Analysis of Cost-Optimal Renewable Energy Expansion for the Near-Term Jordanian Electricity System
Abstract
:1. Introduction and Background
1.1. Electricity Supply and Demand
1.2. Strategies and Targets
1.3. Research Question
2. State of the Art
2.1. Future Scenarios
2.2. Pumped Hydro Storage
2.3. Contribution
3. Mathematical Model
4. Scenario Assumptions
Costs and Technology Parameter
5. Results
5.1. Cost-Optimal Mix
5.2. Varying Renewable Energy Shares
5.3. System Operation
5.4. Costs
6. Discussion
6.1. Comparison with Other Studies
6.2. Limitations of the Study
6.3. The Value of Open Source Tools
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CAES | Compressed Air Energy Storage |
CC | Combined Cycle |
DE | Diesel Engine |
FOM | Fixed operation and maintenance |
GAMS | General Algebraic Modelling System |
GDP | Gross Domestic Product |
GHG | Green house gas |
IIASA | International Institute of Applied Systems Analysis |
INDC | Intended Nationally Determined Contribution |
LEAP | Low Emission Analysis Plattform |
LCOE | Levelised Cost of Electricity |
MENA | Middle East and Northern Africa |
NEPCO | National Electric Power Company |
GT | Gas Turbine |
PV | Photovoltaic |
oemof | Open Energy System Modelling Framework |
RE | Renewable Energy |
ST | Steam Turbine |
WACC | Weighted average cost of capital |
Appendix A. Results
REF | 40% | 50% | 60% | 70% | 80% | 90% | |
---|---|---|---|---|---|---|---|
CONT | 58.76 | - | - | - | - | - | - |
BASE | 54.52 | 55.15 | 57.04 | 61.04 | 69.92 | 83.68 | 101.83 |
GRE | 48.37 | 49.26 | 50.91 | 54.79 | 63.31 | 75.06 | 91.87 |
AUT | 95.59 | 95.59 | 95.59 | 95.59 | 96.28 | 100.91 | 109.58 |
Gas-cc | Gas-de | Gas-st | Gas-gt | Shaleoil-st | Wind-Onshore | Solar-pv | phs | Battery | |
---|---|---|---|---|---|---|---|---|---|
CONT | 138.27 | 70.9 | 55.67 | 7.02 | 118.09 | 64.77 | 261.93 | 0.00 | 0.00 |
BASE | 144 | 70.9 | 55.67 | 3.07 | 118.09 | 64.77 | 262.27 | 0.00 | 0.00 |
BASE-40 | 140.08 | 70.9 | 55.67 | 3.07 | 118.09 | 135.65 | 288.44 | 5.56 | 0.00 |
BASE-50 | 138.27 | 70.9 | 55.67 | 3.07 | 118.09 | 303.45 | 293.54 | 10.43 | 0.00 |
BASE-60 | 138.27 | 70.9 | 55.67 | 3.07 | 118.09 | 479.53 | 332.55 | 30.16 | 0.00 |
BASE-70 | 138.27 | 70.9 | 55.67 | 3.07 | 118.09 | 795.27 | 365.10 | 30.16 | 21.22 |
BASE-80 | 138.27 | 70.9 | 55.67 | 3.07 | 118.09 | 881.53 | 460.03 | 30.16 | 346.41 |
BASE-90 | 138.27 | 70.9 | 55.67 | 3.07 | 118.09 | 878.64 | 610.81 | 30.16 | 826.25 |
GRE | 201.19 | 0 | 0 | 36.84 | 0.00 | 0.00 | 274.11 | 0.00 | 0.00 |
GRE-40 | 184.21 | 0 | 0 | 37.23 | 0.00 | 113.16 | 304.40 | 19.88 | 0.00 |
GRE-50 | 167.89 | 0 | 0 | 43.4 | 0.00 | 277.35 | 304.91 | 30.16 | 0.00 |
GRE-60 | 154.26 | 0 | 0 | 52.39 | 0.00 | 480.34 | 333.36 | 30.16 | 0.00 |
GRE-70 | 136.23 | 0 | 0 | 53.36 | 0.00 | 738.83 | 372.42 | 30.16 | 77.48 |
GRE-80 | 102.57 | 0 | 0 | 29.37 | 0.00 | 807.10 | 477.83 | 30.16 | 410.32 |
