Characterization of Sewage Sludge and Food Waste-Based Biochar for Co-Firing in a Coal-Fired Power Plant: A Case Study in Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Production of Biochar
2.2. Analysis
3. Results and Discussion
3.1. Calorific Value
3.2. Chlorine Content
3.3. AAEMs Content
3.4. Heavy Metal Content
3.5. Application of FW- and SS-Based Biochar as Bio-SRF
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IEA. Coal 2018; IEA: Paris, France, 2018. [Google Scholar]
- IEA. Global Energy & CO2 Status Report; IEA: Paris, France, 2019. [Google Scholar]
- Tillman, D. Biomass cofiring: The technology, the experience, the combustion consequences. Biomass Bioenergy 2000, 19, 365–384. [Google Scholar] [CrossRef]
- Robinson, A.L.; Rhodes, J.S.; Keith, D.W. Assessment of Potential Carbon Dioxide Reductions Due to Biomass-Coal Cofiring in the United States. Environ. Sci. Technol. 2003, 37, 5081–5089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEvilly, G.; Abeysuriya, S.; Dix, S. Facilitating the Adoption of Biomass Co-Firing for Power Generation; Rural Industries Research and Development Corporation: Wagga Wagga, Australia, 2011; ISBN 978-1-74254-252-2. [Google Scholar]
- Garg, A.; Smith, R.; Hill, D.; Simms, N.; Pollard, S. Wastes as Co-Fuels: The Policy Framework for Solid Recovered Fuel (SRF) in Europe, with UK Implications. Environ. Sci. Technol. 2007, 41, 4868–4874. [Google Scholar] [CrossRef] [Green Version]
- Velis, C.A.; Wagland, S.; Longhurst, P.; Robson, B.; Sinfield, K.; Wise, S.; Pollard, S. Solid Recovered Fuel: Influence of Waste Stream Composition and Processing on Chlorine Content and Fuel Quality. Environ. Sci. Technol. 2012, 46, 1923–1931. [Google Scholar] [CrossRef] [PubMed]
- Ruan, R.; Tan, H.; Wang, X.; Li, Y.; Li, S.; Hu, Z.; Wei, B.; Yang, T. Characteristics of fine particulate matter formation during combustion of lignite riched in AAEM (alkali and alkaline earth metals) and sulfur. Fuel 2018, 211, 206–213. [Google Scholar] [CrossRef]
- Yang, G.; Wang, J. Biohydrogen production by co-fermentation of sewage sludge and grass residue: Effect of various substrate concentrations. Fuel 2019, 237, 1203–1208. [Google Scholar] [CrossRef]
- Zielińska, A.; Oleszczuk, P. Effect of pyrolysis temperatures on freely dissolved polycyclic aromatic hydrocarbon (PAH) concentrations in sewage sludge-derived biochars. Chemosphere 2016, 153, 68–74. [Google Scholar] [CrossRef]
- Lee, E.; Bittencourt, P.; Casimir, L.; Jimenez, E.; Wang, M.; Zhang, Q.; Ergas, S.J. Biogas production from high solids anaerobic co-digestion of food waste, yard waste and waste activated sludge. Waste Manag. 2019, 95, 432–439. [Google Scholar] [CrossRef]
- Algapani, D.E.; Wang, J.; Qiao, W.; Su, M.; Goglio, A.; Wandera, S.M.; Jiang, M.; Pan, X.; Adani, F.; Dong, R. Improving methane production and anaerobic digestion stability of food waste by extracting lipids and mixing it with sewage sludge. Bioresour. Technol. 2017, 244, 996–1005. [Google Scholar] [CrossRef]
- Huang, H.-J.; Yang, T.; Lai, F.-Y.; Wu, G.-Q. Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar. J. Anal. Appl. Pyrolysis 2017, 125, 61–68. [Google Scholar] [CrossRef]
- Wickham, R.; Xie, S.; Galway, B.; Bustamante, H.; Nghiem, L.D. Anaerobic digestion of soft drink beverage waste and sewage sludge. Bioresour. Technol. 2018, 262, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Battista, F.; Frison, N.; Pavan, P.; Cavinato, C.; Gottardo, M.; Fatone, F.; Eusebi, A.L.; Majone, M.; Zeppilli, M.; Valentino, F.; et al. Food wastes and sewage sludge as feedstock for an urban biorefinery producing biofuels and added-value bioproducts. J. Chem. Technol. Biotechnol. 2020, 95, 328–338. [Google Scholar] [CrossRef]
