lang. Learn. Technol. 2007, 11, 130–151. [Google Scholar]
- Roschelle, J.; Rafanan, K.; Bhanot, R.; Estrella, G.; Penuel, B.; Nussbaum, M. Scaffolding group explanation and feedback with handheld technology: Impact on students mathematics learning. Educ. Technol. Res. Dev. 2010, 58, 399–419. [Google Scholar] [CrossRef]
- Liu, T.C.; Lin, Y.C.; Tsai, M.J.; Paas, F. Split-attention and redundancy effects in mobile learning in physical environments. Comput. Educ. 2012, 58, 172–180. [Google Scholar] [CrossRef] [Green Version]
- FUNDAC TELEFONICA. Smart cities: Un primer paso hacia el internet de las cosas. Fundación Telefónica. Editoral Ariel. Madrid. 2011. Available online: https://www.aeiciberseguridad.es/descargas/categoria6/9704170.pdf (accessed on 16 September 2020).
- Suárez, M. De las smart cities a los smart citizens. La ciudadanía frente a la tecnología en la construcción de la resiliencia urbana. URBS. Rev. Est. Urbano Cienc. Soc. 2016, 6, 121–128. [Google Scholar]
- Xue, S.; Churchill, D. A review of empirical studies of affordances and development of a framework for educational adoption of mobile social media. Educ. Technol Res. Dev. 2019, 67, 1231–1257. [Google Scholar] [CrossRef]
- De Meo, P.; Messina, F.; Rosaci, D.; Sarné, G.M. Combining trust and skills evaluation to form e-Learning classes in online social networks. Inf. Sci. 2017, 405, 107–122. [Google Scholar] [CrossRef]
- Mason, J.; Chen, W.; Hoel, T. Questions as data: Illuminating the potential of learning analytics through questioning an emergent field. RPTEL 2016, 11, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Pablos-Pons, J.; Colás-Bravo, P.; González-Ramírez, T.; del Rey, C.C.M.V. Teacher well-being and innovation with information and communication technologies; proposal for a structural model. Qual. Quant. 2013, 47, 2755–2767. [Google Scholar] [CrossRef]
- Flores, J.M. Nuevos modelos de comunicación, perfiles y tendencias en las redes Sociales. Rev. Cient. Iberoam. Comun. Educ. 2009, 33, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Sáiz-Manzanares, M.C.; Escolar-Llamazares, M.C.; Arnaiz González, Á. Effectiveness of blended learning in nursing education. Int. J. Environ. Res. Public Health 2020, 17, 1589. [Google Scholar] [CrossRef] [Green Version]
- Khalifeh, G.; Noroozi, O.; Farrokhnia, M.; Talaee, E. Higher education students’ perceived readiness for computer-supported collaborative learning. Multimodal Technol. Interact. 2020, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Avello Martínez, R.; Duart, J.M. Nuevas tendencias de aprendizaje colaborativo en e-learning: Claves para su implementación efectiva. Est. Pedag. Valdivia 2016, 42, 271–282. [Google Scholar] [CrossRef] [Green Version]
- Graf, S.; Liu, T.C.; Chen, N.S.; Yang, S.J. Learning styles and cognitive traits—Their relationship and its benefits in web-based educational systems. Comput. Hum. Behav. 2009, 25, 1280–1289. [Google Scholar] [CrossRef]
- Alazab, M. Automated malware detection in mobile app stores based on robust feature generation. Electronics 2020, 9, 435. [Google Scholar] [CrossRef] [Green Version]
- Robbins, S.; Singer, J. The medium is the message: Integrating social media and social work education. J. Soc. Work. Educ. 2014, 50, 387–390. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Hew, K.F. Is mobile instant messaging (MIM) useful in education? Examining its technological, pedagogical, and social afordances. Educ. Res. Rev. 2017, 21, 85–104. [Google Scholar] [CrossRef]