GRE-90 | 64.84 | 0 | 0 | 31.69 | 0.00 | 841.63 | 622.36 | 30.16 | 855.80 |
AUT | - | - | - | - | 724.27 | 349.56 | 416.02 | 30.16 | 335.34 |
AUT-70 | - | - | - | - | 686.15 | 460.42 | 451.38 | 30.16 | 406.25 |
AUT-80 | - | - | - | - | 626.15 | 673.96 | 511.25 | 30.16 | 543.04 |
AUT-90 | - | - | - | - | 471.19 | 676.66 | 668.73 | 30.16 | 1001.05 |
Gas-cc | Gas-de | Gas-gt | Gas-st | Shaleoil-st | Solar-pv | Wind-Onshore | Hydro-ror | phs | Battery | |
---|---|---|---|---|---|---|---|---|---|---|
CONT | 2567 | 810 | 189 | 636 | 470 | 4267 | 663 | 12 | 0 | 0 |
BASE | 2673 | 810 | 83 | 636 | 470 | 4272 | 663 | 12 | 0 | 0 |
BASE-40 | 2600 | 810 | 83 | 636 | 470 | 4698 | 1388 | 12 | 69 | 0 |
BASE-50 | 2567 | 810 | 83 | 636 | 470 | 4781 | 3106 | 12 | 129 | 0 |
BASE-60 | 2567 | 810 | 83 | 636 | 470 | 5417 | 4908 | 12 | 375 | 0 |
BASE-70 | 2567 | 810 | 83 | 636 | 470 | 5947 | 8140 | 12 | 375 | 80 |
BASE-80 | 2567 | 810 | 83 | 636 | 470 | 7494 | 9023 | 12 | 375 | 1320 |
BASE-90 | 2567 | 810 | 83 | 636 | 470 | 9950 | 8993 | 12 | 375 | 3150 |
GRE | 3735 | 0 | 994 | 0 | 0 | 4465 | 0 | 0 | 0 | 0 |
GRE-40 | 3420 | 0 | 1005 | 0 | 0 | 4958 | 1158 | 0 | 247 | 0 |
GRE-50 | 3117 | 0 | 1172 | 0 | 0 | 4967 | 2839 | 0 | 375 | 0 |
GRE-60 | 2863 | 0 | 1414 | 0 | 0 | 5430 | 4916 | 0 | 375 | 0 |
GRE-70 | 2529 | 0 | 1440 | 0 | 0 | 6066 | 7562 | 0 | 375 | 295 |
GRE-80 | 1904 | 0 | 793 | 0 | 0 | 7784 | 8261 | 0 | 375 | 1564 |
GRE-90 | 1203 | 0 | 855 | 0 | 0 | 10,138 | 8615 | 0 | 375 | 3263 |
AUT | 0 | 0 | 0 | 0 | 2882 | 6777 | 3578 | 0 | 375 | 1278 |
AUT-70 | 0 | 0 | 0 | 0 | 2730 | 7353 | 4712 | 0 | 375 | 1548 |
AUT-80 | 0 | 0 | 0 | 0 | 2492 | 8328 | 6898 | 0 | 375 | 2070 |
AUT-90 | 0 | 0 | 0 | 0 | 1875 | 10,893 | 6926 | 0 | 375 | 3816 |
Gas-cc | Gas-de | Gas-gt | Gas-st | Shaleoil-st | Hydro-ror | Solar-pv | Wind-Onshore | Battery | phs | Demand | Excess | phs-cos | Battery-cos | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CONT | 14.01 | 1.07 | 0.00 | 0.06 | 3.53 | 0.02 | 8.16 | 1.36 | 0.00 | 0.00 | −28.0 | −0.21 | 0.00 | 0.00 |
BASE | 16.41 | 1.94 | 0.01 | 0.29 | 0.01 | 0.02 | 8.17 | 1.36 | 0.00 | 0.00 | −28.0 | −0.21 | 0.00 | 0.00 |
BASE-40 | 14.85 | 1.71 | 0.00 | 0.23 | 0.01 | 0.02 | 8.99 | 2.85 | 0.00 | 0.05 | −28.0 | −0.63 | −0.08 | 0.00 |
BASE-50 | 12.73 | 1.13 | 0.00 | 0.13 | 0.00 | 0.02 | 9.14 | 6.37 | 0.00 | 0.14 | −28.0 | −1.45 | −0.23 | 0.00 |
BASE-60 | 10.55 | 0.61 | 0.00 | 0.04 | 0.00 | 0.02 | 10.36 | 10.06 | 0.00 | 0.56 | −28.0 | −3.33 | −0.88 | 0.00 |
BASE-70 | 8.05 | 0.33 | 0.00 | 0.02 | 0.00 | 0.02 | 11.37 | 16.69 | 0.15 | 0.72 | −28.0 | −7.99 | −1.15 | −0.21 |
BASE-80 | 5.58 | 0.02 | 0.00 | 0.00 | 0.00 | 0.02 | 14.33 | 18.50 | 2.18 | 0.69 | −28.0 | −9.30 | −1.07 | −2.95 |
BASE-90 | 2.80 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 19.03 | 18.44 | 4.80 | 0.63 | −28.0 | −10.25 | −0.98 | −6.49 |
