Assessing Landscape Ecological Risk Induced by Land-Use/Cover Change in a County in China: A GIS- and Landscape-Metric-Based Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Aspects of the Modified LERA
2.2.1. Finer-Resolution Land-Use Data
2.2.2. More Reasonable Evaluation Units: Watershed Basin
2.2.3. More Refined Landscape Vulnerability Weight
2.3. Construction of an LERA Model
2.3.1. Landscape Disturbance Index ()
2.3.2. Landscape Vulnerability Index ()
2.3.3. Landscape Ecological Risk Index (ERI)
2.4. Spatial Statistical Analysis
2.4.1. Land Transfer Analysis
2.4.2. Spatial Autocorrelation Analysis
3. Results
3.1. LULC Change
3.2. Dynamic Spatial and Temporal Features of LER
3.2.1. Spatial Interpolation of LER
3.2.2. LER Change at the Local Level
3.3. Spatial Autocorrelation of LER
3.3.1. Global Moran’s I of LER
3.3.2. Local Moran’s I of LER
4. Discussion
4.1. Correlation between Local LER and LULC Change
4.2. Balance of the Global and Local LER
- Step 1: The current ecological risk of local units and the entire study area must be understood. This information would be used to compare with the ecological risk after spatial planning and evaluate whether any increase in ecological risk occurs globally and locally.
- Step 2: In accordance with the planning goals and development speed of the administrative regions, the area of various land types in the entire study area that need to be adjusted is determined and planned, and then the area of various land types is allocated to local units.
- Step 3: On the basis of the allocated area of land types that need to be adjusted in local units, a local spatial planning scheme is formed, and then the ecological risk of the schemes in different units is assessed.
- Step 4: The local ecological risk of each unit before and after planning must be compared. If the result is acceptable (without significant LER increase), then the planning scheme of the entire study area is formed; otherwise, the areas of different land types within each local unit (step 3) or the local spatial planning schemes are adjusted (step 3).
- Step 5: If the planning scheme of the entire study area is formed, then its LER is assessed and compared with the LER before planning. If the comparison result is acceptable, then the final spatial planning schemes at the local and global levels are formed; otherwise, step 2 or 3 is adjusted until the comparison result of LER is acceptable.
4.3. Limitations and Future Studies
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Asafu-Adjaye, J.; Blomquist, L.; Brand, S.; Brook, B.; DeFries, R.; Ellis, E.; Foremann, C.; Keith, D.; Lewis, M.; Lynas, M.; et al. An Ecomodernist Manifesto. Available online: http://www.ecomodernism.org (accessed on 29 October 2020).
- Forum, U.S.E.P.A.R.A. Guidelines for Ecological Risk Assessment; Risk Assessment Forum, US Environmental Protection Agency: Washington, DC, USA, 1998. [Google Scholar]
- Wu, J.J.L.e. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Xu, E.G.; Leung, K.M.; Morton, B.; Lee, J.H.J.S.o.t.T.E. An integrated environmental risk assessment and management framework for enhancing the sustainability of marine protected areas: The Cape D’Aguilar Marine Reserve case study in Hong Kong. Sci. Total Environ. 2015, 505, 269–281. [Google Scholar] [CrossRef]
- Peng, J.; Zong, M.; Hu, Y.n.; Liu, Y.; Wu, J.J.S. Assessing landscape ecological risk in a mining city: A case study in Liaoyuan City, China. Sustainability 2015, 7, 8312–8334. [Google Scholar] [CrossRef] [Green Version]
- Hunsaker, C.T.; Graham, R.; Suter, I.; O’Neill, B.; Jackson, B.; Barnthouse, L. Regional Ecological Risk Assessment: Theory and Demonstration; Oak Ridge National Lab: Oak Ridge, TN, USA, 1989. [Google Scholar]
- Adams, S.M.; Bevelhimer, M.S.; Greeley, M.S., Jr.; Levine, D.A.; Teh, S.J.J.E.T.; Journal, C.A.I. Ecological risk assessment in a large river-reservoir: 6. Bioindicators of fish population health. Environ. Toxicol. Chem. 1999, 18, 628–640. [Google Scholar]
