Sustainable Ceramic Materials Manufactured from Ceramic Formulations Containing Quartzite and Scheelite Tailings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Samples Preparation and Sintering Treatments
2.3. Characterizations of the Raw Materials and Samples after Sintering Treatment
3. Results and Discussion
3.1. Characterization of Raw Materials
3.2. Mineralogical Phases and Physical-Mechanical Properties of the Sintered Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ghiani, G.; Laganà, D.; Manni, E.; Musmanno, R.; Vigo, D. Operations research in solid waste management: A survey of strategic and tactical issues. Comput. Oper. Res. 2014, 44, 22–32. [Google Scholar] [CrossRef]
- Machado, T.G.; Umbelino Gomes, U.; Monteiro, F.M.; Valcacer, S.M.; da Silva, G.G. Analysis of the Incorporation of Scheelite Residue in Kaolinitic Clay of Boa Saúde-RN. Mater. Sci. Forum 2012, 727–728, 844–849. [Google Scholar] [CrossRef]
- Lottermoser, B.; Lottermoser, B.G. Introduction to Mine Wastes. In Mine Wastes; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–41. [Google Scholar]
- Jones, H.; Boger, D.V. Sustainability and waste management in the resource industries. Ind. Eng. Chem. Res. 2012, 51, 10057–10065. [Google Scholar] [CrossRef]
- Hughes, D.J.; Shimmield, T.M.; Black, K.D.; Howe, J.A. Ecological impacts of large-scale disposal of mining waste in the deep sea. Sci. Rep. 2015, 5, 9985. [Google Scholar] [CrossRef] [Green Version]
- Edraki, M.; Baumgartl, T.; Manlapig, E.; Bradshaw, D.; Franks, D.M.; Moran, C.J. Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches. J. Clean. Prod. 2014, 84, 411–420. [Google Scholar] [CrossRef]
- Kinnunen, P.; Ismailov, A.; Solismaa, S.; Sreenivasan, H.; Räisänen, M.L.; Levänen, E.; Illikainen, M. Recycling mine tailings in chemically bonded ceramics—A review. J. Clean. Prod. 2018, 174, 634–649. [Google Scholar] [CrossRef] [Green Version]
- Adiansyah, J.S.; Rosano, M.; Vink, S.; Keir, G. A framework for a sustainable approach to mine tailings management: Disposal strategies. J. Clean. Prod. 2015, 108, 1050–1062. [Google Scholar] [CrossRef] [Green Version]
- De Medeiros, P.S.S.; Lira, H.D.L.; Rodriguez, M.A.; Menezes, R.R.; Neves, G.D.A.; Santana, L.N.D.L. Incorporation of quartzite waste in mixtures used to prepare sanitary ware. J. Mater. Res. Technol. 2019, 8, 2148–2156. [Google Scholar] [CrossRef]
- Da Silva, V.J.; de Almeida, E.P.; Gonçalves, W.P.; da Nóbrega, R.B.; de Araújo Neves, G.; de Lucena Lira, H.; Menezes, R.R.; de Lima Santana, L.N. Mineralogical and dielectric properties of mullite and cordierite ceramics produced using wastes. Ceram. Int. 2019, 45, 4692–4699. [Google Scholar] [CrossRef]
- Silva, R.H.L.; Neves, G.A.; Ferreira, H.C.; Santana, L.N.L.; Nóbrega, A.C.V.; Menezes, R.R. Use of diopside in ceramic masses for sanitary ware. Cerâmica 2019, 65, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, B.A.; Neves, G.A.; Barbosa, N.P.; Menezes, R.R.; Ferreira, H.C. Mechanical properties of mortar produced with the replacement of natural sand by scheelite residue. Ceramica 2019, 65, 443–451. [Google Scholar] [CrossRef]
- Tuskaeva, Z.; Karyaev, S.; Tagirov, T. Molybdenum waste usage as thinning agent in concrete production. Iop Conf. Ser. Mater. Sci. Eng. 2020, 918, 012093. [Google Scholar] [CrossRef]
- Da Silva, V.J.; da Silva, M.F.; Gonçalves, W.P.; de Menezes, R.R.; de Araújo Neves, G.; de Lucena Lira, H.; de Lima Santana, L.N. Porous mullite blocks with compositions containing kaolin and alumina waste. Ceram. Int. 2016, 42, 15471–15478. [Google Scholar] [CrossRef]