GRE | 19.44 | 0.00 | 0.20 | 0.00 | 0.00 | 0.00 | 8.54 | 0.00 | 0.00 | 0.00 | −28.0 | −0.19 | 0.00 | 0.00 |
GRE-40 | 16.60 | 0.00 | 0.20 | 0.00 | 0.00 | 0.00 | 9.48 | 2.38 | 0.00 | 0.20 | −28.0 | −0.55 | −0.31 | 0.00 |
GRE-50 | 13.77 | 0.00 | 0.23 | 0.00 | 0.00 | 0.00 | 9.50 | 5.82 | 0.00 | 0.38 | −28.0 | −1.10 | −0.60 | 0.00 |
GRE-60 | 10.90 | 0.00 | 0.30 | 0.00 | 0.00 | 0.00 | 10.38 | 10.08 | 0.00 | 0.57 | −28.0 | −3.35 | −0.89 | 0.00 |
GRE-70 | 8.10 | 0.00 | 0.30 | 0.00 | 0.00 | 0.00 | 11.60 | 15.51 | 0.50 | 0.67 | −28.0 | −6.93 | −1.06 | −0.69 |
GRE-80 | 5.32 | 0.00 | 0.28 | 0.00 | 0.00 | 0.00 | 14.89 | 16.94 | 2.68 | 0.65 | −28.0 | −8.05 | −1.03 | −3.68 |
GRE-90 | 2.47 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | 19.39 | 17.66 | 5.42 | 0.61 | −28.0 | −9.49 | −0.98 | −7.41 |
AUT | 0.00 | 0.00 | 0.00 | 0.00 | 10.27 | 0.00 | 12.96 | 7.34 | 2.00 | 0.42 | −28.0 | −1.62 | −0.66 | −2.70 |
AUT-70 | 0.00 | 0.00 | 0.00 | 0.00 | 8.40 | 0.00 | 14.06 | 9.66 | 2.53 | 0.50 | −28.0 | −2.95 | −0.78 | −3.42 |
AUT-80 | 0.00 | 0.00 | 0.00 | 0.00 | 5.60 | 0.00 | 15.93 | 14.14 | 3.48 | 0.59 | −28.0 | −6.11 | −0.92 | −4.71 |
AUT-90 | 0.00 | 0.00 | 0.00 | 0.00 | 2.80 | 0.00 | 20.83 | 14.20 | 6.40 | 0.60 | −28.0 | −7.14 | −0.96 | −8.73 |
Appendix A.1. Mathematical Symbols
Symbol | Index | Description | Elements of Sets in Scenarios | Unit |
---|---|---|---|---|
T | t | Timesteps | {1…8760} | h |
R | r | Renewable units | {Wind, PV} | MW |
C | c | Conventional units | {CCGT, GT, ST, DE, Oil-shale ST} | MW |
S | s | Storage units | {Battery, PHS} | MW, MWh |
I | i | Investment units | Scenario dependet | - |
U | u | All supply units () | - | - |
Symbol | Description |
---|---|
Power output at timestep t | |
Upper limit of power output | |
Storage level of storage s at timestep | |
Upper limit of storage output | |
Excess variable |
Symbol | Description |
---|---|
Upper power investment limit of unit i | |
Lower power investment limit of unit i | |
Upper energy investment limit of storage s | |
Electricity demand at timestep t | |
Standing loss of storage s | |
Charge efficiency of storage s | |
Discharge efficiency of storage s | |
Operational expenditure of unit u | |
(Annualised) power expenditure of unit i | |
(Annualised) energy capital expenditure of storage s | |
Generation profile of renewable energy unit r | |
Emission factor of power output of unit c |
References
- Tigas, K.; Giannakidis, G.; Perrakis, K.; Kafantaris, N.; Mandoulidis, P. Development of Energy Strategy in Jordan for 2018–2030 and Prospects up to 2050; Technical Assistance 2016/380-325, European Union: Brussels, Belgium, 2019. [Google Scholar]
- Wenzel, T.; Asen, J.; Market Info Jordan—Photovoltaics. Technical Report, Deutsche Energie-Agentur GmbH (dena) -German Energy Agency, Berlin. 2014. Available online: https://www.dena.de/fileadmin/dena/Dokumente/Pdf/3205_Market_Info_Jordan_Photovoltaic.pdf (accessed on 31 August 2020).
