Plasma Technology and Its Relevance in Waste Air and Waste Gas Treatment
Abstract
:1. Introduction
2. Non-Thermal Plasma
2.1. Designs and Operational Parameters
2.2. Aspects of Energy and Removal Efficiency
2.3. Fields of Application
2.3.1. Methane Reforming
2.3.2. Odor Removal
2.3.3. Disinfection and Sterilization
- (1)
- (2)
- (3)
- (4)
- (5)
- The reactive particles also shift the redox potential and secondary toxins are formed [7]
- (6)
- Electric charge can accumulate on the membrane surface.
2.3.4. VOC Abatement
2.3.5. Large-Scale Application
3. Thermal Plasma
3.1. Designs and Operational Parameters
3.2. Plasma Gases and Their Effects
- (1)
- (2)
- (3)
- (4)
- (5)
3.3. Environmental Application
4. Design and Operational Parameter
4.1. NTP Plasma
4.2. Thermal Plasma
5. Combined NTP/Bio Process for the Treatment of Complex Waste Gases
- Optical characterization of the plasma discharge as an indication of the formation of reactive components and the expected cleaning efficiency;
- Development of a suitable catalytically active mineral adsorber;
- Design and construction of a first prototype;
- Testing of the prototype;
- Flow simulation of the first prototype;
- Development of a pilot plant for waste gas flows up to 1000 m³∙h−1,
- Testing of the pilot plant;
- Evaluation of experimental results and process stability with derivation of further development potentials.
5.1. Optical Characterization
5.2. Catalytically Active Mineral Adsorber
5.3. Design, Construction and Efficiency of NTP-PPC System
5.4. Flow Simulation of the NTP-PPC Process
5.5. Design, Construction and Efficiency of the Pilot-Scale NTP-PPC-Bioscrubber System
5.6. Experimental Evaluation, Costs and Development Potentials
5.7. Ecological Aspects and Sustainability
6. Optimization of Thermal Plasma Processes
- Insufficient efficiency due to heat losses;
- Insufficient efficiency at high waste gas flows and thus limited SIE values;
- Quality and quantity of byproducts;
- High losses of coupled power by high heat losses.
6.1. Effect of Geometry and Plasma Gases
6.2. Flow Simulation of the Reaction Chamber
6.3. Ecological Evaluation of Thermal Plasmas
7. Conclusions and Perspectives
- (1)
- Previous investigations were almost exclusively carried out at laboratory scale. Reliable scale-up factors for the transfer into industrial-scale systems are almost completely missing. The applied laboratory-scale leads to very high SIE values, so that an economic estimation is mostly not possible.
- (2)
- Most studies deal with the treatment of individual components, but treatment of VOC mixtures is mainly not addressed. Removal efficiencies of single compounds are probably not transferable to situation in VOC mixtures, since VOC compounds compete for reactive plasma species, on the one hand, and, on the other hand, reactive interactions between different pollutants may occur.
- (3)
- The effect of interfering compounds in real waste gases like water saturated or oversaturated conditions, aerosols, dust and salt particles have not been sufficiently investigated.
- (4)
- Methods to reduce the energy demand of plasma systems like intermittent plasmas, heat recovery (only thermal plasma) or process combinations with low-energy process like biological approaches have hardly been investigated so far.
- (5)
- There is a clear lack of experiences about thermal (only thermal plasma) and chemical long-term stability of the materials used. Accordingly, the maintenance intervals are currently quite short.
- (6)
- Recently developed catalysts are mostly nanoparticles not suitable for waste gas applications. Furthermore, their production process is complex, and therefore, production and application are not possible under economic aspects.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moreno Cárdenas, F.; Cristancho Sánchez, S.; Vargas Domínguez, S. The grand aurorae borealis seen in Colombia in 1859. Adv. Space Res. 2016, 57, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Corson, D.W. Pierre Poliniere, Francis Hauksbee, and Electroluminescence: A Case of Simultaneous Discovery. ISIS 1968, 59, 402–413. [Google Scholar]
- Pekárek, S. DC corona ozone generation enhanced by TiO2 photocatalyst. Eur. Phys. J. D 2008, 50, 171–175. [Google Scholar] [CrossRef]
- Mott-Smith, H.M. History of “plasmas”. Nature 1971, 233, 219. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.F. Plasma Applications. In Introduction to Plasma Physics and Controlled Fusion; Chen, F.F., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 355–411. ISBN 978-3-319-22308-7. [Google Scholar]
- Stryczewska, H.D. Supply Systems of Non-Thermal Plasma Reactors. Construction Review with Examples of Applications. Appl. Sci. 2020, 10, 3242. [Google Scholar] [CrossRef]
- López, M.; Calvo, T.; Prieto, M.; Múgica-Vidal, R.; Muro-Fraguas, I.; Alba-Elías, F.; Alvarez-Ordóñez, A. A Review on Non-thermal Atmospheric Plasma for Food Preservation: Mode of Action, Determinants of Effectiveness, and Applications. Front. Microbiol. 2019, 10, 622. [Google Scholar] [CrossRef]
- Clothiaux, E.J.; Koropchak, J.A.; Moore, R.R. Decomposition of an organophosphorus material in a silent electrical discharge. Plasma Chem. Plasma Process. 1984, 4, 15–20. [Google Scholar] [CrossRef]
- Fraser, M.E.; Sheinson, R.S. Electric discharge-induced oxidation of hydrogen cyanide. Plasma Chem. Plasma Process. 1986, 6, 27–38. [Google Scholar] [CrossRef]
