Microalgae from Biorefinery as Potential Protein Source for Siberian Sturgeon (A. baerii) Aquafeed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgae Biomass Production
2.2. Feed Formulation and Production
2.3. Fish, Feeding Trial and Sampling
2.4. Chemical Analysis
2.5. Microbiological Analysis
2.6. SOD, CAT Analysis
2.7. Analysis of Digestive Enzyme Activities
2.8. Electron Microscopy Study of the Fish Intestinal Mucosa
2.9. Statistical Analysis
3. Results and Discussion
3.1. Microalgae Biomass Production
3.2. Microalgae Biomass Chemical and Microbiological Characterization
3.3. Chemical Composition and Microbiological Characterization of Experimental Diets
3.4. Growth Performance, Nutrient Utilization and Fillet Chemical Composition
3.5. Liver Antioxidant SOD, CAT Activity
3.6. Digestive Enzyme Activity
3.7. Analysis of Intestinal Mucosa
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018. [Google Scholar]
- Tacon, A.G.J.; Metian, M. Feed matters: Satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquac. 2015, 23, 1–10. [Google Scholar] [CrossRef]
- Oliva-Teles, A.; Enes, P.; Peres, H. Replacing Fishmeal and Fish Oil in Industrial Aquafeeds for Carnivorous Fish. In Feed and Feeeding Proctice in Aquaculture; Davis, D.A., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 203–233. [Google Scholar] [CrossRef]
- Shah, M.R.; Lutzu, G.A.; Alam, A.; Sarker, P.; Chowdhury, M.A.K.; Parsaeimehr, A.; Liang, Y.; Daroch, M. Microalgae in aquafeeds for a sustainable aquaculture industry. Environ. Biol. Fishes 2017, 30, 197–213. [Google Scholar] [CrossRef]
- Hardy, R.W. Utilization of plant proteins in fish diets: Effect of global demand and supplies of fishmeal. Aquac. Res. 2010, 41, 770–776. [Google Scholar] [CrossRef]
- Camacho-Rodríguez, J.; Macías-Sánchez, M.D.; Cerón-García, M.C.; Alarcón, F.J.; Molina-Grima, E. Microalgae as a potential ingredient for partial fish meal replacement in aquafeeds: Nutrient stability under different storage conditions. J. Appl. Phycol. 2017, 30, 1049–1059. [Google Scholar] [CrossRef]
- Dineshbabu, G.; Goswamia, G.; Kumara, R.; Sinhala, A.; Dasa, D. Microalgae-nutritious, sustainable aqua and animal feed source. J. Funct. Foods 2019, 62, 103545. [Google Scholar] [CrossRef]
- Becker, E. Micro-algae as a source of protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Vizcaíno, A.J.; López, G.; Sáez, M.I.; Jiménez, J.A.; Barros, A.; Hidalgo, L.; Camacho-Rodríguez, J.; Martínez, T.F.; Cerón-García, M.C.; Alarcón, F.J. Effects of the microalga Scenedesmus almeriensis as fishmeal alternative in diets for gilthead sea bream, Sparus aurata, juveniles. Aquaculture 2014, 431, 34–43. [Google Scholar] [CrossRef]
- Vizcaíno, A.J.; Rodiles, A.; López, G.; Sáez, M.I.; Herrera, M.; Hachero, I.; Martínez, T.F.; Cerón-García, M.C.; Alarcón, F.J. Growth performance, body composition, and digestive functionality of Senegalese sole (Solea senegalensis Kaup, 1858) juveniles fed diets including microalgae freeze-dried biomass. Fish Physiol. Biochem. 2018, 44, 661–677. [Google Scholar] [CrossRef]
