Aquatic Macroinvertebrate Indicators in the Zawgyi Irrigation Channels and a River in the Central Dry Zone of Myanmar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Physico-Chemical Water Quality Variables
2.3. Macroinvertebrate Sampling
2.4. Ecological Water Quality Index
2.5. Statistical Analysis
3. Results
3.1. Physico-Chemical Water Quality
3.2. Qualitative Comparisons of Taxa Richness, Abundance and Taxa Composition
3.3. Comparisons of Macroinvertebrate Communities at Morpho-Species Level between the River and Channels
3.4. Comparison of Macroinvertebrate Communities at the Morpho-Species Level in the Irrigation Channels
3.5. Ecological Water Quality Condition of the River and Channels
4. Discussion
4.1. Objectives
4.2. Water Quality
4.3. Comparison of Macroinvertebrates Community between River and Channels
4.4. Aquatic Ecosystem of Irrigation Channels
4.5. Ecological Water Quality Index
4.6. Challenges and Citizen Science Potential
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mabidi, A.; Bird, M.S.; Perissinotto, R. Distribution and diversity of aquatic macroinvertebrate assemblages in a semi-arid region earmarked for shale gas exploration (Eastern Cape Karoo, South Africa). PLoS ONE 2017, 12, e0178559. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.; Whitfield, M.; Biggs, J.; Bray, S.; Fox, G.; Nicolet, P.; Sear, D. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv. 2004, 115, 329–341. [Google Scholar] [CrossRef]
- Davies, B.; Biggs, J.; Williams, P.; Lee, J.; Thompson, S. A comparison of the catchment sizes of rivers, streams, ponds, ditches and lakes: Implications for protecting aquatic biodiversity in an agricultural landscape. In Pond Conservation in Europe; Springer: Dordrecht, The Netherlands, 2007; pp. 7–17. [Google Scholar]
- Simon, T.N.; Travis, J. The contribution of man-made ditches to the regional stream biodiversity of the new river watershed in the Florida panhandle. Hydrobiologia 2011, 661, 163–177. [Google Scholar] [CrossRef]
- Davies, B.; Biggs, J.; Williams, P.; Whitfield, M.; Nicolet, P.; Sear, D.; Bray, S.; Maund, S. Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agric. Ecosyst. Environ. 2008, 125, 1–8. [Google Scholar] [CrossRef]
- Biggs, J.; Von Fumetti, S.; Kelly-Quinn, M. The importance of small waterbodies for biodiversity and ecosystem services: Implications for policy makers. Hydrobiologia 2017, 793, 3–39. [Google Scholar] [CrossRef]
- Martinsen, K.T.; Andersen, M.R.; Sand-Jensen, K. Water temperature dynamics and the prevalence of daytime stratification in small temperate shallow lakes. Hydrobiologia 2019, 826, 247–262. [Google Scholar] [CrossRef]
- Buss, D.F.; Carlisle, D.M.; Chon, T.S.; Culp, J.; Harding, J.S.; Keizer-Vlek, H.E.; Robinson, W.A.; Strachan, S.; Thirion, C.; Hughes, R.M. Stream biomonitoring using macroinvertebrates around the globe: A comparison of large-scale programs. Environ. Monit. Assess. 2015, 187, 4132. [Google Scholar] [CrossRef]
- Rabení, C.F.; Doisy, K.E.; Zweig, L.D. Stream invertebrate community functional responses to deposited sediment. Aquat. Sci. 2005, 67, 395–402. [Google Scholar] [CrossRef]
- Prommi, T.; Thamsenanupap, P. Diversity and Structure of Trichoptera Communities and Water Quality Variables in Streams, Northern Thailand. World Acad. Sci. Eng. Technol. Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng. 2015, 9, 1065–1072. [Google Scholar]
- Hill, M.J.; Chadd, R.P.; Morris, N.; Swaine, J.; Wood, P.J. Aquatic macroinvertebrate biodiversity associated with artificial agricultural drainage ditches. Hydrobiologia 2016, 776, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Leslie, A.W.; Lamp, W.O. Taxonomic and functional group composition of macroinvertebrate assemblages in agricultural drainage ditches. Hydrobiologia 2017, 787, 99–110. [Google Scholar] [CrossRef]
- Leslie, A.W.; Smith, R.F.; Ruppert, D.E.; Bejleri, K.; Mcgrath, J.M.; Needelman, B.A.; Lamp, W.O. Environmental factors structuring benthic macroinvertebrate communities of agricultural ditches in Maryland. Environ. Entomol. 2012, 41, 802–812. [Google Scholar] [CrossRef] [Green Version]
- Barker, R. Evolution of irrigation in South and Southeast Asia. 2004, Volume 5. Available online: https://http://www.iwmi.cgiar.org/assessment/files/pdf/publications/ResearchReports/CARR5.pdf (accessed on 15 October 2020).