- Alves, H.P.A.; Silva, J.B.; Campos, L.F.A.; Torres, S.M.; Dutra, R.P.S.; Macedo, D.A. Preparation of mullite based ceramics from clay–kaolin waste mixtures. Ceram. Int. 2016, 42, 19086–19090. [Google Scholar] [CrossRef]
- Halicka, A.; Ogrodnik, P.; Zegardlo, B. Using ceramic sanitary ware waste as concrete aggregate. Constr. Build. Mater. 2013, 48, 295–305. [Google Scholar] [CrossRef]
- Scribot, C.; Maherzi, W.; Benzerzour, M.; Mamindy-Pajany, Y.; Abriak, N.E. A laboratory-scale experimental investigation on the reuse of a modified red mud in ceramic materials production. Constr. Build. Mater. 2018, 163, 21–31. [Google Scholar] [CrossRef]
- Parhi, B.R.; Sahoo, S.K.; Sahu, M.; Bishoyi, B.D.; Mishra, S.C.; Bhoi, B.; Mishra, B. Physico-chemical investigations of high iron bauxite for application of refractive and ceramics. Metall. Res. Technol. 2017, 114, 307. [Google Scholar] [CrossRef]
- Babisk, M.P.; Amaral, L.F.; Ribeiro, L.D.S.; Vieira, C.M.F.; Do Prado, U.S.; Gadioli, M.C.B.; Oliveira, M.S.; Luz, F.S.D.a.; Monteiro, S.N.; Garcia Filho, F.D.C. Evaluation and application of sintered red mud and its incorporated clay ceramics as materials for building construction. J. Mater. Res. Technol. 2020, 9, 2186–2195. [Google Scholar] [CrossRef]
- Alekseev, K.; Mymrin, V.; Avanci, M.A.; Klitzke, W.; Magalhães, W.L.E.; Silva, P.R.; Catai, R.E.; Silva, D.A.; Ferraz, F.A. Environmentally clean construction materials from hazardous bauxite waste red mud and spent foundry sand. Constr. Build. Mater. 2019, 229, 116860. [Google Scholar] [CrossRef]
- Xu, X.; Song, J.; Li, Y.; Wu, J.; Liu, X.; Zhang, C. The microstructure and properties of ceramic tiles from solid wastes of Bayer red muds. Constr. Build. Mater. 2019, 212, 266–274. [Google Scholar] [CrossRef]
- Wang, W.; Sun, K.; Liu, H. Effects of different aluminum sources on morphologies and properties of ceramic floor tiles from red mud. Constr. Build. Mater. 2020, 241, 118119. [Google Scholar] [CrossRef]
- Gonzalez-Triviño, I.; Pascual-Cosp, J.; Moreno, B.; Benítez-Guerrero, M. Manufacture of ceramics with high mechanical properties from red mud and granite waste. Mater. De Constr. 2019, 69, 180. [Google Scholar] [CrossRef]
- Menezes, R.R.; Ferreira, H.S.; Neves, G.A.; de L Lira, H.; Ferreira, H.C. Use of granite sawing wastes in the production of ceramic bricks and tiles. J. Eur. Ceram. Soc. 2005, 25, 1149–1158. [Google Scholar] [CrossRef]
- Hojamberdiev, M.; Eminov, A.; Xu, Y. Utilization of muscovite granite waste in the manufacture of ceramic tiles. Ceram. Int. 2011, 37, 871–876. [Google Scholar] [CrossRef]
- De Azevedo, A.R.G.; Marvila, M.T.; da Silva Barroso, L.; Zanelato, E.B.; Alexandre, J.; de Castro Xavier, G.; Monteiro, S.N. Effect of Granite Residue Incorporation on the Behavior of Mortars. Materials 2019, 12, 1449. [Google Scholar] [CrossRef] [Green Version]
- Lima, R.C.O.; Lira, H.L.; Neves, G.A.; Silva, M.C.; França, K.B. Study of the influence of granite residue in different compositions to prepare ceramic membranes. Mater. Sci. Forum 2014, 798–799, 542–547. [Google Scholar] [CrossRef]
- Barros, M.M.; de Oliveira, M.F.L.; da Conceição Ribeiro, R.C.; Bastos, D.C.; de Oliveira, M.G. Ecological bricks from dimension stone waste and polyester resin. Constr. Build. Mater. 2020, 232, 117252. [Google Scholar] [CrossRef]