- Cal, M.P.; Schluep, M. Destruction of benzene with non-thermal plasma in dielectric barrier discharge reactors. Environ. Prog. 2001, 20, 151–156. [Google Scholar] [CrossRef]
- Fang, H.J.; Hou, H.Q.; Xia, L.Y.; Shu, X.H.; Zhang, R.X. A combined plasma photolysis (CPP) method for removal of CS2 from gas streams at atmospheric pressure. Chemosphere 2007, 69, 1734–1739. [Google Scholar] [CrossRef]
- Li, S.; Dang, X.; Yu, X.; Abbas, G.; Zhang, Q.; Cao, L. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: A review. Chem. Eng. J. 2020, 388, 124275. [Google Scholar] [CrossRef]
- Schiavon, M.; Torretta, V.; Casazza, A.; Ragazzi, M. Non-thermal Plasma as an Innovative Option for the Abatement of Volatile Organic Compounds: A Review. Water Air Soil Pollut. 2017, 228. [Google Scholar] [CrossRef]
- Dobslaw, D.; Ortlinghaus, O.; Dobslaw, C. A combined process of non-thermal plasma and a low-cost mineral adsorber for VOC removal and odor abatement in emissions of organic waste treatment plants. J. Environ. Chem. Eng. 2018, 6, 2281–2289. [Google Scholar] [CrossRef]
- George, A.; Shen, B.; Craven, M.; Wang, Y.; Kang, D.; Wu, C.; Tu, X. A Review of Non-Thermal Plasma Technology: A novel solution for CO2 conversion and utilization. Renew. Sustain. Energy Rev. 2021, 135, 109702. [Google Scholar] [CrossRef]
- Dobslaw, D. Herausforderungen in der Biologischen und Nicht-Biologischen Abluftreinigung; University of Stuttgart: Stuttgart, Germany, 2020. [Google Scholar] [CrossRef]
- Marotta, E.; Schiorlin, M.; Rea, M.; Paradisi, C. Products and mechanisms of the oxidation of organic compounds in atmospheric air plasmas. J. Phys. D Appl. Phys. 2010, 43, 124011. [Google Scholar] [CrossRef]
- Marotta, E.; Scorrano, G.; Paradisi, C. Ionic Reactions of Chlorinated Volatile Organic Compounds in Air Plasma at Atmospheric Pressure. Plasma Process. Polym. 2005, 2, 209–217. [Google Scholar] [CrossRef]
- Cheng, Z.-W.; Zhang, L.-L.; Chen, J.-M.; Yu, J.-M.; Gao, Z.-L.; Jiang, Y.-F. Treatment of gaseous alpha-pinene by a combined system containing photo oxidation and aerobic biotrickling filtration. J. Hazard. Mater. 2011, 192, 1650–1658. [Google Scholar] [CrossRef]
- Istadi, I.; Saidina Amin, N.A. Catalytic-Dielectric Barrier Discharge Plasma Reactor for Methane and Carbon Dioxide Conversion. Bull. Chem. React. Eng. Catal. 2007, 2, 37–44. [Google Scholar] [CrossRef]
- Kasinathan, P.; Park, S.; Choi, W.C.; Hwang, Y.K.; Chang, J.-S.; Park, Y.-K. Plasma-Enhanced Methane Direct Conversion over Particle-Size Adjusted MOx/Al2O3 (M = Ti and Mg) Catalysts. Plasma Chem. Plasma Process. 2014, 34, 1317–1330. [Google Scholar] [CrossRef]
- Kogelschatz, U.; Eliasson, B.; Egli, W. Dielectric-Barrier Discharges. Principle and Applications. J. Phys. IV 1997, 7, C4–C47. [Google Scholar] [CrossRef]
- Liu, C.; Cui, N.; Brown, N.M.D.; Meenan, B.J. Effects of DBD plasma operating parameters on the polymer surface modification. Surf. Coat. Technol. 2004, 185, 311–320. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, X.; Li, X.; Li, K.; Shi, C.; Zhu, A. Effect of O2/CH4 ratio on the optimal specific-energy-input (SEI) for oxidative reforming of biogas in a plasma-shade reactor. J. Energy Chem. 2013, 22, 681–684. [Google Scholar] [CrossRef]
- Mfopara, A.; Kirkpatrick, M.J.; Odic, E. Dilute Methane Treatment by Atmospheric Pressure Dielectric Barrier Discharge: Effects of Water Vapor. Plasma Chem. Plasma Process. 2009, 29, 91–102. [Google Scholar] [CrossRef]
- Nozaki, T.; Okazaki, K. Innovative Methane Conversion Technology Using Atmospheric Pressure Non-thermal Plasma. J. Jpn. Pet. Inst. 2011, 54, 146–158. [Google Scholar] [CrossRef]
- Sultana, S.; Vandenbroucke, A.; Leys, C.; de Geyter, N.; Morent, R. Abatement of VOCs with Alternate Adsorption and Plasma-Assisted Regeneration: A Review. Catalysts 2015, 5, 718–746. [Google Scholar] [CrossRef]
- Wu, J.; Xia, Q.; Wang, H.; Li, Z. Catalytic performance of plasma catalysis system with nickel oxide catalysts on different supports for toluene removal: Effect of water vapor. Appl. Catal. B Environ. 2014, 156–157, 265–272. [Google Scholar] [CrossRef]
- Zheng, X.; Tan, S.; Dong, L.; Li, S.; Chen, H. Plasma-assisted catalytic dry reforming of methane: Highly catalytic performance of nickel ferrite nanoparticles embedded in silica. J. Power Sources 2015, 274, 286–294. [Google Scholar] [CrossRef]
- Sivachandiran, L.; Thevenet, F.; Rousseau, A. Isopropanol removal using MnXOY packed bed non-thermal plasma reactor: Comparison between continuous treatment and sequential sorption/regeneration. Chem. Eng. J. 2015, 270, 327–335. [Google Scholar] [CrossRef]
- Dobslaw, D.; Schulz, A.; Helbich, S.; Dobslaw, C.; Engesser, K.-H. VOC removal and odor abatement by a low-cost plasma enhanced biotrickling filter process. J. Environ. Chem. Eng. 2017, 5, 5501–5511. [Google Scholar] [CrossRef]
- Dobslaw, D.; Ortlinghaus, O. Biological Waste Air and Waste Gas Treatment: Overview, Challenges, Operational Efficiency, and Current Trends. Sustainability 2020, 12, 8577. [Google Scholar] [CrossRef]
- Hoeben, W.F.L.M.; Beckers, F.J.C.M.; Pemen, A.J.M.; van Heesch, E.J.M.; Kling, W.L. Oxidative degradation of toluene and limonene in air by pulsed corona technology. J. Phys. D Appl. Phys. 2012, 45, 55202. [Google Scholar] [CrossRef]
