Estimating Invasion Dynamics with Geopolitical Unit-Level Records: The Optimal Method Depends on Irregularity and Stochasticity of Spread
Abstract
:1. Introduction
2. Common Methods to Estimate Spread with Geopolitical Unit
2.1. Regression Methods
2.2. Boundary Displacement Method and Minimum Spread Distance Method
3. Materials and Methods
3.1. Spatial Area of Simulated Spread
3.2. Simulation of Three Expansion Types and Three Spread Scenarios
3.2.1. Three Expansion Types
3.2.2. Three Spread Scenarios
3.2.3. Simulation over Landscape and Conversion to Geopolitical Unit-Level Spread
3.3. Estimating Overall Spread Rate and Spread Dynamics
3.4. Evaluation Statistics
3.4.1. Ability of All Methods to Estimate Expansion Types
3.4.2. Accuracy and Similarity of All Methods
3.4.3. Impact of County Size on Spread Estimation
4. Results
4.1. Ability of All Methods to Estimate Expansion Patterns
4.2. Accuracy of All Methods
4.2.1. Accuracy on Estimating Overall Spread Rate
4.2.2. Accuracy on Estimating Spread Dynamics
4.3. Impact of County Size and Its Variation on Estimation of Spread Rate
4.4. Similarity of All Methods
5. Discussion
5.1. Ability of Common Methods to Estimate Expansion Pattern and Spread Dynamic
5.2. Estimating Spread with Anisotropy and Stochasticity with GULD
5.3. Similarity of Methods to Estimate Overall Spread Rate and Spread Dynamics
5.4. Selection of Method to Estimate Overall Spread Rate and Spread Dynamics with GULD
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paini, D.R.; Sheppard, A.W.; Cook, D.C.; De Barro, P.J.; Worner, S.P.; Thomas, M.B. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. USA 2016, 113, 7575–7579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pejchar, L.; Mooney, H.A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 2009, 24, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Tran, L.; Wiggins, G.; Grant, J.; Stewart, S.; Washington-Allen, R. Determining spread rate of kudzu bug (Hemiptera: Plataspidae) and its associations with environmental factors in a heterogeneous landscape. Environ. Entomol. 2019, 48, 309–317. [Google Scholar] [CrossRef]
- Stohlgren, T.J.; Schnase, J.L. Risk analysis for biological hazards: What we need to know about invasive species. Risk Anal. 2006, 26, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Sharov, A.A.; Pijanowski, B.C.; Liebhold, A.M.; Gage, S.H. What affects the rate of gypsy moth (Lepidoptera: Lymantriidae) spread: Winter temperature or forest susceptibility? Agric. For. Entomol. 1999, 1, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Suarez, A.V.; Holway, D.A.; Case, T.J. Patterns of spread in biological invasions dominated by long-distance jump spread: Insights from Argentine ants. Proc. Natl. Acad. Sci. USA 2001, 98, 1095–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, A.M.; Gregoire, T.G. A geographically variable model of hemlock woolly adelgid spread. Biol. Invasions 2007, 9, 369–382. [Google Scholar] [CrossRef]
- Pyšek, P.; Jarošík, V.; Müllerová, J.; Pergl, J.; Wild, J. Comparing the rate of invasion by Heracleum mantegazzianum at continental, regional, and local scales. Divers. Distrib. 2008, 14, 355–363. [Google Scholar] [CrossRef]
- Pratt, P.D.; Slone, D.H.; Rayamajhi, M.B.; Van, T.K.; Center, T.D. Geographic distribution and dispersal rate of Oxyops vitiosa (Coleoptera: Curculionidae), a biological control agent of the invasive tree Melaleuca quinquenervia in south Florida. Environ. Entomol. 2003, 32, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Masciocchi, M.; Corley, J. Distribution, dispersal and spread of the invasive social wasp (Vespula germanica) in Argentina. Austral. Ecol. 2013, 38, 162–168. [Google Scholar] [CrossRef]
