Biogas from Agri-Food and Agricultural Waste Can Appreciate Agro-Ecosystem Services: The Case Study of Emilia Romagna Region
Abstract
:1. Introduction
2. The Case Study
3. Materials and Methods
3.1. Ecosystem Services
3.2. Current Regional Biomass Availability and Biogas Yields
3.3. Estimated Potential GHG from AD Treatment of Livestock and Agri-Food Waste
3.4. Estimated Potential GHG Savings from AD Treatment of Livestock and Agri-Food Waste
4. Results and Discussion
4.1. Provisioning Services: Potential Biogas and Biomethane Gross Production and Electric Energy Power
4.2. Regulation and Maintenance: Perception of Odors and Benefits of Digestate on Soil Nutrients
4.3. GHG Emissions Savings
- -
- valorization of agri-food waste to biogas vs. landfilling
- -
- valorization of livestock waste to biogas vs. direct land spreading
- -
- bioenergy production vs. energy from fossil fuel
- -
- fertilization with digestate vs. fertilization with chemical fertilizer.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tubiello, F.N.; Salvatore, M.; Rossi, S.; Ferrara, A.; Fitton, N.; Smith, P. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 2013, 8, 015009. [Google Scholar] [CrossRef]
- Antle, J.M.; Capalbo, S.M. Agriculture as a Managed Ecosystem: Policy Implications. J. Agric. Resour. Econ. 2002, 27, 1–15. [Google Scholar]
- Collier, C.A.; Neto, M.S.d.A.; de Almeida, G.M.A.; Rosa Filho, J.S.; Severi, W.; El-Deir, A.C.A. Effects of anthropic actions and forest areas on a neotropical aquatic ecosystem. Sci. Total Environ. 2019, 691, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Murtaugh, M.P.; Steer, C.J.; Sreevatsan, S.; Patterson, N.; Kennedy, S.; Sriramarao, P. The science behind One Health: At the interface of humans, animals, and the environment: The science behind One Health. Ann. N. Y. Acad. Sci. 2017, 1395, 12–32. [Google Scholar] [CrossRef] [Green Version]
- Ecosystems and Human Well-Being: Health Synthesis; Corvalán, C.; Hales, S.; McMichael, A.J.; Millennium Ecosystem Assessment (Program); World Health Organization (Eds.) Millennium Ecosystem Assessment; World Health Organization: Geneva, Switzerland, 2005; ISBN 978-92-4-156309-3. [Google Scholar]
- Munns, W.R.; Rea, A.W.; Suter, G.W.; Martin, L.; Blake-Hedges, L.; Crk, T.; Davis, C.; Ferreira, G.; Jordan, S.; Mahoney, M.; et al. Ecosystem services as assessment endpoints for ecological risk assessment. Integr. Environ. Assess. Manag. 2016, 12, 522–528. [Google Scholar] [CrossRef]
- Ecosystem Services and Agriculture: Tradeoffs and synergies|Philosophical Transactions of the Royal Society B: Biological Sciences. Available online: https://royalsocietypublishing.org/doi/full/10.1098/rstb.2010.0143 (accessed on 6 August 2020).