- Lee, H.; Lee, D.-H.; Song, Y.-H.; Choi, W.C.; Park, Y.-K.; Kim, D.H. Synergistic effect of non-thermal plasma–catalysis hybrid system on methane complete oxidation over Pd-based catalysts. Chem. Eng. J. 2015, 259, 761–770. [Google Scholar] [CrossRef]
- Jarrige, J.; Vervisch, P. Decomposition of three volatile organic compounds by nanosecond pulsed corona discharge: Study of by-product formation and influence of high voltage pulse parameters. J. Appl. Phys. 2006, 99, 113303. [Google Scholar] [CrossRef]
- Gandhi, M.S.; Mok, Y.S.; Lee, S.B.; Park, H. Effect of various parameters for butane decomposition under ambient temperature in a dielectric barrier discharge non-thermal plasma reactor. J. Taiwan Inst. Chem. Eng. 2013, 44, 786–794. [Google Scholar] [CrossRef]
- Wandell, R.J.; Bresch, S.; Hsieh, K.; Alabugin, I.V.; Locke, B.R. Formation of Alcohols and Carbonyl Compounds From Hexane and Cyclohexane With Water in a Liquid Film Plasma Reactor. IEEE Trans. Plasma Sci. 2014, 42, 1195–1205. [Google Scholar] [CrossRef]
- Prantsidou, M.; Whitehead, J.C. The Chemistry of Gaseous Dodecane Degradation in a BaTiO3 Packed-Bed Plasma Reactor. Plasma Chem. Plasma Process. 2015, 35, 159–172. [Google Scholar] [CrossRef]
- Iijima, S.; Nakamura, M.; Yokoi, A.; Kubota, M.; Huang, L.; Matsuda, H. Decomposition of dichloromethane and in situ alkali absorption of resulting halogenated products by a packed-bed non-thermal plasma reactor. J. Mater. Cycles Waste Manag. 2011, 13, 206–212. [Google Scholar] [CrossRef]
- Aerts, R.; Tu, X.; de Bie, C.; Whitehead, J.C.; Bogaerts, A. An Investigation into the Dominant Reactions for Ethylene Destruction in Non-Thermal Atmospheric Plasmas. Plasma Process. Polym. 2012, 9, 994–1000. [Google Scholar] [CrossRef]
- Abedi, K.; Ghorbani-Shahna, F.; Jaleh, B.; Bahrami, A.; Yarahmadi, R. Enhanced performance of non-thermal plasma coupled with TiO2/GAC for decomposition of chlorinated organic compounds: Influence of a hydrogen-rich substance. J. Environ. Health Sci. Eng. 2014, 12, 119. [Google Scholar] [CrossRef] [Green Version]
- Vandenbroucke, A.M.; Mora, M.; Jiménez-Sanchidrián, C.; Romero-Salguero, F.J.; de Geyter, N.; Leys, C.; Morent, R. TCE abatement with a plasma-catalytic combined system using MnO2 as catalyst. Appl. Catal. B Environ. 2014, 156–157, 94–100. [Google Scholar] [CrossRef]
- Vandenbroucke, A.M.; Aerts, R.; van Gaens, W.; de Geyter, N.; Leys, C.; Morent, R.; Bogaerts, A. Modeling and Experimental Study of Trichloroethylene Abatement with a Negative Direct Current Corona Discharge. Plasma Chem. Plasma Process. 2015, 35, 217–230. [Google Scholar] [CrossRef]
- Vandenbroucke, A.M.; Morent, R.; de Geyter, N.; Leys, C. Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J. Hazard. Mater. 2011, 195, 30–54. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke, A.M.; Nguyen Dinh, M.T.; Nuns, N.; Giraudon, J.-M.; de Geyter, N.; Leys, C.; Lamonier, J.-F.; Morent, R. Combination of non-thermal plasma and Pd/LaMnO3 for dilute trichloroethylene abatement. Chem. Eng. J. 2016, 283, 668–675. [Google Scholar] [CrossRef]
- Magureanu, M.; Mandache, N.B.; Parvulescu, V.I.; Subrahmanyam, C.; Renken, A.; Kiwi-Minsker, L. Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: Optimization of the reactor geometry and introduction of catalytic electrode. Appl. Catal. B Environ. 2007, 74, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Oda, T.; Yamaji, K.; Takahashi, T. Decomposition of Dilute Trichloroethylene by Nonthermal Plasma Processing—Gas Flow Rate, Catalyst, and Ozone Effect. IEEE Trans. Ind. Appl. 2004, 40, 430–436. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, S.; Cai, Y.; Gao, X.; Zhou, J.; Zheng, C.; Tu, X. Post-plasma catalytic removal of methanol over Mn–Ce catalysts in an atmospheric dielectric barrier discharge. Appl. Catal. B Environ. 2016, 183, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Sivachandiran, L.; Thevenet, F.; Gravejat, P.; Rousseau, A. Isopropanol saturated TiO2 surface regeneration by non-thermal plasma: Influence of air relative humidity. Chem. Eng. J. 2013, 214, 17–26. [Google Scholar] [CrossRef]
- Zhu, X.; Gao, X.; Qin, R.; Zeng, Y.; Qu, R.; Zheng, C.; Tu, X. Plasma-catalytic removal of formaldehyde over Cu–Ce catalysts in a dielectric barrier discharge reactor. Appl. Catal. B Environ. 2015, 170–171, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Maciuca, A.; Batiot-Dupeyrat, C.; Tatibouët, J.-M. Synergetic effect by coupling photocatalysis with plasma for low VOCs concentration removal from air. Appl. Catal. B Environ. 2012, 125, 432–438. [Google Scholar] [CrossRef]
- Ragazzi, M.; Tosi, P.; Rada, E.C.; Torretta, V.; Schiavon, M. Effluents from MBT plants: Plasma techniques for the treatment of VOCs. Waste Manag. 2014, 34, 2400–2406. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, S.; Yang, Y.; Zheng, C.; Zhou, J.; Gao, X.; Tu, X. Enhanced performance for plasma-catalytic oxidation of ethyl acetate over La1-xCexCoO3+δ catalysts. Appl. Catal. B Environ. 2017, 213, 97–105. [Google Scholar] [CrossRef]
- Ye, Z.; Gu, A.; Zhang, R.; Hou, H. Removal of Isobutyl Acetate in Flowed Air Stream with DBD Plasmas. Removal of Isobutyl Acetate in Flowed Air Stream with DBD Plasmas. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), Chengdu, China, 18–20 June 2010; Ye, Z., Gu, A., Zhang, R., Hou, H., Eds.; IEEE: Piscataway, NJ, USA, 2010; pp. 1–5, ISBN 978-1-4244-4712-1. [Google Scholar]