- Baron, L.A.; Sample, B.E.; Suter, G.W.J.E.T.; Journal, C.A.I. Ecological risk assessment in a large river-reservoir: 5. Aerial insectivorous wildlife. Environ. Toxicol. Chem. 1999, 18, 621–627. [Google Scholar]
- Sample, B.E.; Suter, G.W.J.E.T. Ecological risk assessment in a large river-reservoir: 4. Piscivorous wildlife. Environ. Toxicol. Chem. 1999, 18, 610–620. [Google Scholar]
- Landis, W.G. Twenty years before and hence; ecological risk assessment at multiple scales with multiple stressors and multiple endpoints. Hum. Ecol. Risk Assess. 2003, 95, 1317–1326. [Google Scholar] [CrossRef]
- Forman, R.T.; Godron, M.J.B. Patches and structural components for a landscape ecology. BioScience 1981, 31, 733–740. [Google Scholar]
- Hemstrom, M.A.; Merzenich, J.; Reger, A.; Wales, B.J.L. Integrated analysis of landscape management scenarios using state and transition models in the upper Grande Ronde River Subbasin, Oregon, USA. Landsc. Urban Plan. 2007, 80, 198–211. [Google Scholar] [CrossRef]
- Lange, A.; Siebert, R.; Barkmann, T.J.S. Sustainability in land management: An analysis of stakeholder perceptions in rural northern Germany. Sustainability 2015, 7, 683–704. [Google Scholar] [CrossRef] [Green Version]
- Leuven, R.S.; Poudevigne, I. Riverine landscape dynamics and ecological risk assessment. Freshw. Biol. 2002, 47, 845–865. [Google Scholar] [CrossRef]
- Wiens, J.A.; Chr, N.; Van Horne, B.; Ims, R.A. Ecological mechanisms and landscape ecology. Oikos 1993, 66, 369–380. [Google Scholar] [CrossRef]
- Pickett, S.T.; Cadenasso, M.L. Landscape ecology: Spatial heterogeneity in ecological systems. Science 1995, 269, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Müller, F.J. Hierarchical approaches to ecosystem theory. Ecol. Model. 1992, 63, 215–242. [Google Scholar] [CrossRef]
- Romme, W.H.J.E.M. Fire and landscape diversity in subalpine forests of Yellowstone National Park. Ecol. Monogr. 1982, 52, 199–221. [Google Scholar] [CrossRef]
- Hunsaker, C.T.; Graham, R.L.; Suter, G.W.; O‘Neill, R.V.; Barnthouse, L.W.; Gardner, R.H. Assessing ecological risk on a regional scale. Environ. Manag. 1990, 14, 325–332. [Google Scholar] [CrossRef]
- Su, H.-m.; He, A.-X. Analysis of Land Use Based on RS and Geostatistics in Fuzhou City. J. Nat. Resour. 2010, 25, 91–99. [Google Scholar]
- Yue, Z.; Fei, Z.; Mei, Z.; Xiao-hang, L.; Yan, R.; Juan, W. Landscape ecological risk assessment and its spatio-temporal variations in Ebinur Lake region of inland arid area. Yingyong Shengtai Xuebao 2016, 27, 233–242. [Google Scholar]
- La Rosa, D.; Martinico, F.J. Assessment of hazards and risks for landscape protection planning in Sicily. J. Environ. Manag. 2013, 127, S155–S167. [Google Scholar] [CrossRef] [PubMed]
- Bojie, F.; Liding, C. Landscape diversity types and their ecological significance. Acta Geogr. Sin. 1996, 51, 454–462. [Google Scholar]
- Tian, P.; Li, J.; Gong, H.; Pu, R.; Cao, L.; Shao, S.; Shi, Z.; Feng, X.; Wang, L.; Liu, R. Research on land use changes and ecological risk assessment in Yongjiang River Basin in Zhejiang Province, China. Sustainability 2019, 11, 2817. [Google Scholar] [CrossRef] [Green Version]
- Veldkamp, A.; Lambin, E.F. Predicting Land-Use Change; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Wang, S.; Wang, S.J. Land use/land cover change and their effects on landscape patterns in the Yanqi Basin, Xinjiang (China). Environ. Monit. Assess. 2013, 185, 9729–9742. [Google Scholar] [CrossRef]
- Fan, J.; Wang, Y.; Zhou, Z.; You, N.; Meng, J. Dynamic ecological risk assessment and management of land use in the middle reaches of the Heihe River based on landscape patterns and spatial statistics. Sustainability 2016, 8, 536. [Google Scholar] [CrossRef] [Green Version]
- Xiubin, L. A review of the international researches on land use/land cover change. Acta Geogr. Sin. 1996, 51, 553–557. [Google Scholar]