- Davari, M.R.; Ram, M.; Tewari, J.C.; Kaushish, S. Impact of agricultural practice on ecosystem services. Int. J. Agron. Plant Prod. 2010, 14, 14–23. [Google Scholar]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Sutton, P.C.; Anderson, S.J.; Costanza, R.; Kubiszewski, I. The ecological economics of land degradation: Impacts on ecosystem service values. Ecol. Econ. 2016, 129, 182–192. [Google Scholar] [CrossRef]
- Power, A.G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2959–2971. [Google Scholar] [CrossRef]
- Kapoor, R.; Ghosh, P.; Kumar, M.; Sengupta, S.; Gupta, A.; Kumar, S.S.; Vijay, V.; Kumar, V.; Vijay, V.K.; Pant, D. Valorization of agricultural waste for biogas based circular economy in India: A research outlook. Bioresour. Technol. 2020, 304, 123036. [Google Scholar] [CrossRef]
- Barros, M.V.; Salvador, R.; de Francisco, A.C.; Piekarski, C.M. Mapping of research lines on circular economy practices in agriculture: From waste to energy. Renew. Sustain. Energy Rev. 2020, 131, 109958. [Google Scholar] [CrossRef]
- Hagman, L.; Blumenthal, A.; Eklund, M.; Svensson, N. The role of biogas solutions in sustainable biorefineries. J. Clean. Prod. 2018, 172, 3982–3989. [Google Scholar] [CrossRef] [Green Version]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Lijó, L.; González-García, S.; Bacenetti, J.; Fiala, M.; Feijoo, G.; Lema, J.M.; Moreira, M.T. Life Cycle Assessment of electricity production in Italy from anaerobic co-digestion of pig slurry and energy crops. Renew. Energy 2014, 68, 625–635. [Google Scholar] [CrossRef] [Green Version]
- Holm-Nielsen, J.B.; Al Seadi, T.; Oleskowicz-Popiel, P. The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 2009, 100, 5478–5484. [Google Scholar] [CrossRef] [PubMed]
- Moustakidis, S. Renewable Energy—Recast to 2030 (RED II). Available online: https://ec.europa.eu/jrc/en/jec/renewable-energy-recast-2030-red-ii (accessed on 25 September 2020).
- Chiaramonti, D.; Goumas, T. Impacts on industrial-scale market deployment of advanced biofuels and recycled carbon fuels from the EU Renewable Energy Directive II. Appl. Energy 2019, 251, 113351. [Google Scholar] [CrossRef]
- Meyer, A.K.P.; Ehimen, E.A.; Holm-Nielsen, J.B. Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production. Biomass Bioenergy 2018, 111, 154–164. [Google Scholar] [CrossRef]
- Tamburini, E.; Gaglio, M.; Castaldelli, G.; Fano, E.A. Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy. Sustainability 2020, 12, 3260. [Google Scholar] [CrossRef] [Green Version]
- Meyer, R. Bioeconomy Strategies: Contexts, Visions, Guiding Implementation Principles and Resulting Debates. Sustainability 2017, 9, 1031. [Google Scholar] [CrossRef] [Green Version]
- Menardo, S.; Balsari, P. An Analysis of the Energy Potential of Anaerobic Digestion of Agricultural By-Products and Organic Waste. BioEnergy Res. 2012, 5, 759–767. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.-F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Bilgili, F.; Koçak, E.; Bulut, Ü.; Kuşkaya, S. Can biomass energy be an efficient policy tool for sustainable development? Renew. Sustain. Energy Rev. 2017, 71, 830–845. [Google Scholar] [CrossRef]
- Petersen, S.O.; Sommer, S.G.; Béline, F.; Burton, C.; Dach, J.; Dourmad, J.Y.; Leip, A.; Misselbrook, T.; Nicholson, F.; Poulsen, H.D.; et al. Recycling of livestock manure in a whole-farm perspective. Livest. Sci. 2007, 112, 180–191. [Google Scholar] [CrossRef]
- Bühring, G.M.B.; Silveira, V.C.P.; Bühring, G.M.B.; Silveira, V.C.P. Biogas originated from residual biomass in ecosystem services. Rev. Ambiente Amp Água 2018, 13. [Google Scholar] [CrossRef]
- Bonetti, M.; Hadjidimitriou, N.; Peroni, M.; Zanoli, A. The Food Industry in Italy; University of Bologna: Bologna, Itlay; p. 26.
- ISTAT. Available online: http://www4.istat.it/it/archivio/emilia-romagna/pagina/3 (accessed on 9 August 2020).
- Il Piano Energetico Regionale 2030—Regione Emilia-Romagna. Available online: https://www.regione.emilia-romagna.it/urp/novita-editoriali/il-piano-energetico-regionale-2030 (accessed on 9 August 2020).
- National Report on Current Status of Biogas Production—Italy. Available online: http://act-clean.eu/downloads/D5.1_ITALY_National_Report.pdf (accessed on 9 August 2020).