- Lund, A.; Furberg, A.; Bakken, J.; Engelien, K.L. What does professional digital competence mean in teacher education? Nord. J. Dig. Liter. 2014, 9, 280–298. [Google Scholar]
- García-Peñalvo, F.J.; Corell, A.; Abella-García, V.; Grande, M. La evaluación online en la educación superior en tiempos de la COVID-19. Educ. Knowl. Soc. 2020, 21, 1–26. [Google Scholar] [CrossRef]
- Van Laar, E.; van Deursen, A.J.; van Dijk, J.A.; de Haan, J. The relation between 21st-century skills and digital skills: A systematic literature review. Comput. Hum. Behav. 2017, 72, 577–588. [Google Scholar] [CrossRef]
- Hinostroza, J.E. TIC, Educación y Desarrollo Social en América Latina y el Caribe; UNESCO: Montevideo, Uruguay, 2017. [Google Scholar]
- Goldschmidt, K. The COVID-19 pandemic: Technology use to support the wellbeing of children. J. Pediatric. Nurs. 2020, 53, 88–90. [Google Scholar] [CrossRef] [PubMed]
- Rizopoulos, D. ltm: Un paquete R para el modelado de variables latentes y análisis de teoría de respuesta al ítem. Revi. Softw. Estad. 2006, 17, 1–25. [Google Scholar]
- Olmedo, E.M.; Expósito, J. Entornos personales de aprendizaje en los jóvenes de las smart cities actuales y futuras. Rev. Iberoamer Icana Sist Cibern. Inform. 2017, 14, 1–5. [Google Scholar]
- Díaz, M.R. Introducción a los modelos de ecuaciones estructurales. Publicaciones del INICO 2000, 43, 70–75. Available online: http://riberdis.cedd.net/bitstream/handle/11181/3270/Metodologia_en_investigacion_sobre_discapacidad.pdf?sequence=2#page=44 (accessed on 16 August 2020).
- Olmedo, E.M.; Berrocal, E.; Olmos, M.C.; Expósito, J. Structural Equations Model (SEM) of a questionnaire on the evaluation of intercultural secondary education classrooms. Suma Psicol. 2014, 21, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Muñiz, J. Las teorías de los tests: Teoría clásica y teoría de respuesta a los ítems. Pap. Psicólogo 2010, 31, 57–66. [Google Scholar]
- Bentler, P.M. On tests and indices for evaluating structural models. Personal. Individ. Differ. 2007, 42, 825–829. [Google Scholar] [CrossRef]
- González, M.J.; Backhoff, E. Validación de un cuestionario de contexto para evaluar sistemas educativos con Modelos de Ecuaciones Estructurales. RELIEVE. Rev. Electron. Investig. Eval. Educ. 2010, 16, 1–17. [Google Scholar]
- Zhu, Z.T.; He, B. Smart Education: New frontier of educational informatization. E-education Res. 2012, 12, 1–13. [Google Scholar]
- Hoel, T.; Mason, J. Standards for smart education—Towards a development framework. Smart Learn. Environ. 2018, 5, 3. [Google Scholar] [CrossRef]
- Middleton, A. Smart Learning: Teaching and learning with Smartphones and Tablets in Post-Compulsory Education; MELSIG: Sheffield, UK, 2015. [Google Scholar]
- Liu, D.; Huang, R.; Wosinski, M. Contexts of smart learning environments. In Smart Learning in Smart Cities; Springer: Singapore, 2017; pp. 15–29. [Google Scholar]
- Kim, S.; Song, S.M.; Yoon, Y.I. Smart learning services based on smart cloud computing. Sensors 2011, 11, 7835–7850. [Google Scholar] [CrossRef] [PubMed]
- Roumen, E.S.; Kovatcheva, N.E. Conceptualising of Smart Education. 2018. Available online: https://www.researchgate.net/publication/320623528_Conceptualising_of_Smart_Education (accessed on 16 September 2020).
