Effects of Various Drying Methods on Selected Physical and Antioxidant Properties of Extracts from Moringa oliefera Leaf Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Reagents
2.2. Preparation of Samples
2.3. Determination of Physical Properties of MO Leaf Waste Powder
2.4. Determination of Total Phenolic Contents (TPC)
2.5. Determination of Total Flavonoid Contents (TFC)
2.6. The 1,1-Dipheynyl 2-Picrylhydrazyl (DPPH) Assay
2.7. Fourier Transform Infrared Spectrophotometry (FTIR)
2.8. Statistical Analysis
3. Results
3.1. Physicochemical Properties
3.1.1. Yield and Color
3.1.2. pH, Total Dissolved Solids, and Total Acidity
3.2. Antioxidant Activity
3.3. Total Phenolic and Flavonoid Contents
3.4. Total Flavonoid Contents
3.5. Identification of Active Functional Groups
3.6. Correlation of TPC, TFC, and Antiradical Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Valdez-Solana, M.A.; Mejía-García, V.Y.; Téllez-Valencia, A.; García-Arenas, G.; Salas-Pacheco, J.M.; Alba-Romero, J.J.; Campos, E.S. Nutritional Content and Elemental and Phytochemical Analyses of Moringa oleifera Grown in Mexico. J. Chem. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Eekor, M. The Growing use of Herbal Medicines: Issues Relating to Adverse Reactions and Challenges in Monitoring Safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef] [Green Version]
- Demiray, S.; Pintado, M.E.; Castro, P.M.L. Evaluation of Phenolic Profiles and Antioxidant Activities of Turkish Medicinal Plants: Tilia Argentea, Crataegi Folium Leaves and Polygonum Bistorta Roots. Int. J. Med. Health Biomed. Bioeng. Pharm. Eng. 2009, 3, 74–79. [Google Scholar] [CrossRef]
- Anhwange, B.A.; Ajibola, V.O.; Oniye, S.J. Chemical Studies of the Seeds of Moringa oleifera (Lam) and Detarium microcarpum (Guill and Sperr). J. Bio. Sci. 2004, 4, 711–715. [Google Scholar] [CrossRef] [Green Version]
- Anwar, F.; Ashraf, M.; Iqbal, M. Interprovenance Variation in the Composition of Moringa oleifera Oilseeds from Pakistan. J. Am. Oil Chem. Soc. 2005, 82, 45–51. [Google Scholar] [CrossRef]
- Oluduro, A.O. Evaluation of Antimicrobial Properties and Nutritional Potentials of Moringa oleifera Lam. Leaf in South-Western Nigeria. Malays. J. Microbiol. 2012, 8, 59–67. [Google Scholar] [CrossRef]
- Njan, A.A.; Amali, M.O.; Olatunji, L.O.; Olorundare, O.E. An Overview of the Ethno-Pharmacological Potentials of Moringa Oleifera Lam, “The Miracle Tree”. Arch. Basic App. Med. 2014, 2, 135–145. [Google Scholar]
- Dhakar, P.R.C.; Pooniya, B.; Gupta, M. Moringa: The Herbal Gold to Combat Malnutrition. Chron. Young Sci. 2011, 2, 119. [Google Scholar] [CrossRef]
- Ogbunugafo, H.; Eneh, F.; Ozumba, A.; Igwo-Ezikp, M.; Okpuzor, J.; Igwilo, I.; Adenekan, S.; Onyekwelu, O. Physico-chemical and Antioxidant Properties of Moringa oleifera Seed Oil. Pak. J. Nutr. 2011, 10, 409–414. [Google Scholar] [CrossRef]