- Cardinaletti, G.; Messina, M.; Bruno, M.; Tulli, F.; Poli, B.M.; Giorgi, G.; Chini-Zittelli, G.; Tredici, M.; Tibaldi, E. Effects of graded levels of a blend of Tisochrysis lutea and Tetraselmis suecica dried biomass on growth and muscle tissue composition of European sea bass (Dicentrarchus labrax) fed diets low in fish meal and oil. Aquaculture 2018, 485, 173–182. [Google Scholar] [CrossRef]
- Osundeko, O.; Ansolia, P.; Gupta, S.K.; Bag, P.; Bajhaiya, A.K. Promises and Challenges of Growing Microalgae in Wastewater. In Water Conservation, Recycling and Reuse: Issues and Challenges; Springer: Singapore, 2019; pp. 29–53. [Google Scholar] [CrossRef]
- Pizzera, A.; Scaglione, D.; Bellucci, M.; Marazzi, F.; Mezzanotte, V.; Parati, K.; Ficara, E. Digestate treatment with algae-bacteria consortia: A field pilot-scale experimentation in a sub-optimal climate area. Bioresour. Technol. 2019. [Google Scholar] [CrossRef]
- Palmegiano, G.B.; Gai, F.; Daprà, F.; Gasco, L.; Pazzaglia, M.; Peiretti, P.G. Effects of Spirulina and plant oil on the growth and lipid traits of white sturgeon (Acipenser transmontanus) fingerlings. Aquac. Res. 2008, 39, 587–595. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Arlington, VA, USA, 1996. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.H.A. A simple method for the isolation and purification of total lipid from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Christie, W.W. Preparation of Derivatives of Fatty Acids. In Lipid Analysis. Isolation, Separation, Identification and Structural Analysis of Lipids, 3rd ed.; Christie, W.W., Ed.; The Oily Press: Bridgwater, UK, 2003; pp. 205–215. ISBN 0-9531949-5-7. [Google Scholar]
- Graser, T.A.; Godel, H.G.; Albers, S.; Földi, P.; Fürst, P. An ultra rapid and sensitive high-performance liquid chromatographic method for determination of tissue and plasma free amino acids. Anal. Biochem. 1985, 151, 142–152. [Google Scholar] [CrossRef]
- Brückner, H.; Westhauser, T. Crhomatographic determination of D- and L- amino acids in plants. Amino Acids 2003, 24, 43–55. [Google Scholar] [CrossRef]
- Brückner, H.; Hanger, M.; Godel, H. Liquid crhomatographic determination of D- and L- amino acids by derivatization with o-phthaldiadehyde and N-isobutyryl-L-cysteine Application with reference to the analysis of peptidic antibiotics, toxins, drugs and pharmaceutically used amino acids. J. Chromatogr. 1995, 711, 201–215. [Google Scholar] [CrossRef]
- ISO 4833-1. Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique; International Organization for Standardization: Geneva, Switzerland, 2013. [Google Scholar]
- ISO 21528-2. Microbiology of Food and Animal Feeding Stuffs—Horizontal Methods for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Method; International Organization for Standardization: Geneva, Switzerland, 2004. [Google Scholar]