- Lu, B.; Zhang, X.; Yu, X.; Feng, T.; Yao, S. Catalytic oxidation of benzene using DBD corona discharges. J. Hazard. Mater. 2006, 137, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Schmid, S.; Jecklin, M.C.; Zenobi, R. Degradation of volatile organic compounds in a non-thermal plasma air purifier. Chemosphere 2010, 79, 124–130. [Google Scholar] [CrossRef]
- Hoeben, W.F.L.M.; Boekhoven, W.; Beckers, F.J.C.M.; van Heesch, E.J.M.; Pemen, A.J.M. Partial oxidation of methane by pulsed corona discharges. J. Phys. D Appl. Phys. 2014, 47, 355202. [Google Scholar] [CrossRef]
- Ognier, S.; Youssef, J.; Cavadias, S.; Amouroux, J. SFGP 2007—A New Concept for the Abatement of Volatile Organic Compounds by a Two-Stage Process Combining Non-Thermal Plasma Treatment and Filtration. Int. J. Chem. React. Eng. 2008, 6. [Google Scholar] [CrossRef]
- van Durme, J.; Dewulf, J.; Sysmans, W.; Leys, C.; van Langenhove, H. Abatement and degradation pathways of toluene in indoor air by positive corona discharge. Chemosphere 2007, 68, 1821–1829. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Huang, R.; Wu, J.; Fu, M.; Chen, L.; Ye, D. On the performance and mechanisms of toluene removal by FeOx/SBA-15-assisted non-thermal plasma at atmospheric pressure and room temperature. Catal. Today 2015, 242, 274–286. [Google Scholar] [CrossRef]
- Anderson, G.K.; Snyder, H.; Coogan, J. Oxidation of styrene in a silent discharge plasma. Plasma Chem. Plasma Process. 1999, 19, 131–151. [Google Scholar] [CrossRef]
- Chang, C.-L.; Bai, H.; Lu, S.-J. Destruction of Styrene in an Air Stream by Packed Dielectric Barrier Discharge Reactors. Plasma Chem. Plasma Process. 2005, 25, 641–657. [Google Scholar] [CrossRef]
- Wei, Z.S.; Li, H.Q.; He, J.C.; Ye, Q.H.; Huang, Q.R.; Luo, Y.W. Removal of dimethyl sulfide by the combination of non-thermal plasma and biological process. Bioresour. Technol. 2013, 146, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Mitrović, T.; Lazović, S.; Nastasijević, B.; Pašti, I.A.; Vasić, V.; Lazarević-Pašti, T. Non-thermal plasma needle as an effective tool in dimethoate removal from water. J. Environ. Manag. 2019, 246, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Iervolino, G.; Vaiano, V.; Palma, V. Enhanced removal of water pollutants by dielectric barrier discharge non-thermal plasma reactor. Sep. Purif. Technol. 2019, 215, 155–162. [Google Scholar] [CrossRef]
- Murugesan, P.; Moses, J.A.; Anandharamakrishnan, C. Water decontamination using non-thermal plasma: Concepts, applications, and prospects. J. Environ. Chem. Eng. 2020, 8, 104377. [Google Scholar] [CrossRef]
- Chen, H.; Mu, Y.; Xu, S.; Xu, S.; Hardacre, C.; Fan, X. Recent advances in non-thermal plasma (NTP) catalysis towards C1 chemistry. Chin. J. Chem. Eng. 2020, 28, 2010–2021. [Google Scholar] [CrossRef]
- Brisset, J.-L.; Pawlat, J. Chemical Effects of Air Plasma Species on Aqueous Solutes in Direct and Delayed Exposure Modes: Discharge, Post-discharge and Plasma Activated Water. Plasma Chem. Plasma Process. 2016, 36, 355–381. [Google Scholar] [CrossRef]
- Lee, D.H.; Song, Y.-H.; Kim, K.-T.; Lee, J.-O. Comparative Study of Methane Activation Process by Different Plasma Sources. Plasma Chem. Plasma Process. 2013, 33, 647–661. [Google Scholar] [CrossRef]
- Nozaki, T.; Okazaki, K. Non-thermal plasma catalysis of methane: Principles, energy efficiency, and applications. Catal. Today 2013, 211, 29–38. [Google Scholar] [CrossRef]
- Zhang, K.; Harvey, A.P. CO2 decomposition to CO in the presence of up to 50% O2 using a non-thermal plasma at atmospheric temperature and pressure. Chem. Eng. J. 2021, 405, 126625. [Google Scholar] [CrossRef]
- Bogaerts, A.; Tu, X.; Whitehead, J.C.; Centi, G.; Lefferts, L.; Guaitella, O.; Azzolina-Jury, F.; Kim, H.-H.; Murphy, A.B.; Schneider, W.F.; et al. The 2020 plasma catalysis roadmap. J. Phys. D Appl. Phys. 2020, 53, 443001. [Google Scholar] [CrossRef]
- Amouroux, J.; Talbot, J. Etude des conditions de pyrolyse du méthane dans un plasma inductif d’argon: Conditions for methane pyrolysis in an inductive plasma of argon. Ann. Chim. 1968, 3, 219–233. [Google Scholar]
- Gautier, M.; Rohani, V.; Fulcheri, L. Direct decarbonization of methane by thermal plasma for the production of hydrogen and high value-added carbon black. Int. J. Hydrogen Energy 2017, 42, 28140–28156. [Google Scholar] [CrossRef]
- Abbas, H.F.; Wan Daud, W.M.A. Hydrogen production by methane decomposition: A review. Int. J. Hydrogen Energy 2010, 35, 1160–1190. [Google Scholar] [CrossRef]
- Sikarwar, V.S.; Hrabovský, M.; van Oost, G.; Pohořelý, M.; Jeremiáš, M. Progress in waste utilization via thermal plasma. Prog. Energy Combust. Sci. 2020, 81, 100873. [Google Scholar] [CrossRef]
- Montoro-Damas, A.M.; Brey, J.J.; Rodríguez, M.A.; González-Elipe, A.R.; Cotrino, J. Plasma reforming of methane in a tunable ferroelectric packed-bed dielectric barrier discharge reactor. J. Power Sources 2015, 296, 268–275. [Google Scholar] [CrossRef]
- Saleem, F.; Harris, J.; Zhang, K.; Harvey, A. Non-thermal plasma as a promising route for the removal of tar from the product gas of biomass gasification—A critical review. Chem. Eng. J. 2020, 382, 122761. [Google Scholar] [CrossRef]
- Mizuno, A. Industrial applications of atmospheric non-thermal plasma in environmental remediation. Plasma Phys. Control. Fusion 2007, 49, A1–A15. [Google Scholar] [CrossRef]