- Souza, A.J.; Pinheiro, B.C.A.; Holanda, J.N.F. Recycling of gneiss rock waste in the manufacture of vitrified floor tiles. J. Environ. Manag. 2010, 91, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.; Velasco, F.; Martínez, M.A.; Torralba, J.M. Recovered slate waste as raw material for manufacturing sintered structural tiles. J. Eur. Ceram. Soc. 2004, 24, 811–819. [Google Scholar] [CrossRef]
- De Medeiros, P.S.S.; Santana, L.N.L.; Silva, V.J.; Neves, G.A.; Lira, H.L. Evaluation of the potential of using quartzite residue in mass for the production of sanitary ware. Mater. Sci. Forum 2016, 869, 181–185. [Google Scholar] [CrossRef]
- Barros, S.V.A.; Marciano, J.E.A.; Ferreira, H.C.; Menezes, R.R.; Neves, G.D.A. Addition of quartzite residues on mortars: Analysis of the alkali aggregate reaction and the mechanical behavior. Constr. Build. Mater. 2016, 118, 344–351. [Google Scholar] [CrossRef]
- Oliveira, S.S.L.; Oliveira, S.S.L.; da Silva Barbosa Ferreira, R.; de Lucena Lira, H.; de Lima Santana, L.N.; Araújo, E.M. Development of hollow fiber membranes with alumina and waste of quartzite. Mater. Res. 2019, 22, 20190171. [Google Scholar] [CrossRef] [Green Version]
- Torres, P.; Manjate, R.S.; Quaresma, S.; Fernandes, H.R.; Ferreira, J.M.F. Development of ceramic floor tile compositions based on quartzite and granite sludges. J. Eur. Ceram. Soc. 2007, 27, 4649–4655. [Google Scholar] [CrossRef]
- Junkes, J.A.; Prates, P.B.; Hotza, D.; Segadães, A.M. Combining mineral and clay-based wastes to produce porcelain-like ceramics: An exploratory study. Appl. Clay Sci. 2012, 69, 50–57. [Google Scholar] [CrossRef]
- Fernandes, J.V.; Rodrigues, A.M.; Menezes, R.R.; de A Neves, G. Adsorption of Anionic Dye on the Acid-Functionalized Bentonite. Materials 2020, 13, 3600. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, F.P.; Morais CR da, S.; Pinto, H.C.; Rodrigues, A.M. Microstructure and physico-mechanical properties of Al2O3-doped sustainable glass-ceramic foams. Mater. Chem. Phys. 2020, 256, 123612. [Google Scholar] [CrossRef]
- Pereira da Costa, F.; Rodrigues da Silva Morais, C.; Rodrigues, A.M. Sustainable glass-ceramic foams manufactured from waste glass bottles and bentonite. Ceram. Int. 2020, 46, 17957–17961. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Rino, J.P.; Pizani, P.S.; Zanotto, E.D. Structural and dynamic properties of vitreous and crystalline barium disilicate: Molecular dynamics simulation and Raman scattering experiments. J. Phys. D Appl. Phys. 2016, 49, 435301. [Google Scholar] [CrossRef]
- Moulton, B.J.A.; Rodrigues, A.M.; Sampaio, D.V.; Silva, L.D.; Cunha, T.R.; Zanotto, E.D.; Pizani, P.S. The origin of the unusual DSC peaks of supercooled barium disilicate liquid. CrystEngComm 2019, 21, 2768–2778. [Google Scholar] [CrossRef]
- Avila, P.R.T.; Rodrigues, A.M.; Guimarães, M.C.R.; Walczak, M.; Menezes, R.R.; de A Neves, G.; Pinto, H.C. Nitrogen-Enriched Cr1−xAlxN Multilayer-Like Coatings Manufactured by Dynamic Glancing Angle Direct Current Magnetron Sputtering. Materials 2020, 13, 3650. [Google Scholar] [CrossRef]
- Soares, V.O.; Rodrigues, A.M. Improvements on sintering and thermal expansion of lithium aluminum silicate glass-ceramics. Ceram. Int. 2020, 46, 17430–17436. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Silva, L.D.; Zhang, R.; Soares, V.O. Structural effects on glass stability and crystallization. CrystEngComm 2018, 20, 2278–2283. [Google Scholar] [CrossRef]