- Wilson, D.; Nash, P.; Buttar, H.S.; Griffiths, K.; Singh, R.; De Meester, F.; Horiuchi, R.; Takahahi, T. The Role of Food Antioxidants, Benefits of Functional Foods, and Influence of Feeding Habits on the Health of the Older Person: An Overview. Antioxidants 2017, 6, 81. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.M.; Kavitha, K.; Dhanaraj, S.A. Role of Flavonoids in Human Nutrition as Health Promoting Natural Chemical—A Review. J. Appl. Pharm. 2014, 6, 228–234. [Google Scholar]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- Charoensin, S. Antioxidant and Anticancer Activities of Moringa Oleifera Leaves. J. Med. Plant Res. 2014, 8, 318–325. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Kannan, G.M.; Sharma, M.; Flora, S. Therapeutic Effects of Moringa oleifera on Arsenic-induced Toxicity in Rats. Environ. Toxicol. Pharmacol. 2005, 20, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Yadav, J.; Satish, K.S.; Lalit, S. Evaluation of Antidepressant Activity of Leaves Extract of Moringa oliefera by Using FST and TST Model on Swiss Albino Mice. World J. Pharm. Res. 2016, 5, 967–976. [Google Scholar] [CrossRef] [Green Version]
- Sathya, T.N.; Aadarsh, P.; Deepa, V.; Murthy, B.P. Moringa oleifera Lam. Leaves Prevent Cyclophosphamide-Induced Micronucleus and DNA Damage in Mice. Int. J. Phytomed. 2010, 2, 147–154. [Google Scholar] [CrossRef]
- Fakurazi, S.; Hairuszah, I.; Nanthini, U. Moringa oleifera Lam Prevents Acetaminophen Induced Liver Injury through Restoration of Glutathione Level. Food Chem. Toxicol. 2008, 46, 2611–2615. [Google Scholar] [CrossRef]
- Budda, S.; Butryee, C.; Tuntipopipat, S.; Rungsipipat, A.; Wangnaithum, S.; Lee, J.-S.; Kupradinun, P. Suppressive Effects of Moringa oleifera Lam Pod Against Mouse Colon Carcinogenesis Induced by Azoxymethane and Dextran Sodium Sulfate. Asian Pac. J. Cancer Prev. 2011, 12, 3221–3228. [Google Scholar]
- Yunusa, S.; Aliyu, M. Ethyl-Acetate and Aqueous Fractions of Moringa Oleifera Lam (Moringaceae) Leaf Extract Possess Antidepressant Activity in Mice. Afr. J. Pharm. Ther. 2018, 7, 1–6. [Google Scholar]
- Kaur, G.; Invally, M.; Sanzagiri, R.; Buttar, H.S. Evaluation of the Antidepressant Activity of Moringa oleifera Alone and in Combination with Fluoxetine. J. Ayurveda Integr. Med. 2015, 6, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Mishra, G.; Singh, P.; Verma, R.; Kumar, S.; Srivastav, S.; Jha, K.K.; Khosa, R.L. Traditional Uses, Phytochemistry and Pharmacological Properties of Moringa Oleifera Plant: An Overview. Der Pharm. Lett. 2011, 3, 141–164. [Google Scholar]
- Mbikay, M. Therapeutic Potential of Moringa oleifera Leaves in Chronic Hyperglycemia and Dyslipidemia: A Review. Front. Pharmacol. 2012, 3, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cajuday, L.A.; Glorina, L.P. Effects of Moringa oleifera Lam. (Moringaceae) on the Reproduction of Male Mice (Mus Musculus). J. Med. Plants Res. 2010, 4, 1115–1121. [Google Scholar] [CrossRef]