- Aziz, A.; Jellema, J.; Serajuddin, U. Energy Subsidies Reform in Jordan: Welfare Implications of Different Scenarios; World Bank: Washington, DC, USA, 2015. [Google Scholar] [CrossRef]
- Alshwawra, A.; Almuhtady, A. Impact of Regional Conflicts on Energy Security in Jordan. Int. J. Energy Econ. Policy 2020, 10, 45–50. [Google Scholar] [CrossRef]
- Komendantova, N.; Irshaid, J.; Marashdeh, L.; Al-Salaymeh, A.; Ekenberg, L.; Linnerooth-Bayer, J. Background Paper: Country Fact Sheet, Jordan—Energy and Development at a Glance, 2017; Background Paper; Internationals Konversionszentrum Bonn: Bonn, Germany, 2017. [Google Scholar]
- Ayasreh, E.A.; Bin Abu Bakar, M.Z.; Khosravi, R. The political concept of energy security: The case of Jordan. Hum. Soc. Sci. 2017, 44, 199–218. [Google Scholar]
- NEPCO. Annual Report 2018; Technical report, National Electric Power Company: Amman, Jordan, 2018; Available online: https://www.nepco.com.jo/store/docs/web/2018_en.pdf (accessed on 17 August 2020).
- NEPCO. Annual Report 2017; Technical report, National Electric Power Company: Amman, Jordan, 2017; Available online: https://www.nepco.com.jo/store/docs/web/2017_en.pdf (accessed on 31 August 2020).
- Mohammed, D. Improved Regulatory & Institutional Framework for Energy Efficiency in Jordan. Legislative Aspects & Development Opportunities. In Proceedings of the 5th International Forum on Energy for SD-Tunis, Hammamet, Tunisia, 4–6 November 2014. [Google Scholar]
- HKJ. Updated Master Strategy of Energy Sector in Jordan for the Period (2007–2020); Summary, Hashemite Kingdom of Jordan: Amman, Jordan, 2007. [Google Scholar]
- Abu-Rumman, G.; Khdair, A.I.; Khdair, S.I. Current status and future investment potential in renewable energy in Jordan: An overview. Heliyon 2020, 6, e03346. [Google Scholar] [CrossRef] [PubMed]
- Almuhtady, A.; Alshwawra, A.; Alfaouri, M.; Al-Kouz, W.; Al-Hinti, I. Investigation of the trends of electricity demands in Jordan and its susceptibility to the ambient air temperature towards sustainable electricity generation. Energy Sustain. Soc. 2019, 9, 39. [Google Scholar] [CrossRef]
- Al-omary, M.; Kaltschmitt, M.; Becker, C. Electricity system in Jordan: Status & prospects. Renew. Sustain. Energy Rev. 2018, 81, 2398–2409. [Google Scholar] [CrossRef]
- Zelt, O.; Krüger, C.; Blohm, M.; Bohm, S.; Far, S. Long-Term Electricity Scenarios for the MENA Region: Assessing the Preferences of Local Stakeholders Using Multi-Criteria Analyses. Energies 2019, 12, 3046. [Google Scholar] [CrossRef] [Green Version]
- Danielson, M.; Ekenberg, L.; Komendantova, N. A Multi-stakeholder Approach to Energy Transition Policy Formation in Jordan. In Group Decision and Negotiation in an Uncertain World; Lecture Notes in Business Information Processing; Chen, Y., Kersten, G., Vetschera, R., Xu, H., Eds.; Springer: Cham, Switzerland, 2018; pp. 190–202. [Google Scholar] [CrossRef]
- Kiwan, S.; Al-Gharibeh, E. Jordan toward a 100% renewable electricity system. Renew. Energy 2020, 147, 423–436. [Google Scholar] [CrossRef]
- Emiliano, B. Jordan suspends renewables auctions, new licenses for projects over 1 MW. PV Magazine, 28 January 2019. [Google Scholar]
- HKJ. Intended Nationally Determined Contribution (INDC); Technical report, Hashemite Kingdom of Jordan: Amman, Jordan, 2015. [Google Scholar]