- Howell, D.; William, O.; Turner, S. The analysis of missing data. In Handbook Social Science Methodology; Sage: London, UK, 2008; pp. 208–224. [Google Scholar]
- Escobar, J.; Cuervo, A. Validez de contenido y juicio de expertos: Una aproximación a su utilización. Avanc. Medic. 2008, 6, 27–36. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Social Sciences; Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Comrey, A.L. Manual de Análisis Factorial; Cátedra: Madrid, Spain, 1985. [Google Scholar]
- Kline, R.B. Convergence of Structural Equation Modeling and Multilevel Modeling; Sage: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Bentler, P.; Bonett, D. Significance tests and goodness of fit in the analysis of covariance structures. Psychol. Bull. 1980, 88, 588. [Google Scholar] [CrossRef]
- Batista-Foguet, J.M.; Coenders, G.; Alonso, J. Análisis factorial confirmatorio. Su utilidad en la validación de cuestionarios relacionados con la salud. Med. Clin. 2004, 122, 21–27. [Google Scholar] [CrossRef]
- Jöreskog, K.G.; Sörbom, D. LISREL VI. Analysis of Linear Structural Relationships by Maximum Likelihood, Instrumental Variables, and Least Squares Methods; Scientific Software: Mooresville, IN, USA, 1984. [Google Scholar]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Sivo, S.A.; Fan, X.; Witta, E.L.; Willse, J.T. The search for “optimal” cutoff properties: Fit index criteria in structural equation modeling. J. Exper. Educ. 2006, 74, 267–288. [Google Scholar] [CrossRef]
- Miles, J.; Shevlin, M. A time and a place for incremental fit indices. Personal. Individ. Differ. 2007, 42, 869–874. [Google Scholar] [CrossRef]
- Elosua, P.; Zumbo, B. Reliability coefficients for ordinal response scales. Psicothema 2008, 20, 896–901. [Google Scholar]
- Enerlis, E.; Young, F. Libro Blanco Smart Cities. Madrid Network. Destinos Turísticos Inteligentes. SEGITTUR. España. Secretaría de Estado de Turismo. 2012. Available online: https://scholar.google.es/scholar?q=Enerlis%2C+Ernst+and+Young%2C+Ferrovial%2C+Madrid+Network+%282012%29.&btnG=&hl=es&as_sdt=0%2C5 (accessed on 17 September 2020).
- Markovic, M.; Petrovic, Z.S. Changes in the school system—New media and learning. In The International Scientific Conference eLearning and Software for Education; Carol I National Defence University: Bucharest, Romania, 2017; pp. 160–166. [Google Scholar] [CrossRef]
- Moorhouse, B.L. Adaptations to a face-to-face initial teacher education course ‘forced’ online due to the COVID-19 pandemic. J. Educ. Teach. 2020, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Sedláková, S. One of the ways to reduce the cost of waste management municipality. Adm. Manag. Public. 2016, 26, 49–59. [Google Scholar]