- Müller, S.; Zahn, R.-J. Air Pollution Control by Non-Thermal Plasma. Contrib. Plasma Phys. 2007, 47, 520–529. [Google Scholar] [CrossRef]
- Chang, J.-S.; Looy, P.C.; Nagai, K.; Yoshioka, T.; Aoki, S.; Maezawa, A. Preliminary pilot plant tests of a corona discharge-electron beam hybrid combustion flue gas cleaning system. IEEE Trans. Ind. Appl. 1996, 32, 131–137. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Pan, H.; Su, Q.; Liu, Y.; Shi, Y. Abatement of malodorants from pesticide factory in dielectric barrier discharges. J. Hazard. Mater. 2010, 177, 908–913. [Google Scholar] [CrossRef]
- Kuwahara, T.; Okubo, M.; Kuroki, T.; Kametaka, H.; Yamamoto, T. Odor removal characteristics of a laminated film-electrode packed-bed nonthermal plasma reactor. Sensors 2011, 11, 5529–5542. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.-J.; Ma, L.; Li, J.; Li, J.-X.; Zheng, F. Control of Hydrogen Sulfide by a Wire-Tube Dielectric Barrier Discharge AC Plasma Reactor. Clean Soil Air Water 2012, 40, 586–591. [Google Scholar] [CrossRef]
- Park, C.W.; Byeon, J.H.; Yoon, K.Y.; Park, J.H.; Hwang, J. Simultaneous removal of odors, airborne particles, and bioaerosols in a municipal composting facility by dielectric barrier discharge. Sep. Purif. Technol. 2011, 77, 87–93. [Google Scholar] [CrossRef]
- Xia, L.; Huang, L.; Shu, X.; Zhang, R.; Dong, W.; Hou, H. Removal of ammonia from gas streams with dielectric barrier discharge plasmas. J. Hazard. Mater. 2008, 152, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-t.; Shi, Y.; Chen, J.; Su, Q.-f.; Wang, D.-h.; Cao, J. Decomposition of dimethyl sulfide in a wire-cylinder pulse corona reactor. J. Zhejiang Univ. Sci. A 2009, 10, 127–132. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, X.; Huang, Q.; Huang, L.; Xie, J.; Qing, C.; Chen, T. Removal of gaseous carbon bisulfide using dielectric barrier discharge plasmas combined with TiO2 coated attapulgite catalyst. Chem. Eng. J. 2013, 225, 567–573. [Google Scholar] [CrossRef]
- Preis, S.; Klauson, D.; Gregor, A. Potential of electric discharge plasma methods in abatement of volatile organic compounds originating from the food industry. J. Environ. Manag. 2013, 114, 125–138. [Google Scholar] [CrossRef]
- Benstaali, B.; Moussa, D.; Addou, A.; Brisset, J.-L. Plasma treatment of aqueous solutes: Some chemical properties of a gliding arc in humid air. Eur. Phys. J. Appl. Phys. 1998, 4, 171–179. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Kim, H.J.; Yong, H.I.; Park, S.; Kim, K.; Choe, W.; Jo, C. Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: Effects on pathogen inactivation and meat-quality attributes. Food Microbiol. 2015, 46, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Yong, H.I.; Park, S.; Choe, W.; Jo, C. Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin. Curr. Appl. Phys. 2013, 13, 1420–1425. [Google Scholar] [CrossRef]
- Kim, H.-J.; Yong, H.I.; Park, S.; Kim, K.; Choe, W.; Jo, C. Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma. Food Control 2015, 47, 451–456. [Google Scholar] [CrossRef]
- Laroussi, M.; Mendis, D.A.; Rosenberg, M. Plasma interaction with microbes. New J. Phys. 2003, 5, 41. [Google Scholar] [CrossRef]
- Pelletier, J. La stérilisation par le procédé plasma. Agressologie 1992, 33, 105–110. [Google Scholar] [PubMed]
- Ohshima, T.; Sato, M.; Saito, M. Selective release of intracellular protein using pulsed electric field. J. Electrost. 1995, 35, 103–112. [Google Scholar] [CrossRef]
- Shintani, H. Inactivation of Bacterial Spore, Endotoxin, Lipid A, Normal Prion and Abnormal Prion by Exposures to Several Sorts of Gases Plasma. Biocontrol. Sci. 2016, 21, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Xiu, Z.L.; Ren, C.S.; Zhang, J.L.; de Wang, Z.; Wang, Y.N.; Ma, T.C. Inactivation of yeast by dielectric barrier discharge (DBD) plasma in helium at atmospheric pressure. IEEE Trans. Plasma Sci. 2005, 33, 1405–1409. [Google Scholar] [CrossRef]
- Moreau, M.; Feuilloley, M.G.J.; Veron, W.; Meylheuc, T.; Chevalier, S.; Brisset, J.-L.; Orange, N. Gliding arc discharge in the potato pathogen Erwinia carotovora subsp. atroseptica: Mechanism of lethal action and effect on membrane-associated molecules. Appl. Environ. Microbiol. 2007, 73, 5904–5910. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Tian, Y.; Li, Y.; Ma, R.; Zhang, Q.; Zhang, J.; Fang, J. Bactericidal Effects against S. aureus and Physicochemical Properties of Plasma Activated Water stored at different temperatures. Sci. Rep. 2016, 6, 28505. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Bong, C.; Bae, P.K.; Abafog, A.T.; Baek, S.H.; Shin, Y.-B.; Park, M.S.; Park, S. Fast and easy disinfection of coronavirus-contaminated face masks using ozone gas produced by a dielectric barrier discharge plasma generator. medRxiv 2020. [Google Scholar] [CrossRef]
- Bekeschus, S.; Kramer, A.; Suffredini, E.; von Woedtke, T.; Colombo, V. Gas Plasma Technology—An Asset to Healthcare During Viral Pandemics Such as the COVID-19 Crisis? IEEE Trans. Radiat. Plasma Med. Sci. 2020, 4, 391–399. [Google Scholar] [CrossRef]
- Chung, W.-C.; Mei, D.-H.; Tu, X.; Chang, M.-B. Removal of VOCs from gas streams via plasma and catalysis. Catal. Rev. 2019, 61, 270–331. [Google Scholar] [CrossRef]
- Adelodun, A.A. Influence of Operation Conditions on the Performance of Non-thermal Plasma Technology for VOC Pollution Control. J. Ind. Eng. Chem. 2020, 92, 41–55. [Google Scholar] [CrossRef]