- Van Wesenbeeck, S.; Prins, W.; Ronsse, F.; Antal, M.J. Sewage Sludge Carbonization for Biochar Applications. Fate of Heavy Metals. Energy Fuels 2014, 28, 5318–5326. [Google Scholar] [CrossRef]
- Aracil, I.; Font, R.; Conesa, J.A. Semivolatile and volatile compounds from the pyrolysis and combustion of polyvinyl chloride. J. Anal. Appl. Pyrolysis 2005, 74, 465–478. [Google Scholar] [CrossRef] [Green Version]
- Altarawneh, M.; Dlugogorski, B.Z.; Kennedy, E.M.; Mackie, J.C. Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Prog. Energy Combust. Sci. 2009, 35, 245–274. [Google Scholar] [CrossRef]
- Li, R.; Kai, X.; Yang, T.; Sun, Y.; He, Y.; Shen, S. Release and transformation of alkali metals during co-combustion of coal and sulfur-rich wheat straw. Energy Convers. Manag. 2014, 83, 197–202. [Google Scholar] [CrossRef]
- Wu, D.; Wang, Y.; Wang, Y.; Li, S.; Wei, X. Release of alkali metals during co-firing biomass and coal. Renew. Energy 2016, 96, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Environment. Enforcement Rule of the Act on the Promotion of Saving and Recycling of Resources; Ministry of Environment: Sejong City, Korea, 2020. [Google Scholar]
- British Standards Institution. BS EN 15359:2011—Solid Recovered Fuels. Specifications and Classes; British Standards Institution: London, UK, 2011. [Google Scholar]
- Lee, Y.-E.; Jo, J.-H.; Kim, I.-T.; Yoo, Y.-S. Chemical Characteristics and NaCl Component Behavior of Biochar Derived from the Salty Food Waste by Water Flushing. Energies 2017, 10, 1555. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Environment. A Study on Food Waste Reduction Equipment Guidelines and Quality Standard; Ministry of Environment: Sejong City, Korea, 2009. [Google Scholar]
- Lee, Y.-E.; Shin, D.-C.; Jeong, Y.; Kim, I.-T.; Yoo, Y.-S. Effects of Pyrolysis Temperature and Retention Time on Fuel Characteristics of Food Waste Feedstuff and Compost for Co-Firing in Coal Power Plants. Energies 2019, 12, 4538. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Bio Technol. 2020, 19, 191–215. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Jiang, X.; Han, X. Study on the Characteristics of the Oil Shale and Shale Char Mixture Pyrolysis. Energy Fuels 2009, 23, 5792–5797. [Google Scholar] [CrossRef]
- Song, F.; Wang, X.; Li, T.; Zhang, J.; Bai, Y.; Xing, B.; Giesy, J.P.; Wu, F. Spectroscopic analyses combined with Gaussian and Coats-Redfern models to investigate the characteristics and pyrolysis kinetics of sugarcane residue-derived biochars. J. Clean. Prod. 2019, 237, 117855. [Google Scholar] [CrossRef]
- Tarelho, L.A.C.; Hauschild, T.; Vilas-Boas, A.; Silva, D.; Matos, M. Biochar from pyrolysis of biological sludge from wastewater treatment. Energy Rep. 2020, 6, 757–763. [Google Scholar] [CrossRef]
- Johansen, J.M.; Jakobsen, J.G.; Frandsen, F.J.; Glarborg, P. Release of K, Cl, and S during Pyrolysis and Combustion of High-Chlorine Biomass. Energy Fuels 2011, 25, 4961–4971. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-R.; Chen, F.; Zhao, B.; Li, X.; Qin, L. Volatilisation and transformation behavior of sodium species at high temperature and its influence on ash fusion temperatures. Fuel Process. Technol. 2017, 155, 209–215. [Google Scholar] [CrossRef]
