The Water-Energy-Food Nexus as an Adaptation Strategy for Achieving Sustainable Livelihoods at a Local Level
Abstract
:1. Introduction
2. Methods
2.1. Methodological Framework
2.2. Description of the Study Area
2.3. WEF Resources Endowment in Sakhisizwe Municipality
2.4. The WEF Nexus-Livelihoods Conceptual Framework
2.5. Mathematical Representation of Distinct Components of a System
2.5.1. Integration through Differential Equations
2.5.2. The Multi-Criteria Decision Method to Integrate WEF Nexus Sectors
2.6. Modelling Vulnerability and Resilience
3. Results and Discussion
3.1. Integrating WEF Nexus Sectors
3.1.1. Normalised Pairwise Comparison Matrix for WEF Nexus Indicators
3.1.2. Classification Categories for Indicators and the WEF Nexus Integrated Index
3.2. Interpretation of the Indices
4. Way Forward
Adaptation Strategies to Ensure Sustainable Livelihood-Environmental Security
- establish quantitative relationships and simplify the intricate interlinkages between water, energy and food resources with livelihoods security;
- identify trade-offs and synergies within a socio-ecological system and formulate informed strategies to achieve sustainable livelihoods and build resilience;
- guarantee the required balance between human demands and the supply of natural resource to achieve livelihoods sustainability;
- plan timely interventions on priority areas and reduce pressures and stresses on a system
- monitor progress towards a sustainable socio-ecological system; and
- inform transformative solutions to complex socio-ecological systems from a nexus planning perspective.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mabhaudhi, T.; Nhamo, L.; Mpandeli, S.; Nhemachena, C.; Senzanje, A.; Sobratee, N.; Chivenge, P.P.; Slotow, R.; Naidoo, D.; Liphadzi, S. The Water–Energy–Food Nexus as a Tool to Transform Rural Livelihoods and Well-Being in Southern Africa. Int. J. Environ. Res. Public Health 2019, 16, 2970. [Google Scholar] [CrossRef] [Green Version]
- Rasul, G.; Sharma, B. The nexus approach to water–energy–food security: An option for adaptation to climate change. Clim. Policy 2016, 16, 682–702. [Google Scholar] [CrossRef] [Green Version]
- Nhamo, L.; Ndlela, B.; Nhemachena, C.; Mabhaudhi, T.; Mpandeli, S.; Matchaya, G. The water-energy-food nexus: Climate risks and opportunities in southern Africa. Water 2018, 10, 567. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, T.R.; Crootof, A.; Scott, C.A. The Water-Energy-Food Nexus: A systematic review of methods for nexus assessment. Environ. Res. Lett. 2018, 13, 43002. [Google Scholar] [CrossRef]
- Boas, I.; Biermann, F.; Kanie, N. Cross-sectoral strategies in global sustainability governance: Towards a nexus approach. Int. Environ. Agreem. Polit. Law Econ. 2016, 16, 449–464. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Hull, V.; Godfray, H.C.J.; Tilman, D.; Gleick, P.; Hoff, H.; Pahl-Wostl, C.; Xu, Z.; Chung, M.G.; Sun, J. Nexus approaches to global sustainable development. Nat. Sustain. 2018, 1, 466–476. [Google Scholar] [CrossRef]
- D’amato, G.; Pawankar, R.; Vitale, C.; Lanza, M.; Molino, A.; Stanziola, A.; Sanduzzi, A.; Vatrella, A.; D’amato, M. Climate change and air pollution: Effects on respiratory allergy. Allergy Asthma Immunol. Res. 2016, 8, 391–395. [Google Scholar] [CrossRef] [Green Version]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8. [Google Scholar] [CrossRef] [Green Version]
- UNGA. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations General Assembly: New York, NY, USA, 2015; p. 35. [Google Scholar]
- Nhamo, L.; Mabhaudhi, T.; Mpandeli, S.; Dickens, C.; Nhemachena, C.; Senzanje, A.; Naidoo, D.; Liphadzi, S.; Modi, A.T. An integrative analytical model for the water-energy-food nexus: South Africa case study. Environ. Sci. Policy 2020, 109, 15–24. [Google Scholar] [CrossRef]