- Taft, L.; Evers, M. A review of current and possible future human–water dynamics in Myanmar’s river basins. Hydrol. Earth Syst. Sci. 2016, 20, 4913–4928. [Google Scholar] [CrossRef] [Green Version]
- Frenken, K. Irrigation in Southern and Eastern Asia in figures: AQUASTAT Survey-2011. Water Rep. 2012, 37. [Google Scholar]
- Lazarus, K.M.; Cardinale, P.; Corbett, M.; Lin, N.S.; Noeske, T.K.H. Strategic Environmental Assessment of the Hydropower Sector in Myanmar: Baseline Assessment Report: Introduction (English). 2019. Available online: https://www.burmalibrary.org/en/strategic-environmental-assessment-of-the-hydropower-sector-in-myanmar-vol-2-baseline-assessment (accessed on 7 October 2020).
- Kartikasari, D. Application of water quality and ecology indices of benthic macroinvertebrate to evaluate water quality of tertiary irrigation in Malang district. J. Trop. Life Sci. 2013, 3, 193–201. [Google Scholar] [CrossRef]
- Armitage, P.D.; Szoszkiewicz, K.; Blackburn, J.H.; Nesbitt, I. Ditch communities: A major contributor to floodplain biodiversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 2003, 13, 165–185. [Google Scholar] [CrossRef]
- Bacey, J.; Spurlock, F. Biological assessment of urban and agricultural streams in the California Central Valley. Environ. Monit. Assess. 2007, 130, 483–493. [Google Scholar] [CrossRef]
- Fu, L.; Jiang, Y.; Ding, J.; Liu, Q.; Peng, Q.Z.; Kang, M.Y. Impacts of land use and environmental factors on macroinvertebrate functional feeding groups in the Dongjiang River basin, southeast China. J. Freshw. Ecol. 2016, 31, 21–35. [Google Scholar] [CrossRef] [Green Version]
- Dudgeon, D. Tropical Asian Streams: Zoobenthos, Ecology and Conservation; Hong Kong University Press: Hong Kong, China, 1999; Volume 1. [Google Scholar]
- Ko, N.T.; Suter, P.; Conallin, J.; Rutten, M.; Bogaard, T. The Urgent Need for River Health Biomonitoring Tools for Large Tropical Rivers in Developing Countries: Preliminary Development of a River Health Monitoring Tool for Myanmar Rivers. Water 2020, 12, 1408. [Google Scholar] [CrossRef]
- Department of Population, Myanmar. The 2014 Myanmar Population and Housing Census; The Union Report; Department of Population: Yangon, Myanmar, 2015.
- Narumon, S.; Boonsoong, B. Identification of Freshwater Invertebrates of the Mekong River and Tributaries; Faculty of Science, Appllied Taxonomic Research Center Khon Kean University: Khon Kean, Thailand, 2004. [Google Scholar]
- Merritt, R.W.; Cummins, K.W. An Introduction to the Aquatic Insects of North America; Kendall Hunt: Dubuque, Iowa, 1996. [Google Scholar]
- Clarke, K.R.; Clarke, K.; Gorley, K.; Clarke, K.; Gorley, R. PRIMER v6: User Manual/Tutorial 2006. Available online: https://www.scienceopen.com/document?vid=87ec9d6d-cae1-4f49-9204-0fbf723dcdbc (accessed on 7 October 2020).
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations Rome: Rome, Italy, 1985; Volume 29.
- Kefford, B.J. The relationship between electrical conductivity and selected macroinvertebrate communities in four river systems of south-west Victoria, Australia. Int. J. Salt Lake Res. 1998, 7, 153–170. [Google Scholar] [CrossRef]
- van Hamel, A. Participatory Monitoring Myanmar: A Research on the Motivation of People in Myanmar to Participate in Participatory Monitoring by Making Use of Q methodology. Bachelor’s Thesis, Delft University of Technology, Delft, The Netherlands, 2018. [Google Scholar]
- Uwadiae, R.E. Macroinvertebrates Functional Feeding Groups as Indices of Biological Assessment in a Tropical Aquatic Ecosystem: Implications for Ecosystem Functions. 2010. Available online: http://www.sciencepub.net/newyork/ny0308/02_2609ny0308_6_15.pdf (accessed on 7 October 2020).