- Guo, T.; Cheng, G.; Tan, G.; Xu, L.; Huang, Z.; Cheng, P.; Zhou, Z. Real-time analysis of intermediate products from non-thermal plasma degradation of ethyl acetate in air using PTR-MS: Performance evaluation and mechanism study. Chemosphere 2020, 264, 128430. [Google Scholar] [CrossRef] [PubMed]
- Verein Deutscher Ingenieure VDI. Process Gas and Waste Gas Cleaning by Cold Plasma—Barrier discharge, Corona discharge, UV radiation; VDI guideline no. 2441; Beuth Verlag GmbH: Berlin, Germany, 2016. [Google Scholar]
- Choi, S.; Lee, H.S.; Kim, S.W.; Park, D.-W.; Hong, S.H. Thermal Plasma Analysis for PFCs Pyrolysis Process on a Large Scale. J. Korean Phys. Soc. 2009, 55, 1819–1824. [Google Scholar] [CrossRef]
- Choi, S.; Hong, S.H.; Lee, H.S.; Watanabe, T. A comparative study of air and nitrogen thermal plasmas for PFCs decomposition. Chem. Eng. J. 2012, 185–186, 193–200. [Google Scholar] [CrossRef]
- Jeništa, J.; Takana, H.; Uehara, S.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Murphy, A.B. Modeling of inhomogeneous mixing of plasma species in argon–steam arc discharge. J. Phys. D Appl. Phys. 2018, 51, 45202. [Google Scholar] [CrossRef]
- Dobslaw, D.; Dobslaw, C. Strahlungsgekühlte, Thermische Wasserdampfplasmaanlage zur Behandlung Perfluorierter Abluftströme—“StrahlWaBe”: Schlussbericht zu Nr. 8.2 des Forschungsvorhabens; German National Library of Science and Technology: Hannover, Germany, 2019. [Google Scholar] [CrossRef]
- Kim, D.-y.; Park, D.W. Decomposition of PFCs by steam plasma at atmospheric pressure. Surf. Coat. Technol. 2008, 202, 5280–5283. [Google Scholar] [CrossRef]
- Suris, A.L. Investigation of high-temperature steam–air reagents for plasma waste treatment processes. Found. Chem. Eng. 2017, 51, 348–351. [Google Scholar] [CrossRef]
- Sharma, R.; Singh, G.; Singh, K. Modelling of the Thermophysical Properties in Ar-He-H2 Thermal Plasmas with Electronic Excitation. J. Korean Phys. Soc. 2011, 58, 1703–1707. [Google Scholar] [CrossRef]
- Tao, X.; Bai, M.; Wu, Q.; Huang, Z.; Yin, Y.; Dai, X. CO2 reforming of CH4 by binode thermal plasma. Int. J. Hydrogen Energy 2009, 34, 9373–9378. [Google Scholar] [CrossRef]
- Tao, X.; Qi, F.; Yin, Y.; Dai, X. CO2 reforming of CH4 by combination of thermal plasma and catalyst. Int. J. Hydrogen Energy 2008, 33, 1262–1265. [Google Scholar] [CrossRef]
- Han, S.-H.; Park, H.-W.; Kim, T.-H.; Park, D.-W. Large scale treatment of perfluorocompounds using a thermal plasma scrubber. Clean Technol. 2011, 17, 250–258. [Google Scholar] [CrossRef]
- Lee, C.H.; Chun, Y.N. Reduction of Tetrafluoromethane using a Waterjet Gliding Arc Plasma. Korean Chem. Eng. Res. 2011, 49, 485–490. [Google Scholar] [CrossRef]
- Dobslaw, D.; Helbich, S.; Dobslaw, C.; Glocker, B. Einsatz Eines Strahlungsgekühlten, Thermischen Wasserdampfplasmas zur Behandlung von Treibhausrelevanten, Perfluorierten Abluftströmen. 5. VDI-Fachtagung Emissionsminderung 2018 Stand—Konzepte—Fortschritte, Nürnberg, 12./13.6.2018; VDI Verlag GmbH: Düsseldorf, Germany, 2018; ISBN 978-3-18-092327-7. [Google Scholar]
- Niemira, B.A. Cold plasma decontamination of foods. Annu. Rev. Food Sci. Technol. 2012, 3, 125–142. [Google Scholar] [CrossRef] [PubMed]
- Hrabovsky, M. Thermal Plasma Gasification of Biomass. In Progress in Biomass and Bioenergy Production; Shaukat, S., Ed.; InTech: London, UK, 2011; ISBN 978-953-307-491-7. [Google Scholar]
- Nishikawa, H.; Ibe, M.; Tanaka, M.; Ushio, M.; Takemoto, T.; Tanaka, K.; Tanahashi, N.; Ito, T. A treatment of carbonaceous wastes using thermal plasma with steam. Vacuum 2004, 73, 589–593. [Google Scholar] [CrossRef]
- Kim, T.-H.; Choi, S.; Park, D.-W. Numerical simulation on the influence of water spray in thermal plasma treatment of CF4 gas. Curr. Appl. Phys. 2012, 12, 509–514. [Google Scholar] [CrossRef]
- Saito, H.; Watanabe, T. Decomposition Mechanism of Fluorinated Compounds in Water Plasmas Generated Under Atmospheric Pressure. Plasma Chem. Plasma Process. 2010, 30, 813–829. [Google Scholar] [CrossRef]
- Tianming, L.; Choi, S.; Watanabe, T. Discharge Characteristics of DC Arc Water Plasma for Environmental Applications. Plasma Sci. Technol. 2012, 14, 1097–1101. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Tsuru, T. Water plasma generation under atmospheric pressure for HFC destruction. Thin Solid Film. 2008, 516, 4391–4396. [Google Scholar] [CrossRef]
- Watanabe, T. Water Plasmas for Environmental Application. In Industrial Plasma Technology; Kawai, Y., Ikegami, H., Sato, N., Matsuda, A., Uchino, K., Kuzuya, M., Mizuno, A., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010; pp. 65–77. ISBN 9783527629749. [Google Scholar]
- Glocker, B.; Nentwig, G.; Messerschmid, E. 1-40kW steam respectively multi gas thermal plasma torch system. Vacuum 2000, 59, 35–46. [Google Scholar] [CrossRef]
- Watanabe, T. Acetone decomposition by water plasmas at atmospheric pressure. Chem. Eng. Sci. 2012, 69, 296–303. [Google Scholar] [CrossRef]
- Choi, S.; Watanabe, T. Decomposition of 1-Decanol Emulsion by Water Thermal Plasma Jet. IEEE Trans. Plasma Sci. 2012, 40, 2831–2836. [Google Scholar] [CrossRef]
- Chun, Y.N.; Lee, C.H. Development of a combined waterjet plasma scrubber for tetrafluoromethane and by-product removal. Environ. Prog. Sustain. Energy 2014, 33, 229–237. [Google Scholar] [CrossRef]