- Czúcz, B.; Arany, I.; Potschin-Young, M.; Bereczki, K.; Kertész, M.; Kiss, M.; Aszalós, R.; Haines-Young, R. Where concepts meet the real world: A systematic review of ecosystem service indicators and their classification using CICES. Ecosyst. Serv. 2018, 29, 145–157. [Google Scholar] [CrossRef]
- Castro, A.J.; Verburg, P.H.; Martín-López, B.; Garcia-Llorente, M.; Cabello, J.; Vaughn, C.C.; López, E. Ecosystem service trade-offs from supply to social demand: A landscape-scale spatial analysis. Landsc. Urban Plan. 2014, 132, 102–110. [Google Scholar] [CrossRef]
- Von Haaren, C.; Albert, C.; Barkmann, J.; de Groot, R.S.; Spangenberg, J.H.; Schröter-Schlaack, C.; Hansjürgens, B. From explanation to application: Introducing a practice-oriented ecosystem services evaluation (PRESET) model adapted to the context of landscape planning and management. Landsc. Ecol. 2014, 29, 1335–1346. [Google Scholar] [CrossRef]
- Gissi, E.; Gaglio, M.; Reho, M. Sustainable energy potential from biomass through ecosystem services trade-off analysis: The case of the Province of Rovigo (Northern Italy). Ecosyst. Serv. 2016, 18, 1–19. [Google Scholar] [CrossRef]
- ENAMA. Available online: https://www.enama.it/userfiles/PaginaSezione/files/p1c2.pdf (accessed on 9 August 2020).
- ISPRA. Available online: https://www.isprambiente.gov.it/contentfiles/00003800/3854-rapporti-01-11.pdf/ (accessed on 9 August 2020).
- Biomether Project. Available online: http://www.biomether.it/ (accessed on 10 August 2020).
- Neri, E.; Cespi, D.; Setti, L.; Gombi, E.; Bernardi, E.; Vassura, I.; Passarini, F. Biomass residues to renewable energy: A life cycle perspective applied at a local scale. Energies 2016, 9, 922. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, W.W.; Johnson, J.M.F.; Hatfield, J.L.; Voorhees, W.B.; Linden, D.R. Crop and Soil Productivity Response to Corn Residue Removal. Agron. J. 2004, 96, 1–17. [Google Scholar] [CrossRef]
- Picchi, G.; Lombardini, C.; Pari, L.; Spinelli, R. Physical and chemical characteristics of renewable fuel obtained from pruning residues. J. Clean. Prod. 2018, 171, 457–463. [Google Scholar] [CrossRef]
- Bozzetto, S.; Pezzaglia, M.; Rossi, L.; Pecorino, B. Considerazioni sul Potenziale del “Biogas Fatto Bene” Italiano Ottenuto Dalla Digestione Anaerobica di Matrici Agricole. Metodologia di Stima e Analisi dei Dati del Position Paper del Consorzio Italiano Biogas; Italian. Tech. Rep. Consorzio Italiano Biogas (CIB): Lodi, Italy, 2016. [Google Scholar]
- Valli, L.; Rossi, L.; Fabbri, C.; Sibilla, F.; Gattoni, P.; Dale, B.E.; Kim, S.; Ong, R.G.; Bozzetto, S. Greenhouse gas emissions of electricity and biomethane produced using the BiogasdonerightTM system: Four case studies from Italy. Biofuels Bioprod. Biorefining 2017, 11, 847–860. [Google Scholar] [CrossRef]
- Billen, P.; Costa, J.; Van der Aa, L.; Van Caneghem, J.; Vandecasteele, C. Electricity from poultry manure: A cleaner alternative to direct land application. J. Clean. Prod. 2015, 96, 467–475. [Google Scholar] [CrossRef]
- De Steur, H.; Wesana, J.; Dora, M.K.; Pearce, D.; Gellynck, X. Applying Value Stream Mapping to reduce food losses and wastes in supply chains: A systematic review. Waste Manag. 2016, 58, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Luca, V.; Cagnoli, P.; Bonoli, A. Estimation of environmental impacts of biomass power plants system at regional scale: The case study of Emilia Romagna (ITA): Methodology, data and results. In Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies: The Italian Experience; Basosi, R., Cellura, M., Longo, S., Parisi, M.L., Eds.; Springer: Cham, Switzerland, 2018; pp. 194–209. [Google Scholar]
- Laboratory Investigations on Co-Digestion of Energy Crops and Crop Residues with Cow Manure for Methane Production: Effect of Crop to Manure Ratio—Science Direct. Available online: https://www.sciencedirect.com/science/article/pii/S0921344906002588?casa_token=3RL_Zg9FI6EAAAAA:t4dss8l-gGxB7nhIzUINl-99B8xsqZMEpSTAPdboSFdmcoKFyT4DNOvnwZM4RcZhLBrvODsoVEg (accessed on 11 August 2020).