- Sharma, A.; Tiwari, K.N.; Bhadoria, P. Effect of land use land cover change on soil erosion potential in an agricultural watershed. Environ. Monit. Assess. 2011, 173, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Riitters, K.H.; O’neill, R.; Hunsaker, C.; Wickham, J.D.; Yankee, D.; Timmins, S.; Jones, K.; Jackson, B. A factor analysis of landscape pattern and structure metrics. Landsc. Ecol. 1995, 10, 23–39. [Google Scholar] [CrossRef]
- Wu, J.; Shen, W.; Sun, W.; Tueller, P.T. Empirical patterns of the effects of changing scale on landscape metrics. Landsc. Ecol. 2002, 17, 761–782. [Google Scholar] [CrossRef]
- Jin, X.; Jin, Y.; Mao, X. Ecological risk assessment of cities on the Tibetan Plateau based on land use/land cover changes–Case study of Delingha City. Ecol. Indic. 2019, 101, 185–191. [Google Scholar] [CrossRef]
- Mo, W.; Wang, Y.; Zhang, Y.; Zhuang, D. Impacts of road network expansion on landscape ecological risk in a megacity, China: A case study of Beijing. Sci. Total Environ. 2017, 574, 1000–1011. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Yang, J.; Tang, W. Spatially explicit landscape-level ecological risks induced by land use and land cover change in a national ecologically representative region in China. Int. J. Environ. Res. Public Health 2015, 12, 14192–14215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Yushanjiang, A.; Wang, D. Ecological risk assessment due to land use/cover changes (LUCC) in Jinghe County, Xinjiang, China from 1990 to 2014 based on landscape patterns and spatial statistics. Environ. Earth Sci. 2018, 77, 491. [Google Scholar] [CrossRef]
- Xie, H.; Wang, P.; Huang, H. Ecological risk assessment of land use change in the Poyang Lake eco-economic zone, China. Int. J. Environ. Res. Public Health 2013, 10, 328–346. [Google Scholar] [CrossRef] [Green Version]
- Agency, X.N. The Top-Level Design of China’s Territorial Spatial Planning is Basically Formed; Xinhua News Agency: Beijing, China, 2019. [Google Scholar]
- Hua, L.; Liao, J.; Chen, H.; Chen, D.; Shao, G. Assessment of ecological risks induced by land use and land cover changes in Xiamen City, China. Int. J. Sustain. Dev. World Ecol. 2018, 25, 439–447. [Google Scholar] [CrossRef]
- Yan, Y.; Shi, S.; Hu, B.; Yang, K. Ecological Risk Assessment of Guangxi Xijiang River Basin based on Landscape Pattern. Ekoloji Derg. 2018, 105, 5–16. [Google Scholar]
- Yue, D.-x.; Zeng, J.-j.; Yang, C.; Zou, M.-l.; Li, K.; Chen, G.-g.; Guo, J.-j.; Xu, X.-f.; Meng, X.-M. Ecological risk assessment of the Gannan Plateau, northeastern Tibetan Plateau. J. Mt. Sci. 2018, 15, 1254–1267. [Google Scholar] [CrossRef]
- Cui, L.; Zhao, Y.; Liu, J.; Han, L.; Ao, Y.; Yin, S. Landscape ecological risk assessment in Qinling Mountain. Geol. J. 2018, 53, 342–351. [Google Scholar] [CrossRef]
- Song, G.; Li, Z.; Yang, Y.; Semakula, H.M.; Zhang, S. Assessment of ecological vulnerability and decision-making application for prioritizing roadside ecological restoration: A method combining geographic information system, Delphi survey and Monte Carlo simulation. Ecol. Indic. 2015, 52, 57–65. [Google Scholar] [CrossRef]
- Zhang, X.-b.; Shi, P.; Luo, J.; Liu, H.; Wei, W.J. The ecological risk assessment of arid inland river basin at the landscape scale: A case study on Shiyang River Basin. J. Nat. Resour. 2014, 29, 410–419. [Google Scholar]
- Lin, Y.; Hu, X.; Zheng, X.; Hou, X.; Zhang, Z.; Zhou, X.; Qiu, R.; Lin, J. Spatial variations in the relationships between road network and landscape ecological risks in the highest forest coverage region of China. Ecol. Indic. 2019, 96, 392–403. [Google Scholar] [CrossRef]
- Liu, D.; Qu, R.; Zhao, C.; Liu, A.; Deng, X. Landscape ecological risk assessment in Yellow River Delta. J. Food Agric. Environ. 2012, 10, 970–972. [Google Scholar]
- Liding, C.; Bojie, F. Analysis of impact of Human activity on landscape structiure in yellow river delta-a case study of dongying region. Acta Ecol. Sin. 1996, 16, 337–344. [Google Scholar]