- Ko, D.G.; Ko, S.J.; Choi, E.K.; Min, S.G.; Oh, S.H.; Jung, J.; Kim, B.M.; Im, I.-T. Perfluorocarbon Destruction and Removal Efficiency: Considering the Byproducts and Energy Consumption of an Abatement System for Microelectronics Manufacturing. IEEE Trans. Semicond. Manufact. 2014, 27, 456–461. [Google Scholar] [CrossRef]
- Lim, M.S.; Kim, S.C.; Chun, Y.N. Decomposition of PFC gas using a water jet plasma. J. Mech. Sci. Technol. 2011, 25, 1845–1851. [Google Scholar] [CrossRef]
- Sun, J.-W.; Park, D.-W. CF4 decomposition by thermal plasma processing. Korean J. Chem. Eng. 2003, 20, 476–481. [Google Scholar] [CrossRef]
- Vartanian, V.; Goolsby, B.; Chatterjee, R.; Kachmarik, R.; Babbitt, D.; Reif, R.; Tonnis, E.J.; Graves, D. Reduction of Semiconductor Process Emissions by Reactive Gas Optimization. IEEE Trans. Semicond. Manufact. 2004, 17, 483–490. [Google Scholar] [CrossRef]
- Yuan, M.-H.; Watanabe, T.; Chang, C.-Y. DC water plasma at atmospheric pressure for the treatment of aqueous phenol. Environ. Sci. Technol. 2010, 44, 4710–4715. [Google Scholar] [CrossRef]
- Heberlein, J.; Murphy, A.B. Thermal plasma waste treatment. J. Phys. D Appl. Phys. 2008, 41, 53001. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Gong, B. Perfluorocarbon emissions from electrolytic reduction of rare earth metals in fluoride/oxide system. Atmos. Pollut. Res. 2018, 9, 61–65. [Google Scholar] [CrossRef]
- Lee, S.-J.; Ryu, I.-S.; Jeon, S.-G.; Moon, S.-H. Emission sources and mitigation of fluorinated Non-CO2 greenhouse gas in registered CDM projects. Greenh. Gas Sci. Technol. 2017, 7, 589–601. [Google Scholar] [CrossRef]
- BMU. German Federal Ministry of Environment, Natur Conservation, Construction and Reactor Safety. In Investitionen für ein Klimafreundliches Deutschland; BMU: Bonn, Germany, 2008. [Google Scholar]
- Dobslaw, D.; Schomburg, J.; Ortlinghaus, O.; Dobslaw, C.; Walker, M. Abluftbehandlung durch eine Verfahrenskombination aus Nicht-Thermischen Plasma, Mineraladsorber und Wäscherstufe: Untersuchungen zur Machbarkeit und Effizienz einer Verfahrenskombination aus Nicht-Thermischen Plasma und Mineraladsorber zur Partiellen Oxidation von Abluftschadstoffen und einem Nachgeschalteten Biowäscher zur Eliminierung der Partiell Oxidierten Komponenten: “PIASTiC”: Schlussbericht zu Nr. 8.2. des Forschungsvorhabens; German National Library of Science and Technology: Hannover, Germany, 2015. [Google Scholar] [CrossRef]
- Helbich, S.; Dobslaw, D.; Schulz, A.; Engesser, K.-H. Styrene and bioaerosol removal from waste air with combined biotrickling filter and DBD-plasma system. Sustainability 2020, 12. under review. [Google Scholar]
- Martin, L.; Ognier, S.; Gasthauer, E.; Cavadias, S.; Dresvin, S.; Amouroux, J. Destruction of Highly Diluted Volatile Organic Components (VOCs) in Air by Dielectric Barrier Discharge and Mineral Bed Adsorption. Energy Fuels 2008, 22, 576–582. [Google Scholar] [CrossRef]
- Jia, L.; Li, J. The experimental study on regenerative heat transfer in high temperature air combustion. J. Therm. Sci. 2004, 13, 366–370. [Google Scholar] [CrossRef]
- Ou Yang, C.-F.; Kam, S.-H.; Liu, C.-H.; Tzou, J.; Wang, J.-L. Assessment of removal efficiency of perfluorocompounds (PFCs) in a semiconductor fabrication plant by gas chromatography. Chemosphere 2009, 76, 1273–1277. [Google Scholar] [CrossRef] [PubMed]
- Kollbach, J.S.; Grömping, M. Stickstoffrückbelastung. Stand der Technik 1996/97: Zukünftige Entwicklungen; TK-Verlag: Neuruppin, Germany, 1996; ISBN 3-924511-85-3. [Google Scholar]
Contaminant | Secondary Products | Reference |
---|---|---|
Methane | CO, CO2, ethene, ethine, linear aliphatics up to C6, methanol, ethanol, various aldehydes and ketone, dimethyl ether, methyl formate | [33,34] |
Propane | formaldehyde, methyl nitrate, CO | [35] |
Butane | CO, CO2, acetone, acetaldehyde | [36] |
Hexane | 3-hexanol, 2-hexanol, 3-hexanone, 2-hexanone, 1-hexanol, hexane aldehyde | [37] |
Dodekane | NO, NO2, N2O, CO2, methane, ethene, ethine, various oxygenates | [38] |
Cyclohexane | Cyclohexanone, cyclohexene, cyclohexanol, hexan aldehyde, 2-cyclohexenone | [37] |
Dichloromethane | CO2, CH3Cl, COCl2, HCl, Cl2, HCOCl, NO, NO2, N2O | [39] |
Ethylene | Formaldehyde, acetylene, CO, CO2 | [40] |
Propene | Formaldehyde, CO, CO2 | [35] |
Dibromomethane | CO, HNO3 | [18] |
Chloroform | NO, NO2, Cl2, HCl, TCE, HCl | [41] |
Trichloroethylene | Phosgene, COCl, CO2, dichloroacetyl chloride, trichloro acetaldehyde, Cl2, HCl, N2O. | [42,43,44,45] |
Trichloroethylene | CO | [46] |
Freon | CClFO, CHClF2, C2ClF2N, CHCl2F, CCl2FN, COCl2 | [47] |
Methanol | Methane, formaldehyde, formic acid | [48] |
Isopropanol | Acetone, formaldehyde, formic acid, CO, CO2 | [35,49] |
Formaldehyde | HCO, formic acid | [50] |
Isopentane aldehyde | Acetone, CO, CO2 | [51] |
Butanone | Methyl nitrate, 2,3-Butanedien, CO2 | [52] |
Ethyl acetate | Ethanol, methanol, methane, formic acid, formaldehyde, CO, CO2, NO2, N2O | [53] |
Isobutyl acetate | Isobutane aldehyde, acetate, CO2 | [54] |
Ethanediol | Acetaldehyde, formaldehyde, CO, CO2 | [55] |
Cyclohexene | Cyclopentanone, cyclopentane carbaldehyde, 7-oxabicyclo(4,1,0)-heptane, cyclohex-2-enol, cyclohex-2-enone, 2-methylcyclopentanone, ethylidenecyclobutane, 2-ethylbut-3-en aldehyde, hexane dialdehyde | [56] |
Limonene | Acetate and 25 other compounds | [57] |
β–Pinene | Nopinone, 2-hydroxynopinone, formic acid | [58] |