- European Council. 2030 Climate and Energy Policy Framework; European Council conclusions EUCO 169/14, European Council: Brussels, Belgium, 2014. [Google Scholar]
- Hilpert, S.; Kaldemeyer, C.; Krien, U.; Günther, S.; Wingenbach, C.; Plessmann, G. The Open Energy Modelling Framework (oemof)—A new approach to facilitate open science in energy system modelling. Energy Strategy Rev. 2018, 22, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Dawoud, F.; Al-Salaymeh, A.; Abuzeid, O. Electricity Generation Scenarios for Jordan (2018–2035). Indian J. Sci. Res. 2019, 10, 16. [Google Scholar]
- Azzuni, A.; Aghahosseini, A.; Ram, M.; Bogdanov, D.; Caldera, U.; Breyer, C. Energy Security Analysis for a 100% Renewable Energy Transition in Jordan by 2050. Sustainability 2020, 12, 4921. [Google Scholar] [CrossRef]
- Komendantova, N.; Ekenberg, L.; Marashdeh, L.; Al Salaymeh, A.; Danielson, M.; Linnerooth-Bayer, J. Are Energy Security Concerns Dominating Environmental Concerns? Evidence from Stakeholder Participation Processes on Energy Transition in Jordan. Climate 2018, 6, 88. [Google Scholar] [CrossRef] [Green Version]
- Homschmied-Carstens, S. Report on the Analysis of Pumped-Storage Hydropower Potential in Jordan; Technical Report; The Renewable Energy and Energy Efficiency Programme/Technical Assistance (Reee II Ta) Jordan: Amman, Jordan, 2018. [Google Scholar]
- Alasis, E.; Homscheid-Carstens, S.; Schmitt, A.; Frobeen, H.; Uhrakeye, T.; Mik, J. Pre-Feasibility Study of Pumped-Storage Hydropower Potential in Jordan & at Mujib Reservoir. In Proceedings of the MENA-SELECT Project Regional Conference, Dead Sea, Jordan, 29–30 January 2018. [Google Scholar]
- Javed, M.S.; Zhong, D.; Ma, T.; Song, A.; Ahmed, S. Hybrid pumped hydro and battery storage for renewable energy based power supply system. Appl. Energy 2020, 257, 114026. [Google Scholar] [CrossRef]
- Hrayshat, E.S. Analysis of renewable energy situation in Jordan. Renew. Sustain. Energy Rev. 2007, 11, 1873–1887. [Google Scholar] [CrossRef]
- Al-Masri, R.A.; Chenoweth, J.; Murphy, R.J. Exploring the Status Quo of Water-Energy Nexus Policies and Governance in Jordan. Environ. Sci. Policy 2019, 100, 192–204. [Google Scholar] [CrossRef] [Green Version]
- Hilpert, S.; Günther, S.; Söthe, M. Oemof Tabular. 2020. Available online: https://github.com/oemof/oemof-tabular (accessed on 1 October 2020).
- Pfenninger, S.; Staffell, I. Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy 2016, 114, 1251–1265. [Google Scholar] [CrossRef] [Green Version]
- Staffell, I.; Pfenninger, S. Using bias-corrected reanalysis to simulate current and future wind power output. Energy 2016, 114, 1224–1239. [Google Scholar] [CrossRef] [Green Version]
- Schröder, A.; Kunz, F.; Meiss, J.; Mendelevitch, R.; von Hirschhausen, C. Current and Prospective Costs of Electricity Generation until 2050; Data Documentation; Deutsches Insititut für Wirtschaftsforschung: Berlin, Germany, 2013. [Google Scholar]
- Mongird, K.; Fotedar, V.; Viswanathan, V.; Koritarov, P.; Balducci, B.; Hadjerioua, J. Energy Storage Technology and Cost Characterization Report; Technical Report; US Department of Energy: Washington, DC, USA, 2019. Available online: https://www.energy.gov/sites/prod/files/2019/07/f65/Storage%20Cost%20and%20Performance%20Characterization%20Report_Final.pdf (accessed on 7 September 2020).