- Olmos, M.C.; Luque, M.; Ferrara, C.; Olmedo, E.M. Quality of higher education through the pursuit of satisfaction with a focus on sustainability. Sustainability 2020, 12, 2366. [Google Scholar] [CrossRef] [Green Version]
- Androniceanu, A.; Drăgulănescu, I.V. Sustainability of the organizational changes in the context of global economic crisis. Amfiteatru Econ. J. 2012, 14, 365–379. [Google Scholar]
- Kidman, G.; Chang, C. What does “crisis” education look like? Intern. Res. Geogr. Environ. Educ. 2020, 29, 107–111. [Google Scholar] [CrossRef]
- Gewin, V. Five tips for moving teaching online as COVID-19 takes hold. Nature 2020, 580, 295–296. [Google Scholar] [CrossRef] [Green Version]
Item | Percentage (%) | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | SD | RI-t | ||
1 | 3.1 | 9.9 | 36 | 50.9 | 3.34 | 0.784 | 0.654 |
2 | 1.9 | 11.2 | 32.9 | 54.04 | 3.39 | 0.759 | 0.504 |
3 | 3.1 | 8.7 | 29.2 | 59.0 | 3.44 | 0.781 | 0.590 |
4 | 9.3 | 39.8 | 26.1 | 24.8 | 2.66 | 0.954 | 0.575 |
5 | 1.9 | 9.3 | 28.0 | 60.9 | 3.47 | 0.743 | 0.566 |
6 | 73.9 | 19.9 | 5.0 | 1.2 | 1.33 | 0.631 | 0.228 |
7 | 5.6 | 8.1 | 28.0 | 58.4 | 3.39 | 0.860 | 0.648 |
8 | 3.1 | 11.2 | 32.3 | 53.4 | 3.36 | 0.802 | 0.550 |
9 | 5.6 | 18.3 | 27.3 | 48.4 | 3.18 | 0.930 | 0.692 |
10 | 22.4 | 29.8 | 25.5 | 22.4 | 2.47 | 1.07 | 0.575 |
11 | 5.0 | 13.7 | 23.0 | 58.4 | 3.34 | 0.896 | 0.577 |
12 | 17.4 | 23.0 | 34.2 | 25.5 | 2.67 | 1.040 | 0.654 |
13 | 16.8 | 17.4 | 34.8 | 31.1 | 2.80 | 1.059 | 0.611 |
14 | 5.0 | 13.0 | 31.7 | 50.3 | 3.27 | 0.873 | 0.643 |
15 | 11.8 | 21.1 | 31.7 | 35.4 | 2.90 | 1.017 | 0.665 |
16 | 6.2 | 11.8 | 30.4 | 51.6 | 3.27 | 0.901 | 0.791 |
17 | 7.5 | 16.1 | 40.4 | 36.0 | 3.04 | 0.906 | 0.705 |
18 | 17.4 | 26.1 | 35.4 | 21.1 | 2.60 | 1.007 | 0.562 |
19 | 5.6 | 19.9 | 41.6 | 32.9 | 3.01 | 0.869 | 0.653 |
20 | 7.5 | 19.3 | 37.3 | 36.0 | 3.01 | 0.925 | 0.617 |
21 | 47.2 | 25.5 | 18.6 | 8.7 | 1.88 | 0.999 | 0.369 |
22 | 13.0 | 19.9 | 45.3 | 21.7 | 2.75 | 0.940 | 0.733 |
23 | 11.2 | 15.5 | 41.6 | 31.7 | 2.93 | 0.959 | 0.696 |
24 | 8.7 | 10.7 | 30.4 | 50.3 | 3.22 | 0.955 | 0.672 |
25 | 54.0 | 24.2 | 16.8 | 5.0 | 1.72 | 0.915 | 0.097 |
26 | 16.1 | 32.9 | 36.0 | 14.9 | 2.49 | 0.936 | 0.384 |
27 | 14.3 | 32.3 | 32.9 | 20.5 | 2.59 | 0.970 | 0.525 |
28 | 11.2 | 25.5 | 47.8 | 15.5 | 2.67 | 0.870 | 0.593 |
29 | 45.3 | 29.8 | 16.1 | 8.7 | 1.88 | 0.977 | 0.366 |
Items | Asymmetry | Kurtosis | Z | p |
---|---|---|---|---|
1 | −1.095 | 0.715 | 3.887 | 0.000 |
2 | −1.054 | 0.424 | 4.173 | 0.000 |
3 | −1.354 | 1.276 | 4.478 | 0.000 |
4 | 0.064 | −1.276 | 3.140 | 0.000 |
5 | 1.317 | 1.097 | 4.664 | 0.000 |
6 | 1.998 | 3.861 | 5.600 | 0.000 |
7 | −1.389 | 1.177 | 4.369 | 0.000 |
8 | −1.113 | 0.569 | 4.078 | 0.000 |
9 | −0.806 | −0.462 | 3.726 | 0.000 |
10 | 0.057 | −1.243 | 2.460 | 0.000 |
11 | −1.168 | 0.294 | 4.447 | 0.000 |