- ISO 16649-2. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Beta-Glucuronidase-Positive Escherichia coli—Part 2: Colony-Count Technique at 44 °C Using 5-bromo-4-chloro-3-Indolyl Beta-D-Glucuronide; International Organization for Standardization: Geneva, Switzerland, 2001. [Google Scholar]
- ISO 7937. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Clostridium perfringens—Colony-Count Technique; International Organization for Standardization: Geneva, Switzerland, 2004. [Google Scholar]
- ISO 14189. Water quality—Enumeration of Clostridium perfringens—Method Using Membrane Filtration; International Organization for Standardization: Geneva, Switzerland, 2013. [Google Scholar]
- ISO 6579-1. Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp.; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- Alarcón, F.J.; Díaz, M.; Moyano, F.J.; Abellán, E. Characterization and functional properties of digestive proteases in two sparids gilthead sea bream (Sparus aurata) and common dentex (Dentex dentex). Fish. Physiol. Biochem. 1998, 19, 257–267. [Google Scholar] [CrossRef]
- Erlanger, B.; Kokowsky, N.; Cohen, W. The preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophys. 1961, 95, 271–278. [Google Scholar] [CrossRef]
- DelMar, E.G.; Largman, C.; Broderick, J.W.; Geokas, M.C. A sensitive new substrate for chymotrypsin. Anal. Biochem. 1979, 99, 316–320. [Google Scholar] [CrossRef]
- Pfeiderer, G. Particle-bound aminopeptidase from pig kidney. Methods Enzymol. 1970, 19, 514–521. [Google Scholar] [CrossRef]
- Bergmeyer, H.V. Phosphatases Methods of Enzymatic Analysis; Academic Press: New York, NY, USA, 1974; Volume 2. [Google Scholar]
- Hu, C.H.; Xu, Y.; Xia, M.S.; Xiong, L.; Xu, Z.R. Effects of Cu2+—Exchanged montmorillonite on growth performance, microbial ecology and intestinalmorphology of Nile tilapia (Oreochromis niloticus). Aquaculture 2007, 270, 200–206. [Google Scholar] [CrossRef]
- Ledda, C.; Romero Villegas, G.I.; Adani, F.; Acién Fernández, F.G.; Molina Grima, E. Utilization of centrate from wastewater treatment for the outdoor production of Nannochloropsis gaditana biomass at pilot-scale. Algal Res. 2015, 12, 17–25. [Google Scholar] [CrossRef]
- Xia, A.; Murphy, J.D. Microalgal cultivation in treating liquid digestate from biogas systems. Trends Biotechnol. 2016, 34. [Google Scholar] [CrossRef] [PubMed]
- Enzing, C.; Ploeg, M.; Barbosa, M.; Sijtsma, L. Microalgae-Based Products for the Food and Feed Sector: An Outlook for Europe. In JRC Scientific and Policy Report 2014. EUR—Scientific and Technical Research Series; Vigani, M., Parisi, C., Cerezo, E.R., Eds.; Publications Office of the European Union: Luxembourg, 2014; ISBN 978-92-79-34037-6. [Google Scholar]