- Kirchmeyr, F.; Kirchmeyr, F.; Stefan, M.; Nicholas, E.; Scheidl, S. Project Report BIOSURF: Fuelling Biomethane. 2017. Available online: http://www.biosurf.eu/it_IT/downloads-and-deliverables/ (accessed on 17 August 2020).
- Holly, M.A.; Larson, R.A.; Powell, J.M.; Ruark, M.D.; Aguirre-Villegas, H. Greenhouse gas and ammonia emissions from digested and separated dairy manure during storage and after land application. Agric. Ecosyst. Environ. 2017, 239, 410–419. [Google Scholar] [CrossRef]
- Valin, H.; Frank, S.; Pirker, J.; Mosnier, A.; Forsell, N.; Havlik, P.; Peters, D.; Hamelinck, C. Improvements to GLOBIOM for Modelling of Biofuels Indirect Land Use Change; ILUC Quantification Consortium: Utrecht, The Netherlands, 2014; p. 66. [Google Scholar]
- Florio, C.; Fiorentino, G.; Corcelli, F.; Ulgiati, S.; Dumontet, S.; Güsewell, J.; Eltrop, L. A Life Cycle Assessment of Biomethane Production from Waste Feedstock Through Different Upgrading Technologies. Energies 2019, 12, 718. [Google Scholar] [CrossRef] [Green Version]
- Porter, J.; Costanza, R.; Sandhu, H.; Sigsgaard, L.; Wratten, S. The Value of Producing Food, Energy, and Ecosystem Services within an Agro-Ecosystem. AMBIO J. Hum. Environ. 2009, 38, 186–193. [Google Scholar] [CrossRef]
- BLEENS—Biogas, Liquefied Petroleum Gas, Electricity, Ethanol, Natural Gas, and Solar-energypedia.info. Available online: https://energypedia.info/wiki/BLEENS_-_Biogas,_Liquefied_Petroleum_Gas,_Electricity,_Ethanol,_Natural_Gas,_and_Solar (accessed on 11 August 2020).
- Scenari di Consumi Elettrici al 2050. Available online: https://www.isprambiente.gov.it/it/pubblicazioni/rapporti/scenari-di-consumi-elettrici-al-2050 (accessed on 11 August 2020).
- Zhang, Q.; Hu, J.; Lee, D.-J. Biogas from anaerobic digestion processes: Research updates. Renew. Energy 2016, 98, 108–119. [Google Scholar] [CrossRef]
- Raheem, A.; Sikarwar, V.S.; He, J.; Dastyar, W.; Dionysiou, D.D.; Wang, W.; Zhao, M. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. Chem. Eng. J. 2018, 337, 616–641. [Google Scholar] [CrossRef]
- Bernal, M.P.; Sommer, S.G.; Chadwick, D.; Qing, C.; Guoxue, L.; Michel, F.C. Chapter Three—Current Approaches and Future Trends in Compost Quality Criteria for Agronomic, Environmental, and Human Health Benefits. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 144, pp. 143–233. [Google Scholar]
- Rappert, S.; Müller, R. Odor compounds in waste gas emissions from agricultural operations and food industries. Waste Manag. 2005, 25, 887–907. [Google Scholar] [CrossRef]
- Tambone, F.; Orzi, V.; D’Imporzano, G.; Adani, F. Solid and liquid fractionation of digestate: Mass balance, chemical characterization, and agronomic and environmental value. Bioresour. Technol. 2017, 243, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, E.; Lassaletta, L.; Sanz-Cobena, A.; Garnier, J.; Vallejo, A. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agric. Ecosyst. Environ. 2013, 164, 32–52. [Google Scholar] [CrossRef] [Green Version]