- Hakenkamp, C.C.; Palmer, M.A. Introduced bivalves in freshwater ecosystems: The impact of Corbicula on organic matter dynamics in a sandy stream. Oecologia 1999, 119, 445–451. [Google Scholar] [CrossRef]
- Gooderham, J.; Tsyrlin, E. The Waterbug Book: A Guide to the Freshwater Macroinvertebrates of Temperate Australia; CSIRO Publishing: Melbourne, Australia, 2002. [Google Scholar]
Order | Family | Species | FFG | ASPT | Irrigation Channels | Zawgyi River | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C-1 | C-2 | C-3 | C-4 | C-5 | C-6 | R-1 | R-2 | R-II-1 | R-II-2 | |||||
Mesogastropoda | Bithynidae | Bithynidae sp. 1 | Grazer | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
Thiaridae | Thiaridae sp. 1 | Grazer | 6 | 16 | 0 | 11 | 11 | 0 | 22 | 0 | 7 | 3 | 5 | |
Bivalvia | Corbiculidae | Corbicula sp. 1 | Filterer | 3 | 7 | 0 | 0 | 21 | 46 | 0 | 33 | 2 | 1 | 0 |
Margaritiferidae | Margaritiferidae sp. 1 | Filterer | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | |
Decapoda | Palaemonidae | Macrobrachium sp. 1 | Predator | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 0 | 0 |
Parathephusidae | Parathelphusidae sp. 1 | Collector | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 0 | 1 | 0 | |
Ephemeroptera | Baetidae | Baetis sp. 1 | Collector | 5 | 8 | 5 | 19 | 15 | 0 | 0 | 78 | 36 | 76 | 22 |
Platybaetis sp. 1 | Collector | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 3 | 65 | 0 | ||
Heptagenidae | Asionurus sp. 1 | Filterer | 10 | 4 | 0 | 5 | 16 | 0 | 0 | 1 | 0 | 0 | 0 | |
Asionurus sp. 2 | Filterer | 10 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Caenidae | Caenis sp. 1 | Collector | 4 | 25 | 17 | 40 | 65 | 4 | 9 | 25 | 1 | 1689 | 2072 | |
Odonata | Gomphidae | Gomphidae sp. 1 | Predator | 6 | 3 | 9 | 2 | 5 | 0 | 0 | 0 | 2 | 0 | 0 |
Hemiptera | Micronectidae | Micronectidae sp. 1 | Predator | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
Trichoptera | Hydropsychidae | Potamyia sp. 1 | Filterer | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 5 | 3 | 7 |
Coleoptera | Dytiscidae | Dytiscidae sp. 1 | Predator | 2 | 2 | 50 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
Elmidae | Elmidae (L) | Predator | 8 | 0 | 0 | 0 | 2 | 0 | 8 | 1 | 0 | 0 | 31 | |
Elimidae (A) | Predator | 8 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | ||
Hydrophilidae | Hydrophilidae sp. 1 | Collector | 3 | 2 | 23 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | |
Diptera | Chironomidae | Tanypodinae sp. 1 | Predator | 3 | 0 | 0 | 0 | 3 | 4 | 0 | 0 | 0 | 45 | 85 |
Chironomidae (P) | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 20 | 23 | |||
Ceratopogonidae | Ceratopogonidae sp. 1 | Predator | 3 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 1 | 1 | |
Neuroptera | Sisyridae | Sisyridae sp. 1 | Predator | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Total species richness | 9 | 6 | 5 | 13 | 6 | 3 | 10 | 11 | 10 | 9 | ||||
Total abundance | 68 | 105 | 77 | 147 | 63 | 39 | 209 | 79 | 1904 | 2247 |
Waterbodies | Variable | (SIMPER) Average Dissimilarity [%] | ANOSIM R-Statistic | p-Value |
---|---|---|---|---|
River and Channels | All taxa | 80 | 0.489 | 0.001 |
EPTO | 64 | 0.645 | 0.001 | |
FFG | 61 | 0.303 | 0.003 | |
River--Urban channels | FFG | 58 | 0.136 | 0.110 |
River--Rural channel | 73 | 0.531 | 0.004 | |
River--Agricultural channels | 58 | 0.262 | 0.012 |