- Ryzinska-Paier, G.; Sommer, R.; Haider, J.M.; Knetsch, S.; Frick, C.; Kirschner, A.K.T.; Farnleitner, A.H. Acid phosphatase test proves superior to standard phenotypic identification procedure for Clostridium perfringens strains isolated from water. J. Microbiol. Methods 2011, 87, 189–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA. Scientific Opinion of the Panel on Biological Hazards on Microbiological Risk Assessment in feedingstuffs for food-producing animals. EFSA J. 2008, 720, 1–84. [Google Scholar]
- Yun, B.; Xue, M.; Wang, J.; Sheng, H.; Zheng, Y.; Wu, X.; Li, J. Fishmeal can be totally replaced by plant protein blend at two protein levels in diets of juvenile Siberian sturgeon, Acipenser baerii Brandt. Aquac. Nutr. 2014, 20, 69–78. [Google Scholar] [CrossRef]
- Caimi, C.; Renna, M.; Lussiana, C.; Bonaldo, A.; Gariglio, M.; Meneguz, M.; Dabbou, S.; Schiavone, A.; Gai, F.; Elia, A.C.; et al. First insights on Black Soldier Fly (Hermetia illucens L.) larvae meal dietary administration in Siberian sturgeon (Acipenser baerii Brandt) juveniles. Aquaculture 2020, 515, 734539. [Google Scholar] [CrossRef]
- Martınez-Alvarez, R.M.; Morales, A.E.; Sanz, A. Antioxidant defenses in fish: Biotic and abiotic factors. Rev. Fish Biol. Fish. 2005, 15, 75–88. [Google Scholar] [CrossRef]
- Morozov, A.A.; Chuiko, G.M.; Yurchenko, V.V. Annual variations in hepatic antioxidant defenses and lipid peroxidation in a temperate fish, common bream Abramis brama (L.). Int. Aquat. Res. 2017, 9, 249–257. [Google Scholar] [CrossRef]
- Karadag, H.; Fırat, O.; Fırat, O. Use of Oxidative Stress Biomarkers in Cyprinus carpio L. for the Evaluation of Water Pollution in Ataturk Dam Lake (Adiyaman, Turkey). Bull. Environ. Contam. Toxicol. 2014, 92, 289–293. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, A. Catalase Activity in Different Tissues of Fresh Water Teleost Heteropneustes Fossilis on Exposure to Cadimum. IOSR J. Environ. Sci. Toxicol. Food Technol. 2015, 1, 6–9. [Google Scholar]
- Otto, D.M.E.; Moon, T.W. Endogenous antioxidant systems of two teleost fish, the rainbow trout and the black bullhead, and the effect of age. Fish Physiol. Biochem. 1996, 15, 349–358. [Google Scholar] [CrossRef]
- Nayak, S.B.; Jena, B.S.; Patnaik, B.K. Effects of age and manganese (II) chloride on peroxidase activity of brain and liver of the teleost, Channa punctatus. Exp. Gerontol. 1999, 34, 365–374. [Google Scholar] [CrossRef]
- Rueda-Jasso, R.; Conceicao, L.E.C.; Dias, J.; De Coen, W.; Gomes, E.; Rees, J.F.; Soares, F.; Dinis, M.T.; Sorgeloos, P. Effect of dietary non-protein energy levels on condition and oxidative status of Senegalese sole (Solea senegalensis) juveniles. Aquaculture 2004, 231, 417–433. [Google Scholar] [CrossRef]
- Filho, D.W.; Boveris, A. Antioxidant defenses in marine fish-II. Elasmobranchs. Comp. Biochem. Physiol. 1993, 106C, 415–418. [Google Scholar]