- Molinuevo-Salces, B.; García-González, M.C.; González-Fernández, C.; Cuetos, M.J.; Morán, A.; Gómez, X. Anaerobic co-digestion of livestock wastes with vegetable processing wastes: A statistical analysis. Bioresour. Technol. 2010, 101, 9479–9485. [Google Scholar] [CrossRef] [PubMed]
- Paré, T.; Dinel, H.; Schnitzer, M.; Dumontet, S. Transformations of carbon and nitrogen during composting of animal manure and shredded paper. Biol. Fertil. Soils 1998, 26, 173–178. [Google Scholar] [CrossRef]
- Razzak, S.A.; Hossain, M.M.; Lucky, R.A.; Bassi, A.S.; de Lasa, H. Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review. Renew. Sustain. Energy Rev. 2013, 27, 622–653. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Panigrahi, S.; Dubey, B.K. A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renew. Energy 2019, 143, 779–797. [Google Scholar] [CrossRef]
- Pizzeghello, D.; Berti, A.; Nardi, S.; Morari, F. Phosphorus-related properties in the profiles of three Italian soils after long-term mineral and manure applications. Agric. Ecosyst. Environ. 2014, 189, 216–228. [Google Scholar] [CrossRef]
- Potter, P.; Ramankutty, N.; Bennett, E.M.; Donner, S.D. Characterizing the Spatial Patterns of Global Fertilizer Application and Manure Production. Earth Interact. 2010, 14, 1–22. [Google Scholar] [CrossRef]
- ECTA Chemical Logistic Association. Guidelines for Measuring and Managing CO2 Emission from Freight Transport Operations. 2011. Available online: https://www.ecta.com/resources/Documents/Best%20Practices%20Guidelines/guideline_for_measuring_and_managing_co2.pdf (accessed on 12 October 2020).
- US EPA Technical Support Document: Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis. 2016. Available online: https://19january2017snapshot.epa.gov/sites/production/files/2016-12/documents/sc_co2_tsd_august_2016.pdf (accessed on 12 October 2020).
- Systems Integration for Global Sustainability|Science. Available online: https://science.sciencemag.org/content/347/6225/1258832.abstract?casa_token=nm3FpbZmPv8AAAAA:SKsR9LJGEAvjLwx2_AsmKth-XaAmOWJcb2jUY3rIG8k916nlT1uGjbIBBYpRlEDp1pD1WzA4sicLSiI (accessed on 12 August 2020).
- Wu, J. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Longato, D.; Gaglio, M.; Boschetti, M.; Gissi, E. Bioenergy and ecosystem services trade-offs and synergies in marginal agricultural lands: A remote-sensing-based assessment method. J. Clean. Prod. 2019, 237, 117672. [Google Scholar] [CrossRef]
- Ahmed, A.; Jarzebski, M.P.; Gasparatos, A. Using the ecosystem service approach to determine whether jatropha projects were located in marginal lands in Ghana: Implications for site selection. Biomass Bioenergy 2018, 114, 112–124. [Google Scholar] [CrossRef]
- Holland, R.A.; Eigenbrod, F.; Muggeridge, A.; Brown, G.; Clarke, D.; Taylor, G. A synthesis of the ecosystem services impact of second generation bioenergy crop production. Renew. Sustain. Energy Rev. 2015, 46, 30–40. [Google Scholar] [CrossRef]
- Paschalidou, A.; Tsatiris, M.; Kitikidou, K. Energy crops for biofuel production or for food?—SWOT analysis (case study: Greece). Renew. Energy 2016, 93, 636–647. [Google Scholar] [CrossRef]