Channels | River | Average Dissimilarity [%] | FFG of the Highest Species Contribution | Contribution [%] |
---|---|---|---|---|
C-1 | R-1 | 54 | Collector | 63 |
R-2 | 52 | Collector | 68 | |
C-2 | R-1 | 70 | Collector | 54 |
R-2 | 66 | Collector | 56 | |
C-3 | R-1 | 50 | Collector | 64 |
R-2 | 54 | Collector | 69 | |
C-4 | R-1 | 57 | Collector | 56 |
R-2 | 62 | Collector | 57 | |
C-5 | R-1 | 77 | Collector | 57 |
R-2 | 77 | Collector | 52 | |
C-6 | R-1 | 60 | Collector | 71 |
R-2 | 59 | Collector | 70 |
Channels | Average Dissimilarity [%] | Highest Species Contribution | Respective FFG | Contribution [%] | |||||
---|---|---|---|---|---|---|---|---|---|
All Taxa | EPTO | All Taxa | EPTO | All Taxa | EPTO | All Taxa | EPTO | ||
C-1 | C-2 | 62 | 33 | Dytiscidae | Asionurus sp. 1 | Predator | Filterer | 27 | 34 |
C-2 | C-3 | 66 | 36 | Dytiscidae | Baetis sp. 1 | Predator | Collector | 30 | 38 |
C-3 | C-4 | 58 | 41 | Caenis sp. 1 | Asionurus sp. 1 | Collector | Filterer | 17 | 31 |
C-3 | C-1 | 40 | 33 | Baetis sp. 1 | Baetis sp. 1 | Collector | Collector | 23 | 35 |
C-4 | C-5 | 74 | 62 | Corbicula | Asionurus sp. 1 | Filterer | Filterer | 22 | 35 |
C-4 | C-2 | 76 | 48 | Dytiscidae | Asionurus sp. 1 | Predator | Filterer | 21 | 36 |
C-4 | C-1 | 58 | 33 | Caenis sp. 1 | Baetis sp. 1 | Collector | Collector | 16 | 25 |
C-5 | C-6 | 91 | 4 | Corbicula | Caenis sp. 1 | Filterer | Collector | 34 | 100 |
C-5 | C-3 | 91 | 40 | Corbicula | Baetis sp. 1 | Filterer | Collector | 30 | 48 |
C-5 | C-2 | 81 | 37 | Corbicula | Gomphidae sp. 1 | Filterer | Predator | 30 | 48 |
C-5 | C-1 | 77 | 47 | Corbicula | Asionurus sp. 1 | Filterer | Filterer | 25 | 32 |
C-6 | C-4 | 74 | 63 | Thiaridae | Asionurus sp. 1 | Grazer | Filterer | 16 | 35 |
C-6 | C-3 | 50 | 43 | Baetis sp. 1 | Baetis sp. 1 | Collector | Collector | 26 | 46 |
C-6 | C-2 | 79 | 40 | Dytiscidae | Gomphidae sp. 1 | Predator | Predator | 29 | 45 |
C-6 | C-1 | 54 | 50 | Elmidae (L) | Asionurus sp. 1 | Collector | Filterer | 19 | 31 |
Water bodies | Variable | SIMPER Average Dissimilarity | ANOSIM | |
---|---|---|---|---|
[%] | R-Statistic | p-Value | ||
Urban channels–rural channel | FFG | 74 | 0.938 | 0.018 |
Urban channels–agricultural channels | 54 | 0.389 | 0.009 | |
Rural channel–agricultural channels | 45 | 0.221 | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, N.T.; Suter, P.; Conallin, J.; Rutten, M.; Bogaard, T. Aquatic Macroinvertebrate Indicators in the Zawgyi Irrigation Channels and a River in the Central Dry Zone of Myanmar. Sustainability 2020, 12, 8788. https://doi.org/10.3390/su12218788
Ko NT, Suter P, Conallin J, Rutten M, Bogaard T. Aquatic Macroinvertebrate Indicators in the Zawgyi Irrigation Channels and a River in the Central Dry Zone of Myanmar. Sustainability. 2020; 12(21):8788. https://doi.org/10.3390/su12218788
Chicago/Turabian StyleKo, Nyein Thandar, Phil Suter, John Conallin, Martine Rutten, and Thom Bogaard. 2020. "Aquatic Macroinvertebrate Indicators in the Zawgyi Irrigation Channels and a River in the Central Dry Zone of Myanmar" Sustainability 12, no. 21: 8788. https://doi.org/10.3390/su12218788
APA StyleKo, N. T., Suter, P., Conallin, J., Rutten, M., & Bogaard, T. (2020). Aquatic Macroinvertebrate Indicators in the Zawgyi Irrigation Channels and a River in the Central Dry Zone of Myanmar. Sustainability, 12(21), 8788. https://doi.org/10.3390/su12218788