- Lacal Arantegui, R.; Jaeger-Waldau, A.; Vellei, M.; Sigfusson, B.; Magagna, D.; Jakubcionis, M.; Perez Fortes Maria Del, M.; Lazarou, S.; Giuntoli, J.; Weidner Ronnefeld, E.; et al. ETRI 2014—Energy Technology Reference Indicator Projections for 2010–2050; EUR—Scientific and Technical Research Reports; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar] [CrossRef]
- Ueckerdt, F.; Hirth, L.; Luderer, G.; Edenhofer, O. System LCOE: What are the costs of variable renewables? Energy 2013, 63, 61–75. [Google Scholar] [CrossRef]
- Aghahosseini, A.; Bogdanov, D.; Breyer, C. Towards sustainable development in the MENA region: Analysing the feasibility of a 100% renewable electricity system in 2030. Energy Strategy Rev. 2020, 28, 100466. [Google Scholar] [CrossRef]
- Al-Ansari, N.; Alibrahiem, N.; Alsaman, M.; Knutsson, S. Water Demand Management in Jordan. Engineering 2014, 6, 19–26. [Google Scholar] [CrossRef] [Green Version]
CC | GT | ST | DE | Shale-ST | Wind | PV | Hydro | |
---|---|---|---|---|---|---|---|---|
2018 | 2740 | 83 | 602 | 814 | - | 280.4 | 698.4 | 12 |
2023 | 2567 | 83 | 363 | 810 | 470 | 663 | 1144 | 12 |
FOM | CAPEX | FLH | Lifetime | |||
---|---|---|---|---|---|---|
(-) | (%/) | ($/kW) | ($/MWhth) | (h) | (Years) | |
Wind | 1 | 3 | 1182 [32] | - | 2050 | 20 |
PV | 1 | 2 | 750 [32] | - | 1912 | 20 |
CCGT | 0.48 [1] | 3.5 | 800 [1] | 20.5 | - | 30 |
GT | 0.33 [1] | 3.5 | 550 [1] | 20.5 | - | 30 |
ST | 0.38 [1] | 3.5 | 1300 [1] | 20.5 | - | 30 |
DE | 0.33 [1] | 3.5 | 20.5 | - | 30 | |
Oil shale ST | 0.32 [1] | 3 | 3720 [16] | 25.2 | - | 30 |
Battery (power) | 0.86 [33] | 3 | 306 [33] | - | - | 10 |
PHS (power) | 0.80 [33] | 1.5 | 1500 [34] | - | - | 60 |
(-) | (%/CAPEX) | ($/kWh) | ($/kWhth) | (h) | ||
Battery (energy) | 1 | 0 | 285 [33] | - | - | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hilpert, S.; Dettner, F.; Al-Salaymeh, A. Analysis of Cost-Optimal Renewable Energy Expansion for the Near-Term Jordanian Electricity System. Sustainability 2020, 12, 9339. https://doi.org/10.3390/su12229339
Hilpert S, Dettner F, Al-Salaymeh A. Analysis of Cost-Optimal Renewable Energy Expansion for the Near-Term Jordanian Electricity System. Sustainability. 2020; 12(22):9339. https://doi.org/10.3390/su12229339
Chicago/Turabian StyleHilpert, Simon, Franziska Dettner, and Ahmed Al-Salaymeh. 2020. "Analysis of Cost-Optimal Renewable Energy Expansion for the Near-Term Jordanian Electricity System" Sustainability 12, no. 22: 9339. https://doi.org/10.3390/su12229339
APA StyleHilpert, S., Dettner, F., & Al-Salaymeh, A. (2020). Analysis of Cost-Optimal Renewable Energy Expansion for the Near-Term Jordanian Electricity System. Sustainability, 12(22), 9339. https://doi.org/10.3390/su12229339