- Li, G.; Li, S.; Huang, Q.; Yao, Q. Fine particulate formation and ash deposition during pulverized coal combustion of high-sodium lignite in a down-fired furnace. Fuel 2015, 143, 430–437. [Google Scholar] [CrossRef]
- Hassan, M.; Liu, Y.; Naidu, R.; Parikh, S.J.; Du, J.; Qi, F.; Willett, I.R. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Sci. Total. Environ. 2020, 744, 140714. [Google Scholar] [CrossRef]
- Yi, B.; Yuan, Q.; Cao, H.; Niu, W.; Wang, M.; Zhu, Y.; Yan, S. Effect of alkali and alkaline earth metal species on the combustion characteristics of cattle manures. RSC Adv. 2018, 8, 11705–11713. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; Tan, H.; Hui, S. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Prog. Energy Combust. Sci. 2016, 52, 1–61. [Google Scholar] [CrossRef]
- Mourant, D.; Wang, Z.; He, M.; Wang, X.S.; Garcia-Perez, M.; Ling, K.; Li, C.-Z. Mallee wood fast pyrolysis: Effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil. Fuel 2011, 90, 2915–2922. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, W.; Wang, S.; Zhuang, L.; Yang, Y.; Qiu, R. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. J. Anal. Appl. Pyrolysis 2013, 102, 137–143. [Google Scholar] [CrossRef]
- Chan, K.; Xu, Z. Biochar: Nutrient Properties and Their Enhancement. In Biochar for Environmental Management: Science and Technology; Earthscan Publications Ltd.: London, UK, 2009; pp. 67–84. [Google Scholar]
- He, Y.; Zhai, Y.; Li, C.; Yang, F.; Chen, L.; Fan, X.; Peng, W.; Fu, Z. The fate of Cu, Zn, Pb and Cd during the pyrolysis of sewage sludge at different temperatures. Environ. Technol. 2010, 31, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Kistler, R.C.; Widmer, F.; Brunner, P.H. Behavior of chromium, nickel, copper, zinc, cadmium, mercury, and lead during the pyrolysis of sewage sludge. Environ. Sci. Technol. 1987, 21, 704–708. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-J.; Li, W.-W.; Jiang, H.; Yu, H.-Q. Fates of Chemical Elements in Biomass during Its Pyrolysis. Chem. Rev. 2017, 117, 6367–6398. [Google Scholar] [CrossRef] [PubMed]
- Iacovidou, E.; Hahladakis, J.; Deans, I.; Velis, C.A.; Purnell, P. Technical properties of biomass and solid recovered fuel (SRF) co-fired with coal: Impact on multi-dimensional resource recovery value. Waste Manag. 2018, 73, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Pahla, G.; Ntuli, F.; Muzenda, E. Torrefaction of landfill food waste for possible application in biomass co-firing. Waste Manag. 2018, 71, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Kurose, R.; Ikeda, M.; Makino, H.; Kimoto, M.; Miyazaki, T. Pulverized coal combustion characteristics of high-fuel-ratio coals. Fuel 2004, 83, 1777–1785. [Google Scholar] [CrossRef]
- Dai, J.; Sokhansanj, S.; Grace, J.R.; Bi, X.; Lim, C.J.; Melin, S. Overview and some issues related to co-firing biomass and coal. Can. J. Chem. Eng. 2008, 86, 367–386. [Google Scholar] [CrossRef]
- Demirbas, A. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 2004, 30, 219–230. [Google Scholar] [CrossRef]
- Wu, H.; Glarborg, P.; Frandsen, F.J.; Dam-Johansen, K.; Jensen, P.A.; Sander, B. Co-combustion of pulverized coal and solid recovered fuel in an entrained flow reactor—General combustion and ash behaviour. Fuel 2011, 90, 1980–1991. [Google Scholar] [CrossRef]
Sample Description | FW:SS Ratio | Moisture (%) | Volatile (%) | Ash (%) | Fixed Carbon (%) | Fuel Ratio (Unitless) |
---|---|---|---|---|---|---|
Raw mixture of FW and SS | 100:0 (FW100) | 7.07 | 77.20 | 3.09 | 19.70 | 0.26 |
67:33 (FW67) | 12.20 | 72.50 | 10.60 | 16.90 | 0.23 | |