- Horvitz, N.; Wang, R.; Wan, F.H.; Nathan, R. Pervasive human-mediated large-scale invasion: Analysis of spread patterns and their underlying mechanisms in 17 of China’s worst invasive plants. J. Ecol. 2017, 105, 85–94. [Google Scholar] [CrossRef]
- Lantschner, M.V.; Villacide, J.M.; Garnas, J.R.; Croft, P.; Carnegie, A.J.; Liebhold, A.M.; Corley, J.C. Temperature explains variable spread rates of the invasive woodwasp Sirex noctilio in the Southern Hemisphere. Biol. Invasions 2014, 16, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Perrins, J.; Fitter, A.; Williamson, M. Population biology and rates of invasion of three introduced Impatiens species in the British Isles. J. Biogeogr. 1993, 20, 33–44. [Google Scholar] [CrossRef]
- Tobin, P.C.; Liebhold, A.M.; Roberts, E.A. Comparison of methods for estimating the spread of a non-indigenous species. J. Biogeogr. 2007, 34, 305–312. [Google Scholar] [CrossRef]
- Tobin, P.C.; Liebhold, A.M.; Roberts, E.A.; Blackburn, L.M. Estimating spread rates of non-native species: The gypsy moth as a case study. In Pest Risk Modelling and Mapping for Invasive Alien Species; Venette, R.C., Ed.; CABI International and USDA: Wallingford, UK, 2015; pp. 131–145. [Google Scholar]
- Hastings, A.; Cuddington, K.; Davies, K.F.; Dugaw, C.J.; Elmendorf, S.; Freestone, A.; Harrison, S.; Holland, M.; Lambrinos, J.; Malvadkar, U.; et al. The spatial spread of invasions: New developments in theory and evidence. Ecol. Lett. 2005, 8, 91–101. [Google Scholar] [CrossRef]
- Goldstein, J.; Park, J.; Haran, M.; Liebhold, A.; Bjørnstad, O.N. Quantifying spatio-temporal variation of invasion spread. Proc. R. Soc. Biol. 2019, 286, 20182294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tisseuil, C.; Gryspeirt, A.; Lancelot, R.; Pioz, M.; Liebhold, A.; Gilbert, M. Evaluating methods to quantify spatial variation in the velocity of biological invasions. Ecography 2016, 39, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, M.; Liebhold, A.M. Comparing methods for measuring the rate of spread of invading populations. Ecography 2010, 33, 809–817. [Google Scholar] [CrossRef]
- Pioz, M.; Guis, H.; Calavas, D.; Durand, B.; Abrial, D.; Ducrot, C. Estimating front-wave velocity of infectious diseases: A simple, efficient method applied to bluetongue. Vet. Res. 2011, 42, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Shigesada, N.; Kawasaki, K. Biological Invasions: Theory and Practice; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Skellam, J.G. Random spread in theoretical populations. Biometrika 1951, 38, 196–218. [Google Scholar] [CrossRef]
- Shigesada, N.; Kawasaki, K.; Takeda, Y. Modeling stratified diffusion in biological invasions. Am. Nat. 1995, 146, 229–251. [Google Scholar] [CrossRef]
- Williamson, M.; Pyšek, P.; Jarošík, V.; Prach, K. On the rates and patterns of spread of alien plants in the Czech Republic, Britain, and Ireland. Ecoscience 2005, 12, 424–433. [Google Scholar] [CrossRef]
- Liebhold, A.M.; Halverson, J.A.; Elmes, G.A. Gypsy moth invasion in North America: A quantitative analysis. J. Biogeogr. 1992, 19, 513–520. [Google Scholar] [CrossRef]
- Aikio, S.; Duncan, R.P.; Hulme, P.E. Herbarium records identify the role of long-distance spread in the spatial distribution of alien plants in New Zealand. J. Biogeogr. 2010, 37, 1740–1751. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Development Core Team: Vienna, Austria, 2013; Available online: http://www.R-project.org (accessed on 10 January 2018).
- Bivand, R.; Keitt, T.; Rowlingson, B.; Pebesma, E.; Sumner, M.; Hijmans, R.; Rouault, E.; Bivand, M.R. Package ‘rgdal’: Bindings for the Geospatial Data Abstraction Library. Available online: https://cran.r-project.org/web/packages/rgdal/index.html (accessed on 1 January 2018).
- Hamner, B.; Frasco, M.; LeDell, E. Package ‘Metrics’. Available online: https://cran.r-project.org/web/packages/Metrics/index.html (accessed on 1 January 2018).