- Shazia, Q.; Mohammad, Z.H.; Rahman, T.; Shekhar, H.U. Correlation of Oxidative Stress with Serum Trace Element Levels and Antioxidant Enzyme Status in Beta Thalassemia Major Patients: A Review of the Literature. Anemia 2012, 2012, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the Total Phenolic, Flavonoid and Proline Contents in Burkina Fasan Honey, as well as their Radical Scavenging Activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Ali, M.; Yusof, Y.; Chin, N.L.; Ibrahim, M.; Basra, S. Drying Kinetics and Colour Analysis of Moringa Oleifera Leaves. Agric. Agric. Sci. Procedia 2014, 2, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Ertekin, C.; Yaldiz, O. Drying of Eggplant and Selection of a Suitable Thin Layer Drying Model. J. Food Eng. 2004, 63, 349–359. [Google Scholar] [CrossRef]
- Doymaz, I.; Pala, M. Hot-air Drying Characteristics of Red Pepper. J. Food Eng. 2002, 55, 331–335. [Google Scholar] [CrossRef]
- Panchariya, P.; Popovic, D.; Sharma, A. Thin-layer Modelling of Black Tea Drying Process. J. Food Eng. 2002, 52, 349–357. [Google Scholar] [CrossRef]
- Andriana, Y.; Xuan, T.D.; Quy, T.N.; Minh, T.N.; Van, T.M.; Viet, T.D. Antihyperuricemia, Antioxidant, and Antibacterial Activities of Tridax procumbens L. Foods 2019, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Van, T.M.; Xuan, T.D.; Minh, T.N.; Van Quan, N. Isolation and Purification of Potent Growth Inhibitors from Piper methysticum Root. Molecules 2018, 23, 1907. [Google Scholar] [CrossRef] [Green Version]
- Abarca-Vargas, R.; Peña, C.; Petricevich, V.L. Characterization of Chemical Compounds with Antioxidant and Cytotoxic Activities in Bougainvillea x buttiana Holttum and Standl, (var. Rose) Extracts. Antioxidants 2016, 5, 45. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, Y.S.; van der Maden, E.C.L.J. Opportunities for Development of the Moringa Sector in Bangladesh: Desk-Based Review of the Moringa Value Chains in Developing Countries and End-Markets in Europe; Centre for Development Innovation, Wageningen UR: Wageningen, The Netherlands, 2015; pp. 15–102. [Google Scholar]
- Otunola, G.; Arise, A.; Sola-Ojo, F.; Nmom, I.; Toye, A. Effect of Addition of Moringa Leaf By-Product (Leaf-Waste) on Proximate and Sensory Characteristics of Cookies. Agrosearch 2013, 13, 69. [Google Scholar] [CrossRef] [Green Version]
- Iwansyah, A.C.; Julianti, W.P.; Luthfiyantiq, R. Characterization of Nutrition, Antioxidant Properties, and Toxicity of Physalis angulata L. Plant Extract. Asian J. Pharm. Clin. Res. 2019, 12, 95–99. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis. ed. Association of Official Analytical Chemist; Association of Official Analytical Chemist: Arlington, VA, USA, 1990. [Google Scholar]
- Waterman, P.G.; Mole, S. Analysis of Phenolic Plant Metabolite; Blackwell Scientific: Oxford, UK, 1994. [Google Scholar]
- Adeoye, M.D.; Lawal, A.T.; Azeez, L.A.; Olayiwola, O.A. Effect of Solvent Type on the Yields and Mineral Compositions of the Leaf Extracts of Moringa Oleifera L. Afr. J. Pure Appl. Chem. 2014, 8, 134–146. [Google Scholar] [CrossRef]
- Kumoro, A.C.; Hasan, M.; Singh, H. Effects of Solvent Properties on the Soxhlet Extraction of Diterpenoid Lactones from Andrographis Paniculata Leaves. Science 2009, 35, 306–309. [Google Scholar] [CrossRef]