50:50 (FW50) | 10.40 | 72.00 | 13.10 | 15.00 | 0.21 | |
33:67 (FW33) | 12.00 | 67.70 | 17.70 | 14.60 | 0.22 | |
0:100 (SS100) | 11.40 | 63.80 | 23.70 | 12.50 | 0.20 | |
Pyrolysis at 300 °C | 100:0 (FW100) | 1.71 | 61.30 | 4.33 | 34.40 | 0.56 |
67:33 (FW67) | 0.46 | 59.00 | 14.10 | 26.90 | 0.46 | |
50:50 (FW50) | 1.28 | 58.90 | 16.40 | 24.70 | 0.42 | |
33:67 (FW33) | 1.80 | 54.30 | 23.30 | 22.40 | 0.41 | |
0:100 (SS100) | 3.34 | 55.20 | 29.20 | 15.60 | 0.28 | |
Pyrolysis at 400 °C | 100:0 (FW100) | 1.34 | 32.30 | 7.20 | 60.50 | 1.87 |
67:33 (FW67) | 1.19 | 37.30 | 20.30 | 42.40 | 1.14 | |
50:50 (FW50) | 0.68 | 30.90 | 28.50 | 40.60 | 1.31 | |
33:67 (FW33) | 2.76 | 32.20 | 34.00 | 33.80 | 1.05 | |
0:100 (SS100) | 2.16 | 30.50 | 42.80 | 26.60 | 0.87 | |
Pyrolysis at 500 °C | 100:0 (FW100) | 3.40 | 19.50 | 9.24 | 71.20 | 3.65 |
67:33 (FW67) | 2.67 | 21.60 | 27.60 | 50.80 | 2.35 | |
50:50 (FW50) | 1.10 | 19.30 | 38.20 | 42.50 | 2.20 | |
33:67 (FW33) | 3.79 | 17.70 | 40.00 | 42.30 | 2.39 | |
0:100 (SS100) | 5.90 | 19.50 | 50.50 | 30.00 | 1.54 |
Characteristic | Unit | Pellet | Non-Pellet | |||
---|---|---|---|---|---|---|
Shape and size | mm | Diameter | ≤50 | Width | ≤120 | |
Length | ≤100 | Length | ≤120 | |||
Moisture | wt.% | ≤10 | ≤25 | |||
Net calorific value | kcal/kg | Imported SRF ≥ 3150 Manufactured SRF ≥ 3000 | ||||
Ash | wt.% | ≤15 | ||||
Chlorine | wt.% | ≤0.5 | ||||
Sulfur | wt.% | ≤0.6 | ||||
Biomass | wt.% | ≥95 | ||||
Metal | Hg | mg/kg | ≤0.6 | |||
Cd | ≤5.0 | |||||
Pb | ≤100 | |||||
As | ≤5.0 | |||||
Cr | ≤70.0 |
Pyrolysis Temperature | FW Ratio | Cu | Pb | As | Zn | Cd | Cr |
---|---|---|---|---|---|---|---|
300 °C | FW100 | 19.28 | 0.63 | 0.25 | 59.67 | 0.06 | N.D. |
FW67 | 238.76 | 5.51 | 1.57 | 457.99 | 0.55 | 10.00 | |
FW50 | 251.02 | 6.39 | 1.43 | 491.27 | 0.61 | 10.55 | |
FW33 | 434.03 | 11.24 | 2.28 | 813.10 | 1.03 | 18.95 | |
SS100 | 475.92 | 12.58 | 2.76 | 892.16 | 1.10 | 18.32 | |
400 °C | FW100 | 16.96 | N.D. | N.D. | 78.05 | 0.09 | 0.23 |
FW67 | 452.05 | 11.48 | 1.28 | 889.99 | 1.05 | 18.04 | |
FW50 | 371.39 | 9.51 | 1.55 | 749.11 | 0.87 | 17.16 | |
FW33 | 493.50 | 12.57 | 1.81 | 951.04 | 1.12 | 21.75 | |
SS100 | 661.05 | 18.81 | 3.05 | 1242.89 | 1.62 | 31.19 | |
500 °C | FW100 | 10.51 | 0.43 | N.D. | 96.27 | 0.07 | 0.22 |
FW67 | 369.00 | 10.07 | 1.31 | 744.99 | 0.86 | 17.21 | |
FW50 | 575.32 | 17.39 | 1.85 | 1216.10 | 1.48 | 25.40 | |
FW33 | 642.61 | 20.00 | 2.27 | 1318.09 | 1.77 | 29.67 | |
SS100 | 738.49 | 22.08 | 2.83 | 1437.43 | 1.88 | 37.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, Y.; Lee, Y.-E.; Kim, I.-T. Characterization of Sewage Sludge and Food Waste-Based Biochar for Co-Firing in a Coal-Fired Power Plant: A Case Study in Korea. Sustainability 2020, 12, 9411. https://doi.org/10.3390/su12229411
Jeong Y, Lee Y-E, Kim I-T. Characterization of Sewage Sludge and Food Waste-Based Biochar for Co-Firing in a Coal-Fired Power Plant: A Case Study in Korea. Sustainability. 2020; 12(22):9411. https://doi.org/10.3390/su12229411
Chicago/Turabian StyleJeong, Yoonah, Ye-Eun Lee, and I-Tae Kim. 2020. "Characterization of Sewage Sludge and Food Waste-Based Biochar for Co-Firing in a Coal-Fired Power Plant: A Case Study in Korea" Sustainability 12, no. 22: 9411. https://doi.org/10.3390/su12229411
APA StyleJeong, Y., Lee, Y. -E., & Kim, I. -T. (2020). Characterization of Sewage Sludge and Food Waste-Based Biochar for Co-Firing in a Coal-Fired Power Plant: A Case Study in Korea. Sustainability, 12(22), 9411. https://doi.org/10.3390/su12229411