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Selected Papers of hirotugu Akaike; Springer: New York, NY, USA, 1973. [Google Scholar]
- Mineur, F.; Davies, A.J.; Maggs, C.A.; Verlaque, M.; Johnson, M.P. Fronts, jumps and secondary introductions suggested as different invasion patterns in marine species, with an increase in spread rates over time. Proc. R. Soc. Lond. Biol. 2010, 277, 2693–2701. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Wang, Y.Z. Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora (Asteraceae) in China. Divers. Distrib. 2006, 12, 397–408. [Google Scholar] [CrossRef]
- Andow, D.A.; Kareiva, P.M.; Levin, S.A.; Okubo, A. Spread of invading organisms. Landsc. Ecol. 1990, 4, 177–188. [Google Scholar] [CrossRef]
- Fraser, E.J.; Lambin, X.; Travis, J.M.; Harrington, L.A.; Palmer, S.C.; Bocedi, G.; Macdonald, D.W. Range expansion of an invasive species through a heterogeneous landscape–the case of American mink in Scotland. Divers. Distrib. 2015, 21, 888–900. [Google Scholar] [CrossRef] [Green Version]
- Morin, R.S.; Liebhold, A.M.; Gottschalk, K.W. Anisotropic spread of hemlock woolly adelgid in the eastern United States. Biol. Invasions 2009, 11, 2341–2350. [Google Scholar] [CrossRef]
- Nathan, R. Long-distance dispersal of plants. Science 2006, 313, 786–788. [Google Scholar] [CrossRef] [Green Version]
- Muirhead, J.R.; Leung, B.; van Overdijk, C.; Kelly, D.W.; Nandakumar, K.; Marchant, K.R.; MacIsaac, H.J. Modelling local and long-distance dispersal of invasive emerald ash borer Agrilus planipennis (Coleoptera) in North America. Divers. Distrib. 2006, 12, 71–79. [Google Scholar] [CrossRef]
- Meentemeyer, R.K.; Cunniffe, N.J.; Cook, A.R.; Filipe, J.A.; Hunter, R.D.; Rizzo, D.M.; Gilligan, C.A. Epidemiological modeling of invasion in heterogeneous landscapes: Spread of sudden oak death in California (1990–2030). Ecosphere 2011, 2, 1–24. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Spread Scenario | Expansion Type | No. of Infested Counties | Mean County Area (km2) | Coefficient of Variation | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R1 | R2 | R3 | R1 | R2 | R3 | R1 | R2 | R3 | ||
S1 | Linear | 637 | 240 | 103 | 1188.21 | 3173.15 | 7564.29 | 0.12 | 0.07 | 0.29 |
Biphasic | 919 | 371 | 172 | 1235.23 | 3133.17 | 7243.13 | 0.15 | 0.07 | 0.31 | |
LGF | 930 | 377 | 172 | 1236.82 | 3175.75 | 7229.18 | 0.16 | 0.10 | 0.32 | |
S2 | Linear | 516 | 198 | 82 | 1125.04 | 3133.54 | 8472.74 | 0.02 | 0.09 | 0.29 |
Biphasic | 760 | 209 | 95 | 1176.03 | 3231.86 | 8062.71 | 0.06 | 0.07 | 0.33 | |
LGF | 758 | 209 | 95 | 1175.65 | 3231.86 | 8062.71 | 0.07 | 0.13 | 0.26 | |
S3 | Linear | 914 | 381 | 146 | 1271.61 | 3273.84 | 8858.33 | 0.12 | 0.04 | 0.35 |
Biphasic | 1147 | 471 | 200 | 1290.96 | 3275.94 | 8169.05 | 0.13 | 0.04 | 0.35 | |
LGF | 1158 | 479 | 200 | 1288.32 | 3274.22 | 7881.00 | 0.14 | 0.08 | 0.34 |
Method | Name of Method | Measurement | |
---|---|---|---|
Full Name | Abbreviation | ||
Regression methods | Centroid distance between spread origin | CtdD_R | Mean distance between county centroids and spread origin |
Minimum distance between county and origin | MinD_R | Mean of the minimum distance between counties and spread origin | |
Square root of infested area | SqrtA_R | ||
Square root of number of infested counties | SqrtN_R | ||
Square root area estimated from number of infested counties | SqrtNA_R | SqrtN_R * | |
Boundary displacement | Centroid boundary | Ctd_BD | Mean distance between two consecutive boundaries |