- Sargent, J.R.; Bell, J.G.; Bell, M.V.; Henderson, R.J.; Tocher, D.R. The Metabolism of Phospholipids and Polyunsaturated Fatty Acids in Fish. In Aquaculture: Fundamental and Applied Research, Coastal and Estuarine Studies; Lahloy, B., Vitello, P., Eds.; American Geophysical Union: Washington, DC, USA, 1999; Volume 43, pp. 103–124. [Google Scholar]
- Cahu, C.; Zambonino-Infante, J.L. Substitution of live food by formulated diets in marine fish larvae. Aquaculture 2001, 200, 161–180. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.C.P.; Nicoli, J.R.; Zambonino-Infante, J.L.; Le Gall, M.; Kaushik, S.; Gatesoupe, F.J. Influence of partial substitution of dietary fish meal on the activity of digestive enzymes in the intestinal brush border membrane of gilthead sea bream, ”Sparus aurata” and goldfish “Carassius auratus”. Aquaculture 2010, 306, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Cerezuela, R.; Fumanal, M.; Tapia-Paniagua, S.T.; Meseguer, J.; Moriñigo, M.A.; Esteban, M.A. Histological alterations and microbial ecology of the intestine in gilthead seabream (Sparus aurata L.) fed dietary probiotics and microalgae. Cell Tissue Res. 2012, 350, 477–489. [Google Scholar] [CrossRef]
- Omnes, M.H.; Silva, F.C.P.; Moriceau, J.; Aguirre, P.; Kaushik, S.; Gatesoupe, F.J. Influence of lupin and rapeseed meals on the integrity of digestive tract and organs in gilthead seabream (Sparus aurata L.) and goldfish (Carassius auratus L.) juveniles. Aquac. Nutr. 2015, 21, 223–233. [Google Scholar] [CrossRef] [Green Version]
Ingredients (g kg−1 Dry Matter, DM) | CT | SC 10 |
---|---|---|
Fish meal 1 | 274.0 | 191.0 |
Soybean protein concentrate 2 | 250.0 | 250.0 |
Gluten meal 3 | 150.0 | 150.0 |
Dried Scenedesmus-Chroococcus | 0 | 100.0 |
Attractant premix 4 | 100.0 | 100.0 |
Fish solubles CPSP 90 5 | 50.0 | 50.0 |
Fish oil | 50.0 | 53.4 |
Wheat meal 6 | 40.5 | 19.5 |
Soybean oil | 27.0 | 27.6 |
Soybean lecithin 7 | 10.0 | 10.0 |
Vitamin and mineral premix 8 | 10.0 | 10.0 |
Guar gum | 10.0 | 10.0 |
Alginate | 10.0 | 10.0 |
Choline chloride 7 | 5.0 | 5.0 |
Betaine | 5.0 | 5.0 |
Lysine | 5.0 | 5.0 |
Methionine | 2.5 | 2.5 |
Stay C Roche 0.2% | 1.0 | 1.0 |
Proximate Composition (g/100 g Microalgae) | Scenedesmus–Chroococcus Blend |
---|---|
Water | 10.1 |
Crude protein | 47.4 |
Total lipids | 9.6 |
Carbohydrates | 9.7 |
Ash | 6.8 |
Essential AA (g/100 g Microalgae) | Scenedesmus–Chroococcus Blend |
Arginine | 6.00 |
Histidine | 2.18 |
Isoleucine | 2.27 |
Leucine | 1.55 |
Lysine | 3.42 |
Methionine | 1.46 |
Phenylalanine | 1.28 |
Tyrosine | 1.27 |
Threonine | 2.23 |
Valine | 1.17 |
Non Essential AA (g/100 g Microalgae) | Scenedesmus–Chroococcus Blend |
Alanine | 0.76 |
Aspartic acid | 8.34 |
Glutamic acid | 5.60 |
Glycine | 0.88 |
Serine | 2.66 |
Fatty Acid Composition (mg/100 g Fatty Acid) | Scenedesmus–Chroococcus Blend |
14:0 | 0.69 |
16:0 | 21.59 |
16:1n−7 | 1.62 |
17:0 | 3.96 |
16:2n-4 | 0.48 |
18:0 | 13.15 |
18:1n-9 | 10.29 |
18:1n-7 | 1.20 |
18:2n-6 | 16.61 |