- Hellegers, P.; Zilberman, D.; Steduto, P.; McCornick, P. Interactions between water, energy, food and environment: Evolving perspectives and policy issues. Water Policy 2008, 10, 1–10. [Google Scholar] [CrossRef]
- Hoff, H. Understanding the Nexus: Background Paper for the Bonn2011 Conference: The Water, Energy and Food Security Nexu; Stockholm Environment Institute (SEI): Stockholm, Sweden, 2011; p. 52. [Google Scholar]
- Mabhaudhi, T.; Mpandeli, S.; Luxon Nhamo, V.G.; Chimonyo, A.S.; Naidoo, D.; Liphadzi, S.; Modi, A.T. Emerging Water-Energy-Food Nexus Lessons, Experiences, and Opportunities in Southern Africa. In Environmental Management of Air, Water, Agriculture, and Energy; Ahmad, V.-B.-H., David, S.T., Eds.; CRC Press: Boca Raton, FL, USA, 2020; p. 141. [Google Scholar]
- Terrapon-Pfaff, J.; Ortiz, W.; Dienst, C.; Gröne, M.-C. Energising the WEF nexus to enhance sustainable development at local level. J. Environ. Manag. 2018, 223, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Stephan, R.M.; Mohtar, R.H.; Daher, B.; Embid Irujo, A.; Hillers, A.; Ganter, J.C.; Karlberg, L.; Martin, L.; Nairizi, S.; Rodriguez, D.J. Water–energy–food nexus: A platform for implementing the Sustainable Development Goals. Water Int. 2018, 43, 472–479. [Google Scholar] [CrossRef] [Green Version]
- Matchaya, G.; Nhamo, L.; Nhlengethwa, S.; Nhemachena, C. An Overview of Water Markets in Southern Africa: An Option for Water Management in Times of Scarcity. Water 2019, 11, 1006. [Google Scholar] [CrossRef] [Green Version]
- Tapela, B.N. Social Water Scarcity and Water Use; Water Research Commission (WRC): Pretoria, South Africa, 2012; p. 175. [Google Scholar]
- Wa’el, A.H.; Memon, F.A.; Savic, D.A. An integrated model to evaluate water-energy-food nexus at a household scale. Environ. Model. Softw. 2017, 93, 366–380. [Google Scholar]
- Geressu, R.; Siderius, C.; Harou, J.J.; Kashaigili, J.; Pettinotti, L.; Conway, D. Assessing river basin development given water-energy-food-environment interdependencies. Earth’s Future 2020, 8, e2019EF001464. [Google Scholar]
- Ericksen, P.J. Conceptualizing food systems for global environmental change research. Glob. Environ. Change 2008, 18, 234–245. [Google Scholar] [CrossRef]
- Namany, S.; Al-Ansari, T.; Govindan, R. Sustainable energy, water and food nexus systems: A focused review of decision-making tools for efficient resource management and governance. J. Clean. Prod. 2019, 225, 610–626. [Google Scholar] [CrossRef]
- Misra, A.K. Climate change and challenges of water and food security. Int. J. Sustain. Built Environ. 2014, 3, 153–165. [Google Scholar] [CrossRef] [Green Version]
- IDP. Sakhisizwe Muncipality: Integrated Development Plan—Review 2015–2016; Sakhisizwe Muncipality: Elliot, South Africa, 2015; p. 234. [Google Scholar]
- Van Koppen, B.; Nhamo, L.; Cai, X.; Gabriel, M.J.; Sekgala, M.; Shikwambana, S.; Tshikolomo, K.; Nevhutanda, S.; Matlala, B.; Manyama, D. Smallholder Irrigation Schemes in the Limpopo Province, South Africa; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2017; Volume IWMI, p. 36, Working Paper 174. [Google Scholar]
- StatsSA. Mid-Year Population Estimates 2018; Statistics South Africa (StatsSA): Pretoria, South Africa, 2018; p. 26. [Google Scholar]
- Newman, R.J.S.; Capitani, C.; Courtney-Mustaphi, C.; Thorn, J.P.R.; Kariuki, R.; Enns, C.; Marchant, R. Integrating insights from social-ecological interactions into sustainable land use change scenarios for small Islands in the western Indian ocean. Sustainability 2020, 12, 1340. [Google Scholar] [CrossRef] [Green Version]
- Kok, M.; Lüdeke, M.; Lucas, P.; Sterzel, T.; Walther, C.; Janssen, P.; Sietz, D.; de Soysa, I. A new method for analysing socio-ecological patterns of vulnerability. Reg. Environ. Change 2016, 16, 229–243. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef] [PubMed]