- Şevik, H.; Belkayalı, N.; Aktar, G. Change of Chlorophyll Amount in Some Landscape Plants. J. Biotechnol. Sci. 2014, 2, 10–16. [Google Scholar] [CrossRef]
- Triyono, A.; Luthfiyanti, R.; Rahman, T.; Pamungkas, N. The Effects of Solvents and Maltodekstrin on the Characteristics of Physalis angulata L. Leaf Extract. In Proceedings of the International Conference on Natural Products and Bioresourch Sciences IOP Conf. Series: Earth and Environmental Science, Tangerang, Indonesia, 23–24 October 2019; p. 012030. [Google Scholar]
- Wan, H.; Yu, C.; Han, Y.; Guo, X.; Luo, L.; Pan, H.; Zheng, T.; Wang, J.; Cheng, T.; Zhang, Q. Determination of Flavonoids and Carotenoids and their Contributions to Various Colors of Rose Cultivars (Rosa spp.). Front. Plant. Sci. 2019, 10, 123. [Google Scholar] [CrossRef] [Green Version]
- Mechlouch, R.F.; Ayadi, A.; Thabet, G.; Hannachi, E.O.E.H.; Elfalleh, W. Changes in the Physico-Chemical Properties of Palm Date Using Different Drying Methods. Univ. Bull. 2012, 1, 59–78. [Google Scholar]
- Mechlouch, R.F.; Elfalleh, W.; Ziadi, M.; Hannachi, H.; Chwikhi, M.; Ben Aoun, A.; Elakesh, I.; Cheour, F. Effect of Different Drying Methods on the Physico-Chemical Properties of Tomato Variety ‘Rio Grande’. Int. J. Food Eng. 2012, 8. [Google Scholar] [CrossRef]
- Shanmugavel, G.; Prabakaran, K.; George, B. Evaluation of Phytochemical Constituents of Moringa Oleifera (Lam.) Leaves Collected from Puducherry Region, South India. Int. J. Zool. Appl. Biosci. 2018, 3, 1–8. [Google Scholar] [CrossRef]
- Iqbal, S.; Bhanger, M. Effect of Season and Production Location on Antioxidant Activity of Moringa oleifera Leaves Grown in Pakistan. J. Food Compos. Anal. 2006, 19, 544–551. [Google Scholar] [CrossRef]
- Sreelatha, S.; Padma, P.R. Antioxidant Activity and Total Phenolic Content of Moringa oleifera Leaves in Two Stages of Maturity. Plant. Foods Hum. Nutr. 2009, 64, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Minh, T.N.; Tuyen, P.T.; Khang, D.T.; Quan, N.V.; Ha, P.T.T.; Quan, N.T.; Andriana, Y.; Fan, X.; Van, T.M.; Khanh, T.D.; et al. Potential Use of Plant Waste from the Moth Orchid (Phalaenopsis Sogo Yukidian “V3”) as an Antioxidant Source. Foods 2017, 6, 85. [Google Scholar] [CrossRef] [Green Version]
- Arslan, D.; Özcan, M.M. Study the Effect of Sun, Oven and Microwave Drying on Quality of Onion Slices. LWT Food Sci. Technol. 2010, 43, 1121–1127. [Google Scholar] [CrossRef]
- Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: An Overview. Int. J. Mol. Sci. 2015, 16, 12791–12835. [Google Scholar] [CrossRef]
- Bello, O.S.; Adegoke, K.A.; Akinyunni, O.O. Preparation and Characterization of a Novel Adsorbent from Moringa oleifera leaf. Appl. Water Sci. 2015, 7, 1295–1305. [Google Scholar] [CrossRef] [Green Version]
- Bekçi, Z.; Seki, Y.; Cavas, L. Removal of Malachite Green by Using an Invasive Marine Alga Caulerpa racemosa var. cylindracea. J. Hazard. Mater. 2009, 161, 1454–1460. [Google Scholar] [CrossRef]