- Dale, V.H.; Kline, K.L. Issues in using landscape indicators to assess land changes. Ecol. Indic. 2013, 28, 91–99. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Yang, L.; Chau, K.; Szeto, W.; Cui, X.; Wang, X. Accessibility to transit, by transit, and property prices: Spatially varying relationships. Transp. Res. Part D Transp. Environ. 2020, 85, 102387. [Google Scholar] [CrossRef]
- Yang, L.; Chu, X.; Gou, Z.; Yang, H.; Lu, Y.; Huang, W.J. Accessibility and proximity effects of bus rapid transit on housing prices: Heterogeneity across price quantiles and space. J. Transp. Geogr. 2020, 88, 102850. [Google Scholar] [CrossRef]
- Wu, J. Landscape ecology-concepts and theories. Chin. J. Ecol. 2000, 1, 42–52. [Google Scholar]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
Land-Use Type | Normalization of the Vulnerability Weight | Land-Use Type | Normalization of the Vulnerability Weight |
---|---|---|---|
Paddy field | 0.580 | River | 0.687 |
Irrigable land | 0.527 | Reservoir | 0.633 |
Dry farm | 0.527 | Pond | 0.687 |
Orchard | 0.207 | Coastal mud flat | 0.740 |
Tea garden | 0.207 | Inland mud flat | 0.740 |
Forest land | 0.313 | Irrigation canals | 0.633 |
Shrubland | 0.313 | Hydraulic construction land | 0.100 |
Other forestlands | 0.313 | Facility agricultural land | 0.527 |
Artificial grassland | 0.420 | Saline–alkali soil | 0.847 |
Other grasslands | 0.420 | Bare land | 0.900 |
Railway | 0.100 | Town | 0.100 |
Highway | 0.100 | Village | 0.153 |
Village road | 0.153 | Mining land | 0.153 |
Port wharf | 0.100 | Tourist attraction | 0.100 |
Index | Equation | Meaning of Parameters |
---|---|---|
Landscape disturbance | , and represent the weights of , and . + + = 1. | |
Landscape fragmentation | stands for the patch number of landscape ; represents the total area of landscape ; is the total area of all landscape types. | |
Landscape segmentation | ||
Landscape dominance | = The area of the landscape i divided by the total area of the sampling unit; = the number of the patch of landscape i divided by the total number of the patch in the sampling unit; = the number of sampling units with the path I divided by the total number of sampling units. |
2011 (Level 1 is the Area of Lowest LER, Written as L1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
2013 | L1 | L2 | L3 | L4 | L5 | L6 | L7 | L 8 | L9 | Total |
L1 | 0.00 | |||||||||
L2 | 0.00 | |||||||||
L3 | 0.00 | |||||||||
L4 | 79.31 | 14.54 | 93.85 | |||||||
L5 | 33.31 | 47.00 | 80.31 | |||||||
L6 | 548.05 | 341.43 | 889.48 | |||||||
L7 | 856.08 | 511.57 | 1367.65 | |||||||
L8 | 640.43 | 342.00 | 982.43 | |||||||
L9 | 294.29 | 294.29 | ||||||||
total | 0.00 | 0.00 | 79.31 | 33.31 | 562.58 | 903.08 | 981.86 | 805.86 | 342.00 | 3708.00 |
Area of increasing in LER: 2451.46ha | Area of decreasing in LER: 1256.54ha |
Year | Grain Levels (km) | ||||||
---|---|---|---|---|---|---|---|
1.5 | 3 | 5 | 10 | 15 | 20 | 30 | |
2011 | 0.574 | 0.439 | 0.353 | 0.302 | 0.247 | 0.201 | 0.164 |
2013 | 0.573 | 0.438 | 0.352 | 0.302 | 0.246 | 0.201 | 0.164 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, M.; Yang, L. Assessing Landscape Ecological Risk Induced by Land-Use/Cover Change in a County in China: A GIS- and Landscape-Metric-Based Approach. Sustainability 2020, 12, 9037. https://doi.org/10.3390/su12219037
Liu J, Wang M, Yang L. Assessing Landscape Ecological Risk Induced by Land-Use/Cover Change in a County in China: A GIS- and Landscape-Metric-Based Approach. Sustainability. 2020; 12(21):9037. https://doi.org/10.3390/su12219037
Chicago/Turabian StyleLiu, Jianxiao, Meilian Wang, and Linchuan Yang. 2020. "Assessing Landscape Ecological Risk Induced by Land-Use/Cover Change in a County in China: A GIS- and Landscape-Metric-Based Approach" Sustainability 12, no. 21: 9037. https://doi.org/10.3390/su12219037
APA StyleLiu, J., Wang, M., & Yang, L. (2020). Assessing Landscape Ecological Risk Induced by Land-Use/Cover Change in a County in China: A GIS- and Landscape-Metric-Based Approach. Sustainability, 12(21), 9037. https://doi.org/10.3390/su12219037