- Bennett, N.J.; Blythe, J.; Tyler, S.; Ban, N.C. Communities and change in the anthropocene: Understanding social-ecological vulnerability and planning adaptations to multiple interacting exposures. Reg. Environ. Change 2016, 16, 907–926. [Google Scholar] [CrossRef] [Green Version]
- Biggs, E.M.; Bruce, E.; Boruff, B.; Duncan, J.M.; Horsley, J.; Pauli, N.; McNeill, K.; Neef, A.; Van Ogtrop, F.; Curnow, J. Sustainable development and the water–energy–food nexus: A perspective on livelihoods. Environ. Sci. Policy 2015, 54, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Reed, M.; Podesta, G.; Fazey, I.; Geeson, N.; Hessel, R.; Hubacek, K.; Letson, D.; Nainggolan, D.; Prell, C.; Rickenbach, M. Combining analytical frameworks to assess livelihood vulnerability to climate change and analyse adaptation options. Ecol. Econ. 2013, 94, 66–77. [Google Scholar] [CrossRef] [Green Version]
- Mensah, J.; Ricart Casadevall, S. Sustainable development: Meaning, history, principles, pillars, and implications for human action: Literature review. Cogent Soc. Sci. 2019, 5, 1653531. [Google Scholar] [CrossRef]
- Jurgilevich, A.; Birge, T.; Kentala-Lehtonen, J.; Korhonen-Kurki, K.; Pietikäinen, J.; Saikku, L.; Schösler, H. Transition towards circular economy in the food system. Sustainability 2016, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Krantz, L. The Sustainable Livelihood Approach to Poverty Reduction: An Introduction; Swedish International Development Cooperation Agency (SIDA): Stockholm, Sweden, 2001; p. 44. [Google Scholar]
- Nhamo, L.; Chilonda, P. Climate change risk and vulnerability mapping and profiling at local level using the Household Economy Approach (HEA). J. Earth Sci. Clim. Chang. 2012, 3, 2. [Google Scholar]
- Connell, D.J. Sustainable livelihoods and ecosystem health: Exploring methodological relations as a source of synergy. EcoHealth 2010, 7, 351–360. [Google Scholar] [CrossRef]
- Åström, K.J.; Murray, R.M. Feedback Systems: An Introduction for Scientists and Engineers; Princeton University Press: Princeton, NJ, USA, 2010; p. 404. [Google Scholar]
- Rowell, D. State-space representation of LTI systems. In Analysis and Design of Feedback Control Systems; MIT: Cambridge, UK, 2002; p. 18. [Google Scholar]
- Allen, T.; Prosperi, P. Modeling sustainable food systems. Environ. Manag. 2016, 57, 956–975. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Siksnelyte, I.; Zavadskas, E.; Streimikiene, D.; Sharma, D. An overview of multi-criteria decision-making methods in dealing with sustainable energy development issues. Energies 2018, 11, 2754. [Google Scholar] [CrossRef] [Green Version]
- Saaty, R.W. The analytic hierarchy process—what it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Triantaphyllou, E.; Mann, S.H. Using the analytic hierarchy process for decision making in engineering applications: Some challenges. Int. J. Ind. Eng. Appl. Pract. 1995, 2, 35–44. [Google Scholar]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Stewart, S.; Thomas, M.O. Process-object difficulties in linear algebra: Eigenvalues and eigenvectors. In Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education, Prague, Czech Republic, 16–21 July 2006; p. 480. [Google Scholar]
- Saaty, T.L. Eigenvector and logarithmic least squares. Eur. J. Oper. Res. 1990, 48, 156–160. [Google Scholar] [CrossRef]
- Rao, M.; Sastry, S.; Yadar, P.; Kharod, K.; Pathan, S.; Dhinwa, P.; Majumdar, K.; Sampat Kumar, D.; Patkar, V.; Phatak, V. A Weighted Index Model for Urban Suitability Assessment—A GIS Approach; Bombay Metropolitan Regional Development Authority: Bombay, India, 1991. [Google Scholar]