18:3n-3 | 25.82 |
18:4n-3 | 4.59 |
SFA | 39.38 |
MUFA | 13.11 |
PUFA | 47.50 |
n-3 | 30.41 |
n-6 | 16.61 |
n-3/n-6 | 1.83 |
Indicator Parameters | Scenedesmus-Chroococcus Blend |
---|---|
Total viable aerobic count (log CFU g−1) | 5.98 ± 0.03 |
Enterobacteriaceae (log CFU g−1) | 2.73 ± 0.07 |
E. coli (log CFU g−1) | 2.49 ± 0.20 |
Salmonella spp. (in 25 g) | absent |
Sulfite-reducing Clostridia spores (log CFU g−1) | 4.03 ± 0.02 * |
Proximate Composition (g/100 g Feed on Dry Basis) | CT | SC 10 |
---|---|---|
Moisture | 11.1 | 10.9 |
Crude protein | 51.5 | 51.6 |
Crude lipid | 14.0 | 14.3 |
Ash | 7.6 | 7.6 |
Fatty Acid Composition (g/100 Fatty Acid) | CT | SC 10 |
14:0 | 4.42 | 4.46 |
15:0 | 0.38 | 0.40 |
16:0 | 17.08 | 17.92 |
16:1n−7 | 3.83 | 3.88 |
17:0 | 0.28 | 0.40 |
16:2n-4 | 0.40 | 0.38 |
16:3n-4 | 0.39 | 0.38 |
18:0 | 3.19 | 3.22 |
18:1n-9 | 15.97 | 15.99 |
18:1n-7 | 2.41 | 2.39 |
18:2n-6, LOA | 20.42 | 20.92 |
18:3n-3 | 2.39 | 2.90 |
20:0 | 0.24 | 0.26 |
18:4n-3 | 1.73 | 1.82 |
20:1n-11 | 0.33 | 0.30 |
20:1n-9 | 3.52 | 3.09 |
20:4n-6, ARA | 0.54 | 0.52 |
22:1n-11 | 4.71 | 4.25 |
22:1n-9 | 0.40 | 0.35 |
20:5n-3, EPA | 7.42 | 6.97 |
24:1 | 0.48 | 0.45 |
22:5n-3 | 0.75 | 0.75 |
22:6n-3, DHA | 8.74 | 7.97 |
SFA | 25.59 | 26.66 |
MUFA | 31.63 | 30.71 |
PUFA | 42.78 | 42.63 |
n-3 | 21.04 | 20.42 |
n-6 | 20.96 | 21.45 |
n-3/n-6 | 1.00 | 0.95 |
Indicator Parameters | CT | SC 10 |
---|---|---|
Total viable aerobic count (log CFU g−1) | 3.69 ± 0.21 | 4.36 ± 0.17 |
Enterobacteriaceae (log CFU g−1) | <2.00 | <2.00 |
E. coli (log CFU g−1) | <2.00 | <2.00 |
Salmonella spp. (in 25 g) | absent | absent |
Sulfite-reducing Clostridia spores (log CFU g−1) | <2.00 | 2.83 ± 0.03 * |
Growth Parameters | CT | SC 10 |
---|---|---|
IBW (g) | 12.8 ± 0.2 | 13.0 ± 0.2 |
FBW (g) | 44.2 ± 1.7 | 43.5 ± 2 |
FI 1 (g) | 346.2 ± 3.7 | 341.5 ± 1.5 |
SGR 2 | 3.1 ± 0.05 | 3.0 ± 0.08 |
FCR 3 | 0.69 ± 0.02 | 0.70 ± 0.05 |
Survival (%) | 100 ± 0.0 | 97.9 ± 4.4 |
Somatic Indices | CT | SC 10 |
Total length (cm) | 25.2 ± 1.8 | 23.9 ± 1.9 |
Whole body weight (g) | 38.6 ± 9.35 | 39.8 ± 8.6 |
K-factor | 0.30 ± 0.02 | 0.29 ± 0.03 |
Proximate Composition (g/100 g Muscle on Wet Basis) | CT | SC 10 | |
---|---|---|---|
Moisture | 79.05 ± 1.73 | 79.34 ± 0.26 | |
Total protein | 16.55 ± 1.10 | 16.63± 0.62 | |
Total lipids | 3.48 ± 1.06 | 3.13 ± 0.45 | |
Ash | 0.92 ± 0.11 | 0.90 ± 0.09 | |
Fatty Acid Composition (g/100 g Fatty Acids) | p | ||
14:0 | 3.37 ± 0.19 | 3.47 ± 0.11 | |
16:0 | 18.96 ± 0.28 | 18.08 ± 0.07 | * |
16:1n−7 | 3.67 ± 0.17 | 4.00 ± 0.19 | |
18:0 | 3.35 ± 0.24 | 3.09 ± 0.29 | |
18:1n-9 cis | 19.73 ± 0.37 | 19.99 ± 0.57 | |
18:1n−7 | 3.24 ± 0.10 | 3.23 ± 0.10 | |
18:2n-6 cis 9.12 | 17.04 ± 0.27 | 17.11 ± 0.37 | |
18:3n-6 | 0.39 ± 0.10 | 0.66 ± 0.10 | * |
18:3n-3 | 1.64 ± 0.09 | 1.96 ± 0.09 | * |
18:4n-3 | 0.90 ± 0.09 | 1.02 ± 0.09 | |
20:1n-11 | 1.18 ± 0.02 | 0.96 ± 0.02 | |