- Dick, N.A.; Wilson, P. Analysis of the inherent energy-food dilemma of the Nigerian biofuels policy using partial equilibrium model: The Nigerian Energy-Food Model (NEFM). Renew. Sustain. Energy Rev. 2018, 98, 500–514. [Google Scholar] [CrossRef]
- Gaglio, M.; Tamburini, E.; Lucchesi, F.; Aschonitis, V.; Atti, A.; Castaldelli, G.; Fano, E.A. Life Cycle Assessment of Maize-Germ Oil Production and the Use of Bioenergy to Mitigate Environmental Impacts: A Gate-To-Gate Case Study. Resources 2019, 8, 60. [Google Scholar] [CrossRef] [Green Version]
- Gan, J.; Smith, C.T. Co-benefits of utilizing logging residues for bioenergy production: The case for East Texas, USA. Biomass Bioenergy 2007, 31, 623–630. [Google Scholar] [CrossRef]
Section | Division | Definition | Indicator |
---|---|---|---|
Provisioning | Energy | Energy production by means of biomass residues and waste anaerobic digestion (AD) | Biomass effective availability as raw material for biogas (Mg/y) |
Biogas/biomethane gross production (Nm3/y) * | |||
Potential electric power (MW) | |||
Regulation and maintenance | Mediation of waste, toxic waste and other nuisances | Regulation of air quality by reduction of odors derived from direct use of waste | Perception of odors |
Maintenance of physical, chemical and biological conditions | Regulation of nutrients in soil by reduction of organic load and spreading of digestate | Elemental concentration in digestate (C, N, P, K) | |
Regulation of global climate by reduction of GHG emissions | Greenhouse gas (GHG) emission savings (MgCO2eq./y) |
Type of Material | Quantity Produced (Mg/y) | Quantity Already Destined to AD (%) | Quantity Already Destined to Other Uses (%) | Biogas Yield (Nm3/Mg FM) | % CH4 in Biogas |
---|---|---|---|---|---|
Cow sludge | 4,603,370 | 70% | - | 2.4 ± 0.1 | 62.5 ± 2.5 |
Pig sludge | 5,099,469 | 50% | - | 10.4 ± 0.4 | 62.5 ± 2.5 |
Cow manure | 6,282,033 | 50% | - | 63.3 ± 7.5 | 62.5 ± 2.5 |
Poultry manure | 99,700 | 70% | - | 97.8 ± 6.4 | 62.5 ± 2.5 |
Poultry litter | 794,755 | 50% | - | 241.6 ± 21.3 | 62.5 ± 2.5 |
Total livestock residues | 16,793,329 | ||||
Tomato pomace | 109,800 | 50% | - | 101.8 ± 15.2 | 52.5 ± 2.5 |
Potato residues | 39,000 | 50% | - | 126.8 ± 3.5 | 51.5 ± 1.5 |
Vegetable, fruit and legume waste | 16,000 | 50% | - | 158.1 ± 18.7 | 55.0 ± 5.0 |
Beet pulp | 150,000 | 30% | 50% | 104.5 ± 13.6 | 57.5 ± 2.5 |
Grapes and vinasses | 167,654 | 50% | - | 150.0 ± 12.1 | 52.5 ± 2.5 |
Slaughterhouse waste | 197,493 | 75% | - | 102.5 ± 0.4 | 62.5 ± 2.5 |
Milk whey | 1,500,000 | 20% | 80% | 14.1 ± 0.3 | 52.5 ± 2.5 |
Oil press residues | 2845 | 50% | - | 301.0 ± 9.3 | 52.5 ± 2.5 |
Total agri-food waste | 2,182,792 | ||||
From annual crops (straws, cobs, stalks) | 1,138,035 | 20% | 70% | 124.4 ± 4.9 | 54.0 ± 1.0 |
From perennial crops (pruning) | 197,385 | - | 100% | ||
Total agricultural residues | 1,335,420 |
Treatment Option | Emissions | Unit | Source |
---|---|---|---|
Biogas production from livestock waste * | 10 | gCO2eq/MJ | [46] |
Biogas production agri-food industry waste ** | 25 | gCO2eq/MJ | [46] |
Agri-food waste landfilling *** | 2240 | kgCO2eq/Mg FM | [48] |
Livestock byproducts storage and direct land spreading | 34.5 | kgCO2eq/Mg FM | [46] |
Parameter | Value | Unit |