- Alonso, J.A.; Lamata, M.T. Consistency in the analytic hierarchy process: A new approach. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2006, 14, 445–459. [Google Scholar] [CrossRef] [Green Version]
- Teknomo, K. Analytic Hierarchy Process (AHP) Tutorial; Ateneo de Manila University: Manila, Philippines, 2006; pp. 1–20. [Google Scholar]
- Van den Broeck, W.; Gioannini, C.; Gonçalves, B.; Quaggiotto, M.; Colizza, V.; Vespignani, A. The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. BMC Infect. Dis. 2011, 11, 37. [Google Scholar]
- Patel, S.S.; Rogers, M.B.; Amlôt, R.; Rubin, G.J. What do we mean by ’community resilience’? A systematic literature review of how it is defined in the literature. PLoS Curr. 2017, 9. [Google Scholar] [CrossRef]
- Stringer, L.; Quinn, C.; Berman, R.; Le, H.; Msuya, F.; Orchard, S.; Pezzuti, J. Combining Nexus and Resilience Thinking in a Novel Framework to Enable More Equitable and Just Outcomes; Paper No 73; Sustainability Research Institute (SRI): Leeds, UK, 2014; p. 24. [Google Scholar]
- Miller, F.; Osbahr, H.; Boyd, E.; Thomalla, F.; Bharwani, S.; Ziervogel, G.; Walker, B.; Birkmann, J.; Van der Leeuw, S.; Rockström, J. Resilience and vulnerability: Complementary or conflicting concepts? Ecol. Soc. 2010, 15, 11. [Google Scholar] [CrossRef]
- Birkel, H.S.; Veile, J.W.; Müller, J.M.; Hartmann, E.; Voigt, K.-I. Development of a risk framework for Industry 4.0 in the context of sustainability for established manufacturers. Sustainability 2019, 11, 384. [Google Scholar] [CrossRef] [Green Version]
- Burch, S.; Gupta, A.; Inoue, C.Y.; Kalfagianni, A.; Persson, Å.; Gerlak, A.K.; Ishii, A.; Patterson, J.; Pickering, J.; Scobie, M. New directions in earth system governance research. Earth Syst. Gov. 2019, 1, 100006. [Google Scholar] [CrossRef]
- WHO. Coronavirus Disease 2019 (COVID-19): Situation Report; World Health Organization (WHO): Geneva, Switzerland, 2020; p. 9. [Google Scholar]
- Hanefeld, J.; Mayhew, S.; Legido-Quigley, H.; Martineau, F.; Karanikolos, M.; Blanchet, K.; Liverani, M.; Yei Mokuwa, E.; McKay, G.; Balabanova, D. Towards an understanding of resilience: Responding to health systems shocks. Health Policy Plan. 2018, 33, 355–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, S. Implementing the Urban Nexus approach for improved resource-efficiency of developing cities in Southeast-Asia. City Cult. Soc. 2018, 13, 46–56. [Google Scholar] [CrossRef] [Green Version]
- UNEP; ILRI. Preventing the Next Pandemic: Zoonotic Diseases and How to Break the Chain of Transmission; United Nations Environment Programme (UNEP) and International Livestock Research Institute (ILRI): Nairobi, Kenya, 2020; p. 82. [Google Scholar]
- McGrane, S.J.; Acuto, M.; Artioli, F.; Chen, P.Y.; Comber, R.; Cottee, J.; Farr-Wharton, G.; Green, N.; Helfgott, A.; Larcom, S. Scaling the nexus: Towards integrated frameworks for analysing water, energy and food. Geogr. J. 2018, 185, 419–431. [Google Scholar] [CrossRef]
- Mpandeli, S.; Nhamo, L.; Moeletsi, M.; Masupha, T.; Magidi, J.; Tshikolomo, K.; Liphadzi, S.; Naidoo, D.; Mabhaudhi, T. Assessing climate change and adaptive capacity at local scale using observed and remotely sensed data. Weather. Clim. Extrem. 2019, 26, 100240. [Google Scholar] [CrossRef]
- Termeer, C.J.; Dewulf, A.; Van Lieshout, M. Disentangling scale approaches in governance research: Comparing monocentric, multilevel, and adaptive governance. Ecol. Soc. 2010, 15, 29. [Google Scholar] [CrossRef]
- Landauer, M.; Juhola, S.; Klein, J. The role of scale in integrating climate change adaptation and mitigation in cities. J. Environ. Plan. Manag. 2018, 62, 741–765. [Google Scholar] [CrossRef] [Green Version]
- Bhave, A.G.; Conway, D.; Dessai, S.; Stainforth, D.A. Water resource planning under future climate and socioeconomic uncertainty in the Cauvery River Basin in Karnataka, India. Water Resour. Res. 2018, 54, 708–728. [Google Scholar] [CrossRef]