Toluene | Benzylalcohol, benzaldehyde, methylnitrophenol, formic acid | [59] |
Toluene | Benzaldehyde, 3-methyl-2,5-furandione, ethanediol, acetate, formic acid | [57] |
Toluene | Benzylalcohol, benzaldehyde, benzylformic acid, benzylacetate, tetradekane, hexadekane, heptadekane | [60] |
Styrene | Benzene, toluene, benzaldehyde, phenylacetaldehyde, phenol, formic acid, acetophenone, phenyl acetate, phenylmethanol, phenylacetylene | [61] |
Styrene | Benzene, toluene, benzaldehyde | [62] |
Styrene | Benzaldehyde, phenol, phenylacetaldehyde, hexan aldehyde, heptane aldehyde | This study |
Dimethyl sulfide | Methanol, carbonyl sulfide | [63] |
Manufacturer’s Designation | Composition |
---|---|
GA 1 | ≥ 75% Bentonite ≤ 10% Muscovite ≤ 10% Cristobalite |
GA 2 | ≥ 70% Halloysite ≤ 10% Nontronite ≤ 10% Hematite ≤ 10% Magnetite |
GA 3 | ≥ 95% Halloysite ≤ 2% Alunite ≤ 2% Cristobalite |
GA 4 | ≈ 60% Halloysite ≈ 40% Kaolinite |
GA 5 | ≥ 85% Clinoptilolite ≤ 15% Quartz, cristobalite and muscovite in total |
No. of Phase | Waste Gas Application | Location |
---|---|---|
I-I | Emissions sludge centrifuge | Wastewater treatment plant |
I-II | Like I-I, spiked with styrene | |
I-III | Like I-I, spiked with gasoline | |
I-IV | Like I-I, spiked with 90 vol% styrene, 10 vol% ethanol | |
I-V | Like I-I, spiked with n-butanol | |
I-VI | Like I-I, spiked with 2-butoxyethanol | |
II | Emissions of compost plant | Mechanical biological waste treatment plant |
III | Emissions of sludge drying process | Organic waste digestion plant |
GA 1 | GA 2 | GA 3 | GA 4 | GA 5 | |
---|---|---|---|---|---|
Methane (1 g∙m−3) | 0.00274 | 0.00307 | 0.00342 | 0.0062 | 0.00477 |
n-Butanol (0.1 g∙m−3) | 4.86 | 2.6 | 4.35 | 3.29 | 1.21 |
Ammonia (0.1 g∙m−3) | 2.15 | 1.77 | 2.89 | 3.58 | 2.5 |
Rank 1 | Rank 2 | Rank 3 | Rank 4 | Rank 5 | |
---|---|---|---|---|---|
Methane | GA 4 | GA 5 | GA 3 | GA 2 | GA 1 |
n-Butanol | GA 1 | GA 3 | GA 4 | GA 5 | GA 2 |
Ammonia | GA 4 | GA 3 | GA 5 | GA 1 | GA 2 |
Parameter | Incineration | Non-Thermal Plasma | ||
---|---|---|---|---|
Quantity | in CO2,eq | Quantity | in CO2,eq | |
Natural gas | 12,729.5 m³∙a−1 | 25,003 kg∙a−1 | 0 m³∙a−1 | 0 kg∙a−1 |
Methane emissions | 24.0 kg∙a−1 (3 mg C∙m−3 **) | 504 kg∙a−1 | 3.31 kg∙a−1 (0.58 ppm *) | 69.6 kg∙a−1 |
Energy demand fan | 17.6 MWh∙a−1 (∆p = 5000 Pa) | 7040 kg∙a−1 | 8.8 MWh∙a−1 (∆p = 2250 Pa) | 3520 kg∙a−1 |
Energy demand compressor | 4 MWh∙a−1 (P = 0.5 kW) | 1600 kg∙a−1 | 0 kWh | 0 kg∙a−1 |
Energy demand DBD | 0 kWh | 0 kg∙a−1 | 32 MWh∙a−1 (4 kWh∙1000 m−3) | 12,800 kg∙a−1 |
N2O formation | 78.5 kg∙a−1 (5 ppm **) | 24,330 kg∙a−1 | 8.8 kg∙a−1 (0.57 ppm *) | 2728 kg∙a−1 |
Sum | 58,477 kg∙a−1 | 19,118 kg∙a−1 | ||
Reduction potential | 0 kg∙a−1 | 39,359 kg∙a−1 or 67.3% |
Original System | Prototype | Water Film with H2O Plasma | Water Film with N2 Plasma | |
---|---|---|---|---|
0 | 0% | 0% | 0% | 0% |
2790 ppm | - | 100% | - | - |
5500 ppm | 85.1% | 100% | 95.8% | 87.3% |
11,000 ppm | 92.3% | 99.9% | - | 85.3% |
22,000 ppm | 87.7% | 99.8% | - | 80.9% |
40,000 ppm | 89.2% | 99.3% | - | - |
Conventional System | Prototype | |||
---|---|---|---|---|
Concentration (ppm) | 150 slm | 300 slm | 150 slm | 300 slm |
2790 | 94.4% | 68.7% | 100.0% | 91.7% |
5500 | 95.5% | 65.9% | 99.9% | 92.9% |
8250 | 95.0% | 63.5% | 100.0% | 87.4% |
11,000 | 94.6% | 67.0% | 100.0% | 86.6% |
14,000 | - | - | - | 87.7% |
22,000 | 94.5% | - | 100.0% | - |
Parameter | Incineration | Thermal Plasma | ||
---|---|---|---|---|
Quantity | in CO2,eq | Quantity | in CO2,eq | |
Natural gas | 12,729.5 m³∙a−1 | 25,003 kg∙a−1 | 0 m³∙a−1 | 0 kg∙a−1 |
Methane emissions | 24.0 kg∙a−1 (3 mg C∙m−3 **) | 504 kg∙a−1 | 0 kg∙a−1 | 0 kg∙a−1 |
Energy demand fan | 17.6 MWh∙a−1 (∆p = 5000 Pa) | 7040 kg∙a−1 | 17.6 MWh∙a−1 (∆p = 5000 Pa) | 7040 kg∙a−1 |
Energy demand compressor | 4 MWh∙a−1 (P = 0.5 kW) | 1600 kg∙a−1 | 0 kWh | 0 kg∙a−1 |
Energy demand DBD | 0 kWh | 0 kg∙a−1 | 0 MWh∙a−1 | 0 kg∙a−1 |
Energy demand vaporizer | 0 kWh | 0 kg∙a−1 | 381.6 MWh | 153,000 kg∙a−1 |
Energy demand torch | 0 kWh | 0 kg∙a−1 | 8888 MWh (P = 1111 kW) | 3,564,000 kg∙a−1 |
Concentration CF4 [ppm] | 22,000 | |||
Efficiency | 16–52% | 99.8% (*) | ||
Residual CF4 | 331,716-580,503 kg∙a−1 | 2.438∙109-4.266∙109 kg∙a−1 | 1382 kg∙a−1 | 10.157∙106 kg∙a−1 |
Secondary CO2 | 55,280-179.660 kg∙a−1 | 55,280-179,660 kg∙a−1 | 344,807 kg∙a−1 | 344,807 kg∙a−1 |
N2O formation | 78.5 kg∙a−1 (5 ppm ***) | 24,330 kg∙a−1 | 25.1 kg∙a−1 (1.6 ppm ***) | 7786 kg∙a−1 |
Sum | 2.438∙109-4.266∙109 kg∙a−1 | 14.234∙106 kg∙a−1 | ||
Reduction potential | 0 kg∙a−1 | 2.424∙109-4.252∙109 kg∙a−1 or 99.4–99.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobslaw, C.; Glocker, B. Plasma Technology and Its Relevance in Waste Air and Waste Gas Treatment. Sustainability 2020, 12, 8981. https://doi.org/10.3390/su12218981
Dobslaw C, Glocker B. Plasma Technology and Its Relevance in Waste Air and Waste Gas Treatment. Sustainability. 2020; 12(21):8981. https://doi.org/10.3390/su12218981
Chicago/Turabian StyleDobslaw, Christine, and Bernd Glocker. 2020. "Plasma Technology and Its Relevance in Waste Air and Waste Gas Treatment" Sustainability 12, no. 21: 8981. https://doi.org/10.3390/su12218981
APA StyleDobslaw, C., & Glocker, B. (2020). Plasma Technology and Its Relevance in Waste Air and Waste Gas Treatment. Sustainability, 12(21), 8981. https://doi.org/10.3390/su12218981