---|---|---|
DM content | 5.8 ± 3.0 | % |
VS in DM | 68.9 ± 13.3 | %DM |
pH value | 7.9 ± 0.4 | |
N-total | 10.4 ± 7.4 | %DM |
NH4-N | 6.4 ± 6.7 | %DM |
K2O | 5.1 ± 3.2 | %DM |
P2O5 | 3.7 ± 1.8 | %DM |
Parameter | Value | Unit |
---|---|---|
N-based fertilizers | 4.20 ± 3.07 | Mg CO2eq/Mg N |
P2O5-based fertilizers | 0.91 ± 0.36 | Mg CO2eq/Mg P2O5 |
K2O-based fertilizers | 0.52 ± 0.02 | Mg CO2eq/Mg K2O |
Type of Material | Effective Quantity Available for AD (Mg/y) | Biogas Gross Production (mln Nm3/y) | Potential Installed Electric Power (MW) * | Biomethane Gross Production (mln Nm3/y) |
---|---|---|---|---|
Cow sludge | 1,104,810 | 2.651 | 0.6 | 1.657 |
Pig sludge | 2,039,788 | 21.214 | 4.8 | 13.260 |
Cow manure | 1,507,690 | 95.440 | 21.7 | 59.648 |
Poultry manure | 39,880 | 3.900 | 0.9 | 2.438 |
Poultry litter | 317,902 | 76.805 | 17.5 | 48.003 |
Total livestock residues | 5,010,067 | 200.007 | 45.5 | 125.005 |
Tomato pomace | 43,920 | 4.436 | 0.9 | 2.323 |
Potato residues | 15,600 | 1.965 | 0.4 | 1.013 |
Vegetable, fruit and legume waste | 6400 | 1.012 | 0.2 | 0.556 |
Beet pulp | 40,000 | 4.160 | 0.9 | 2.392 |
Grapes and vinasses | 67,062 | 10.602 | 1.9 | 5.566 |
Slaughterhouse waste | 39,500 | 4.049 | 0.8 | 2.530 |
Milk whey | 0 | 0 | 0 | 0 |
Oil press residues | 1138 | 0.342 | 0.1 | 0.179 |
Total agri-food waste | 213,618 | 26.567 | 5.3 | 14.556 |
Straws, cobs, stalks | 79,662 | 9.878 | 1.9 | 5.334 |
Pruning | 0 | 0 | 0 | 0 |
Total agricultural residues | 79,662 | 9.878 | 1.9 | 6.259 |
TOTAL | 5,303,349 | 236.453 | 52.7 | 13.658 |
GHG Emission Savings (Mg CO2eq/y) | |||||
---|---|---|---|---|---|
Type of Material | Avoiding Landfilling | Avoiding Direct Land Spreading | Producing Biogas and Replacing Fossil Fuel * | Producing Digestate and Replacing Mineral Fertilizers | Total |
Livestock waste + agricultural residues | - | 172,346 ** | 12.02 | 2,122,587 | 2,294,945 |
Agri-food waste | 478,502 | - | 1.12 | 89,085 | 567,588 |
TOTAL | 478,502 | 172,346 | 13.14 | 2,211,673 | 2,862,533 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamburini, E.; Gaglio, M.; Castaldelli, G.; Fano, E.A. Biogas from Agri-Food and Agricultural Waste Can Appreciate Agro-Ecosystem Services: The Case Study of Emilia Romagna Region. Sustainability 2020, 12, 8392. https://doi.org/10.3390/su12208392
Tamburini E, Gaglio M, Castaldelli G, Fano EA. Biogas from Agri-Food and Agricultural Waste Can Appreciate Agro-Ecosystem Services: The Case Study of Emilia Romagna Region. Sustainability. 2020; 12(20):8392. https://doi.org/10.3390/su12208392
Chicago/Turabian StyleTamburini, Elena, Mattias Gaglio, Giuseppe Castaldelli, and Elisa Anna Fano. 2020. "Biogas from Agri-Food and Agricultural Waste Can Appreciate Agro-Ecosystem Services: The Case Study of Emilia Romagna Region" Sustainability 12, no. 20: 8392. https://doi.org/10.3390/su12208392
APA StyleTamburini, E., Gaglio, M., Castaldelli, G., & Fano, E. A. (2020). Biogas from Agri-Food and Agricultural Waste Can Appreciate Agro-Ecosystem Services: The Case Study of Emilia Romagna Region. Sustainability, 12(20), 8392. https://doi.org/10.3390/su12208392