- Da Silva, L.P.B.; Hussein, H. Production of scale in regional hydropolitics: An analysis of La Plata River Basin and the Guarani Aquifer System in South America. Geoforum 2019, 99, 42–53. [Google Scholar] [CrossRef]
- Benson, D.; Gain, A.K.; Rouillard, J.J. Water governance in a comparative perspective: From IWRM to a’nexus’ approach? Water Altern. 2015, 8, 756–773. [Google Scholar]
- Allouche, J.; Middleton, C.; Gyawali, D. Nexus Nirvana or Nexus Nullity? A Dynamic Approach to Security and Sustainability in the Water-Energy-Food Nexus; Social, Technological and Environmental Pathways to Sustainability (STEPS) Centre: Brighton, UK, 2014; p. 37. [Google Scholar]
WEF Sector | Indicator | Units |
---|---|---|
Water | Proportion of available freshwater resources per capita (availability) | m3/capita |
Proportion of crops produced per unit of water used (productivity) | $/m3 | |
Energy | Proportion of the population with access to electricity (accessibility) | % |
Energy intensity measured in terms of primary energy and GDP (productivity) | MJ/GDP | |
Food | Prevalence of food insecurity in the population (self-sufficiency) | % |
Proportion of sustainable agricultural production per unit area (cereals) | kg/ha |
Indicator | Pairwise Comparison Matrix | |||||
---|---|---|---|---|---|---|
Water Availability | Water Productivity | Energy Accessibility | Energy Productivity | Food Self-Sufficiency | Cereal Productivity | |
Water availability | 1 | 1/3 | 1 | 1/7 | 1/6 | 1 |
Water productivity | 3 | 1 | 3 | 5 | 1 | 1 |
Energy accessibility | 1 | 1/3 | 1 | 1/2 | 1/3 | 1/5 |
Energy productivity | 7 | 1/5 | 2 | 1 | 3 | 5 |
Food self-sufficiency | 6 | 1 | 3 | 1/3 | 1 | 7 |
Cereal productivity | 1 | 1 | 5 | 1/5 | 1/7 | 1 |
Indicator | Normalised Pairwise Comparison Matrix | ||||||
---|---|---|---|---|---|---|---|
Water Availability | Water Productivity | Energy Accessibility | Energy Productivity | Food Self-Sufficiency | Crop Productivity | Indices | |
Water availability | 0.053 | 0.086 | 0.067 | 0.020 | 0.030 | 0.066 | 0.053 |
Water productivity | 0.158 | 0.259 | 0.200 | 0.697 | 0.177 | 0.066 | 0.259 |
Energy accessibility | 0.053 | 0.086 | 0.067 | 0.070 | 0.059 | 0.013 | 0.058 |
Energy productivity | 0.368 | 0.052 | 0.133 | 0.139 | 0.532 | 0.329 | 0.259 |
Food self-sufficiency | 0.316 | 0.259 | 0.200 | 0.046 | 0.177 | 0.461 | 0.243 |
Crop productivity | 0.053 | 0.259 | 0.333 | 0.028 | 0.025 | 0.066 | 0.127 |
CR = 0.09 | ∑ = 1 | ||||||
Composite WEF nexus index (weighted average) | 0.185 |
Indicator | Unsustainable | Marginally Sustainable | Moderately Sustainable | Highly Sustainable |
---|---|---|---|---|
WEF nexus composite index | 0–0.9 | 0.1–0.2 | 0.3–0.6 | 0.7–1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nhamo, L.; Ndlela, B.; Mpandeli, S.; Mabhaudhi, T. The Water-Energy-Food Nexus as an Adaptation Strategy for Achieving Sustainable Livelihoods at a Local Level. Sustainability 2020, 12, 8582. https://doi.org/10.3390/su12208582
Nhamo L, Ndlela B, Mpandeli S, Mabhaudhi T. The Water-Energy-Food Nexus as an Adaptation Strategy for Achieving Sustainable Livelihoods at a Local Level. Sustainability. 2020; 12(20):8582. https://doi.org/10.3390/su12208582
Chicago/Turabian StyleNhamo, Luxon, Bekithemba Ndlela, Sylvester Mpandeli, and Tafadzwanashe Mabhaudhi. 2020. "The Water-Energy-Food Nexus as an Adaptation Strategy for Achieving Sustainable Livelihoods at a Local Level" Sustainability 12, no. 20: 8582. https://doi.org/10.3390/su12208582
APA StyleNhamo, L., Ndlela, B., Mpandeli, S., & Mabhaudhi, T. (2020). The Water-Energy-Food Nexus as an Adaptation Strategy for Achieving Sustainable Livelihoods at a Local Level. Sustainability, 12(20), 8582. https://doi.org/10.3390/su12208582