Color Parameters | Tray Drying | Sun Drying |
---|---|---|
L* | 48.040 ± 0.210 a | 51.055 ± 0.118 b |
a* | −3.390 ± 0.040 a | −0.536 ± 0.086 b |
b* | 11.580 ± 0.150 a | 15.500 ± 0.080 b |
Hue | +0.003 ± 0.002 a | +0.002 ± 0.001 a |
Samples | pH | Total Solid (°Brix) | Titration Acid (%) |
---|---|---|---|
Sun drier (A1) | |||
Water extract (b1) | 5.95 ± 0.01 Ab | 0.77 ± 0.06 Ab | 0.0017 ± 0.0001 |
Ethanolic extract (b2) | 6.82 ± 0.01 Aa | 0.37 ± 0.06 Ac | 0.0029 ± 0.0001 |
Ethyl acetate extract (b3) | 4.91 ± 0.06 Ac | 22.33 ± 0.49 Aa | 0.0018 ± 0.0002 |
Tray drier (A2) | |||
Water extract (b1) | 5.62 ± 0.00 Bb | 1.40 ± 0.10 Bb | 0.0015 ± 0.0001 |
Ethanolic extract (b2) | 6.36 ± 0.02 Ba | 0.13 ± 0.06 Bc | 0.0018 ± 0.0002 |
Ethyl acetate extract (b3) | 4.98 ± 0.08 Bc | 21.63 ± 0.15 Ba | 0.0017 ± 0.0002 |
Samples | mg GAE/100 g | |
---|---|---|
Sun Drying (A1) | Tray Drying (A2) | |
Water extract (b1) | 9.64 ± 0.85 Ac | 9.19 ± 0.42 Bc |
Ethanolic extract (b2) | 11.15 ± 0.68 Ab | 12.38 ± 0.92 Bb |
Ethyl acetate extract (b3) | 11.87 ± 0.55 Aa | 13.63 ± 0.71 Ba |
Samples | mg QE/100 g | |
---|---|---|
Sun Drier (A1) | Tray Drier (A2) | |
Water extract (b1) | 3.63 ± 0.51 Ac | 2.53 ± 0.23 Bc |
Ethanolic extract (b2) | 20.09 ± 1.17 Ab | 9.85 ± 0.39 Bb |
Ethyl acetate extract (b3) | 27.75 ± 0.53 Aa | 31.22 ± 0.23 Ba |
Parameters | TPC | TFC | Antioxidant Activity (IC50) |
---|---|---|---|
TPC | 1 | 0.753 ** | −0.926 ** |
TFC | 1 | −0.744 ** | |
Antioxidant activity (IC50) | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwansyah, A.C.; Manh, T.D.; Andriana, Y.; Aiman bin Hessan, M.; Kormin, F.; Cuong, D.X.; Xuan Hoan, N.; Thai Ha, H.; Thi Yen, D.; Thinh, P.V.; et al. Effects of Various Drying Methods on Selected Physical and Antioxidant Properties of Extracts from Moringa oliefera Leaf Waste. Sustainability 2020, 12, 8586. https://doi.org/10.3390/su12208586
Iwansyah AC, Manh TD, Andriana Y, Aiman bin Hessan M, Kormin F, Cuong DX, Xuan Hoan N, Thai Ha H, Thi Yen D, Thinh PV, et al. Effects of Various Drying Methods on Selected Physical and Antioxidant Properties of Extracts from Moringa oliefera Leaf Waste. Sustainability. 2020; 12(20):8586. https://doi.org/10.3390/su12208586
Chicago/Turabian StyleIwansyah, Ade Chandra, Tran Dinh Manh, Yusuf Andriana, Muhammad Aiman bin Hessan, Faridah Kormin, Dang Xuan Cuong, Nguyen Xuan Hoan, Hoang Thai Ha, Dang Thi Yen, Pham Van Thinh, and et al. 2020. "Effects of Various Drying Methods on Selected Physical and Antioxidant Properties of Extracts from Moringa oliefera Leaf Waste" Sustainability 12, no. 20: 8586. https://doi.org/10.3390/su12208586
APA StyleIwansyah, A. C., Manh, T. D., Andriana, Y., Aiman bin Hessan, M., Kormin, F., Cuong, D. X., Xuan Hoan, N., Thai Ha, H., Thi Yen, D., Thinh, P. V., The Hai, L., & Ngoc Minh, T. (2020). Effects of Various Drying Methods on Selected Physical and Antioxidant Properties of Extracts from Moringa oliefera Leaf Waste. Sustainability, 12(20), 8586. https://doi.org/10.3390/su12208586