20:1n-9 | 3.53 ± 0.02 | 3.21 ± 0.08 | * |
20:3n-6 | 0.33 ± 0.02 | 0.38 ± 0.03 | |
20:4n-6 | 0.92 ± 0.11 | 0.95 ± 0.08 | |
22:1n-11 | 2.72 ± 0.14 | 2.39 ± 0.16 | ** |
20:5n-3 | 5.40 ± 0.07 | 5.57 ± 0.07 | * |
22:5n-3 | 1.66 ± 0.14 | 1.84 ± 0.07 | |
22:6n-3 | 11.99 ± 0.92 | 12.10 ± 0.53 | |
SFA | 25.68 ± 0.22 | 24.63 ± 0.17 | ** |
MUFA | 34.06 ± 0.54 | 33.78 ± 0.49 | |
PUFA | 40.26 ± 0.74 | 41.58 ± 0.36 | |
n-3 | 21.59 ± 0.95 | 22.49 ± 0.48 | |
n-6 | 18.67 ± 0.24 | 19.10 ± 0.34 | |
n-3/n-6 | 1.16 ± 0.06 | 1.18 ± 0.04 |
Diet | CAT Activity (nmol min−1 100 mg−1) * | SOD Activity (U 100 mg−1) ** |
---|---|---|
CT | 3.63 ± 0.32 | 0.188 ± 0.18 |
SC 10 | 4.10 ± 0.58 | 0.154 ± 0.040 |
Intestine Tract | Diet | Total Alkaline Protease | Trypsin | Chymotrypsin | Leucine Aminopeptidase | Alkaline Phosphatase |
---|---|---|---|---|---|---|
PI | CT | 618.8 ± 27.9 a | 1.66 ± 0.31 | 8.31 ± 0.64 | 0.16 ± 0.01 b | 15.8 ± 1.2 |
PI | SC 10 | 713.9 ± 55.3 b | 1.90 ± 0.04 | 8.21 ± 0.63 | 0.10 ± 0.01 a | 15.1 ± 1.7 |
DI | CT | 673.8 ± 41.9 a | 2.17 ± 0.20 | 9.85 ± 0.04 b | 0.27 ± 0.04 b | 13.35 ± 1.67 |
DI | SC 10 | 771.5 ± 25.7 b | 2.01 ± 0.38 | 7.18 ± 0.26 a | 0.11 ± 0.02 a | 11.84 ± 1.11 |
Intestine Tract | Diet | Microvilli Length (µm) | Microvilli Diameter (µm) | Apical Absorption Surface per µm2 |
---|---|---|---|---|
PI | CT | 2.40 ± 0.02 b | 0.10 ± 0.02 | 65.42 ± 0.67 |
PI | SC 10 | 2.32 ± 0.02 a | 0.12 ± 0.02 | 66.09 ± 0.50 |
DI | CT | 3.48 ± 0.03 b | 0.11 ± 0.01 | 65.87 ± 0.63 a |
DI | SC 10 | 2.97 ± 0.02 a | 0.12 ± 0.02 | 74.42 ± 0.52 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bongiorno, T.; Foglio, L.; Proietti, L.; Vasconi, M.; Lopez, A.; Pizzera, A.; Carminati, D.; Tava, A.; Vizcaíno, A.J.; Alarcón, F.J.; et al. Microalgae from Biorefinery as Potential Protein Source for Siberian Sturgeon (A. baerii) Aquafeed. Sustainability 2020, 12, 8779. https://doi.org/10.3390/su12218779
Bongiorno T, Foglio L, Proietti L, Vasconi M, Lopez A, Pizzera A, Carminati D, Tava A, Vizcaíno AJ, Alarcón FJ, et al. Microalgae from Biorefinery as Potential Protein Source for Siberian Sturgeon (A. baerii) Aquafeed. Sustainability. 2020; 12(21):8779. https://doi.org/10.3390/su12218779
Chicago/Turabian StyleBongiorno, Tiziana, Luciano Foglio, Lorenzo Proietti, Mauro Vasconi, Annalaura Lopez, Andrea Pizzera, Domenico Carminati, Aldo Tava, Antonio Jesús Vizcaíno, Francisco Javier Alarcón, and et al. 2020. "Microalgae from Biorefinery as Potential Protein Source for Siberian Sturgeon (A. baerii) Aquafeed" Sustainability 12, no. 21: 8779. https://doi.org/10.3390/su12218779
APA StyleBongiorno, T., Foglio, L., Proietti, L., Vasconi, M., Lopez, A., Pizzera, A., Carminati, D., Tava, A., Vizcaíno, A. J., Alarcón, F. J., Ficara, E., & Parati, K. (2020). Microalgae from Biorefinery as Potential Protein Source for Siberian Sturgeon (A. baerii) Aquafeed. Sustainability, 12(21), 8779. https://doi.org/10.3390/su12218779