12 | −0.263 | −1.089 | 2.768 | 0.000 |
13 | −0.455 | −1.003 | 2.954 | 0.000 |
14 | −1.020 | 0.200 | 3.813 | 0.000 |
15 | −0.496 | −0.903 | 2.699 | 0.000 |
16 | −1.088 | 0.290 | 3.876 | 0.000 |
17 | −0.710 | −0.269 | 3.072 | 0.000 |
18 | −0.173 | −1.037 | 2.773 | 0.000 |
19 | −0.556 | −0.410 | 3.005 | 0.000 |
20 | −0.613 | −0.520 | 2.853 | 0.000 |
21 | 0.759 | −0.646 | 3.614 | 0.000 |
22 | −0.455 | −0.615 | 3.457 | 0.000 |
23 | −0.648 | −0.471 | 3.283 | 0.000 |
24 | −1.073 | 0.140 | 3.743 | 0.000 |
25 | 0.967 | 0.140 | 4.147 | 0.000 |
26 | −0.037 | −0.861 | 2.713 | 0.000 |
27 | −0.068 | −0.971 | 2.491 | 0.000 |
28 | −0.356 | −0.474 | 3.531 | 0.000 |
29 | 0.810 | −0.448 | 3.427 | 0.000 |
Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 | |
---|---|---|---|---|---|---|
Factor 1 | 0.512 | 0.478 | 0.445 | 0.473 | 0.157 | 0.251 |
Factor 2 | −0.596 | 0.431 | 0.338 | −0.173 | 0.522 | −0.206 |
Factor 3 | 0.271 | −0.146 | −0.515 | 0.195 | 0.749 | −0.199 |
Factor 4 | 0.176 | −0.493 | 0.420 | −0.452 | 0.368 | 0.458 |
Factor 5 | −0.026 | −0.514 | 0.486 | 0.403 | −0.016 | −0.580 |
Factor 6 | 0.527 | 0.238 | 0.099 | −0.585 | −0.072 | −0.556 |
Absolute Adjustment Index | Increased Adjustment Index | ||||||||
---|---|---|---|---|---|---|---|---|---|
Model | CMIN | P | LO 90 | HI 90 | RMSEA | PNFI | NFI | CFI | TLI |
M1 5 Factors 24 items | 815.4 | 0.000 | 0.49 | 0.69 | 0.059 | 0.750 | 0.906 | 0.920 | 0.901 |
M2 4 Factors 21 items | 684.1 | 0.000 | 0.39 | 0.58 | 0.046 | 0.789 | 0.951 | 0.961 | 0.952 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olmos-Gómez, M.d.C.; Luque-Suárez, M.; Mohamed-Mohamed, S.; Cuevas-Rincón, J.M. Validation of the Smart City as a Sustainable Development Knowledge Tool: The Challenge of Using Technologies in Education during COVID-19. Sustainability 2020, 12, 8384. https://doi.org/10.3390/su12208384
Olmos-Gómez MdC, Luque-Suárez M, Mohamed-Mohamed S, Cuevas-Rincón JM. Validation of the Smart City as a Sustainable Development Knowledge Tool: The Challenge of Using Technologies in Education during COVID-19. Sustainability. 2020; 12(20):8384. https://doi.org/10.3390/su12208384
Chicago/Turabian StyleOlmos-Gómez, María del Carmen, Mónica Luque-Suárez, Soraya Mohamed-Mohamed, and Jesús Manuel Cuevas-Rincón. 2020. "Validation of the Smart City as a Sustainable Development Knowledge Tool: The Challenge of Using Technologies in Education during COVID-19" Sustainability 12, no. 20: 8384. https://doi.org/10.3390/su12208384
APA StyleOlmos-Gómez, M. d. C., Luque-Suárez, M., Mohamed-Mohamed, S., & Cuevas-Rincón, J. M. (2020). Validation of the Smart City as a Sustainable Development Knowledge Tool: The Challenge of Using Technologies in Education during COVID-19. Sustainability, 12(20), 8384. https://doi.org/10.3390/su12208384