County boundary | Cty_BD | ||
Minimum spread distance | MSD | Mean of the minimum distance between centroids of newly and earlier infested counties |
Spread | Regression Method | Boundary Displacement | MSD | ||||||
---|---|---|---|---|---|---|---|---|---|
CtdDR | MinD_R | SqrtA_R | SqrtN_R | SqrtNA_R | Ctd_BD | Cty_BD | |||
R2 by scenario | S1 | 0.96 | 0.96 | 0.95 | 0.09 | 0.87 | 1.00 | 0.95 | 0.04 |
S2 | 0.96 | 0.96 | 0.92 | 0.09 | 0.86 | 0.94 | 0.93 | 0.03 | |
S3 | 0.47 | 0.47 | 0.89 | 0.02 | 0.79 | 0.85 | 0.89 | 0.00 | |
R2 by region | Region 1 | 0.89 | 0.89 | 0.98 | 0.93 | 0.92 | 0.98 | 0.98 | 0.89 |
Region 2 | 0.80 | 0.80 | 0.96 | 0.96 | 0.95 | 0.97 | 0.98 | 0.76 | |
Region 3 | 0.81 | 0.81 | 0.95 | 0.92 | 0.91 | 0.98 | 0.97 | 0.41 | |
All rates | R2 | 0.81 | 0.81 | 0.95 | 0.14 | 0.91 | 0.98 | 0.97 | 0.13 |
RMSE | 1.78 | 1.78 | 1.06 | NA | 1.25 | 0.71 | 1.22 | 5.19 |
Spread | Regression Method | Boundary Displacement | MSD | ||||||
---|---|---|---|---|---|---|---|---|---|
CtdDR | MinD_R | SqrtA_R | SqrtN_R | SqrtNA_R | Ctd_BD | Cty_BD | |||
R2 by scenario | S1 | 0.83 | 0.81 | 0.84 | 0.36 | 0.84 | 0.90 | 0.83 | 0.24 |
S2 | 0.60 | 0.45 | 0.79 | 0.35 | 0.89 | 0.80 | 0.77 | 0.22 | |
S3 | 0.05 | 0.06 | 0.57 | 0.24 | 0.63 | 0.77 | 0.58 | 0.07 | |
R2 by region | Region 1 | 0.37 | 0.39 | 0.96 | 0.46 | 0.89 | 0.97 | 0.96 | 0.27 |
Region 2 | 0.31 | 0.32 | 0.87 | 0.48 | 0.92 | 0.90 | 0.88 | 0.24 | |
Region 3 | 0.31 | 0.31 | 0.57 | 0.38 | 0.65 | 0.77 | 0.55 | 0.30 | |
All dynamic | R2 | 0.33 | 0.34 | 0.76 | 0.24 | 0.80 | 0.86 | 0.76 | 0.19 |
RMSE | 7.44 | 7.25 | 3.86 | NA | 3.50 | 3.30 | 4.13 | 8.75 |
Correlation of A and B | Regression Method | Boundary Displacement | MSD | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | CtdDR | MinD_R | SqrtA_R | SqrtN_R | SqrtNA_R | Ctd_BD | Cty_BD | |
Mean | Overall rate | 0.00 | −0.04 | 0.01 | −0.85 *** | 0.13 | 0.00 | 0.07 | 0.91 *** |
Dynamics | 0.08 | −0.02 | 0.15 * | −0.55 *** | −0.04 | 0.15 * | 0.15 * | 0.67 *** | |
Mean | R2 of overall rate | −0.06 | −0.23 | −0.68 * | 0.51 | 0.51 | 0.18 | 0.42 | −0.58 |
CV | 0.07 | −0.19 | −0.62 | 0.18 | 0.18 | 0.13 | 0.14 | −0.38 | |
Mean | R2 of dynamics | −0.08 | −0.22 | −0.85 *** | −0.32 | −0.32 | −0.69 ** | −0.86 *** | −0.38 |
CV | −0.05 | −0.16 | −0.81 *** | −0.53 * | −0.53 * | −0.62 ** | −0.77 *** | −0.34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, W.; Tran, L.; Grant, J.; Srivastava, V. Estimating Invasion Dynamics with Geopolitical Unit-Level Records: The Optimal Method Depends on Irregularity and Stochasticity of Spread. Sustainability 2020, 12, 8526. https://doi.org/10.3390/su12208526
Liang W, Tran L, Grant J, Srivastava V. Estimating Invasion Dynamics with Geopolitical Unit-Level Records: The Optimal Method Depends on Irregularity and Stochasticity of Spread. Sustainability. 2020; 12(20):8526. https://doi.org/10.3390/su12208526
Chicago/Turabian StyleLiang, Wanwan, Liem Tran, Jerome Grant, and Vivek Srivastava. 2020. "Estimating Invasion Dynamics with Geopolitical Unit-Level Records: The Optimal Method Depends on Irregularity and Stochasticity of Spread" Sustainability 12, no. 20: 8526. https://doi.org/10.3390/su12208526
APA StyleLiang, W., Tran, L., Grant, J., & Srivastava, V. (2020). Estimating Invasion Dynamics with Geopolitical Unit-Level Records: The Optimal Method Depends on Irregularity and Stochasticity of Spread. Sustainability, 12(20), 8526. https://doi.org/10.3390/su12208526