- Fischer, J.; Stawarczyk, B.; Hämmerle, C.H.F. Flexural strength of veneering ceramics for zirconia. J. Dent. 2008, 36, 316–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, B.; Li, Y.; Liu, G.; Liang, D. Preparation and properties of Al2O3-MgAl2O4 ceramic foams. Ceram. Int. 2015, 41, 3237–3244. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Bennour, A.; Meguebli, A.; Srasra, E.; Zargouni, F. Characterization and traditional ceramic application of clays from the Douiret region in South Tunisia. Appl. Clay Sci. 2016, 127–128, 78–87. [Google Scholar] [CrossRef]
- De Aza, A.H.; Turrillas, X.; Rodriguez, M.A.; Duran, T.; Pena, P. Time-resolved powder neutron diffraction study of the phase transformation sequence of kaolinite to mullite. J. Eur. Ceram. Soc. 2014, 34, 1409–1421. [Google Scholar] [CrossRef]
- Menezes, R.R.; de A Neves, G.; Ferreira, H.C. State of the art about the use of wastes as alternative to ceramic raw materials. Rev. Bras. De Eng. Agrícola E Ambient. 2002, 6, 303–313. [Google Scholar] [CrossRef]
- Chen, C.Y.; Tuan, W.H. The processing of kaolin powder compact. Ceram. Int. 2001, 27, 795–800. [Google Scholar] [CrossRef]
- Issaoui, M.; Limousy, L.; Lebeau, B.; Bouaziz, J.; Fourati, M. Design and characterization of flat membrane supports elaborated from kaolin and aluminum powders. Comptes Rendus Chim. 2016, 19, 496–504. [Google Scholar] [CrossRef]
- Bennour, A.; Mahmoudi, S.; Srasra, E.; Boussen, S.; Htira, N. Composition, firing behavior and ceramic properties of the Sejnène clays (Northwest Tunisia). Appl. Clay Sci. 2015, 115, 30–38. [Google Scholar] [CrossRef]
Raw Materials | Ceramic Formulations (wt%) | |||||||
---|---|---|---|---|---|---|---|---|
F0 | F1 | F2 | F3 | F4 | F5 | F6 | F7 | |
Kaolin | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 |
Plastic clay | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 |
Feldspar | 33 | 32.5 | 32 | 31.5 | 31 | 29 | 27 | 25 |
Scheelite tailing | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 4.0 | 6.0 | 8.0 |
Quartzite tailing | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 |
Raw Materials | Oxides | ||||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | F2O3 | K2O | MgO | CaO | Na2O | Others | LF 1 | |
Kaolin | 45.7 | 39.5 | 0.5 | 0.9 | − | − | − | 0.2 | 13.3 |
Plastic clay | 54.5 | 27.5 | 2.6 | 3.9 | 1.5 | 0.8 | − | 1.5 | 7.8 |
Quartzite tailing | 76.5 | 12.1 | 1.5 | − | 1.1 | 0.7 | − | 3.0 | 2.4 |
Feldspar | 62.0 | 19.9 | − | 12.1 | − | − | 2.7 | 2.7 | 1.6 |
Scheelite tailing | 20.8 | 7.1 | 6.8 | 0.5 | 2.7 | 44.7 | − | 2.1 | 15.8 |
Raw Materials | Fine (x < 2 µm) | Medium (2 µm < x < 20 µm) | Thick (x > 20µm) | D10 (µm) | D50 (µm) | D90 (µm) | Dm (µm) |
---|---|---|---|---|---|---|---|
Kaolin | 26.6% | 69.0% | 4.4% | 0.6 | 3.2 | 15.0 | 5.6 |
Plastic clay | 20.1% | 79.9% | − | 0.9 | 3.7 | 10.0 | 4.6 |
Quartzite tailing | 8.9% | 40.9% | 50.2% | 4.5 | 28.2 | 57.1 | 30.3 |
Feldspar | 21.7% | 60.9% | 17.4% | 0.9 | 6.6 | 30.8 | 11.4 |
Scheelite tailing | 3.6% | 26.4% | 70.0% | 4.2 | 32.0 | 64.1 | 33.6 |
Samples Pressed at 20 MPa | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Samples | Linear Shrinkage (%) | Water Absorption (%) | Apparent Porosity (%) | Flexural Strength (MPa) | ||||||||
1150 (°C) | 1200 (°C) | 1250 (°C) | 1150 (°C) | 1200 (°C) | 1250 (°C) | 1150 (°C) | 1200 (°C) | 1250 (°) | 1150 (°C) | 1200 (°C) | 1250 (°C) | |
F0 | 5.25 | 7.80 | 8.37 | 7.26 | 2.37 | 0.05 | 15.65 | 5.57 | 0.22 | 21.71 | 33.75 | 42.84 |
Error | 0.29 | 0.11 | 0.13 | 0.60 | 0.14 | 0.27 | 1.19 | 0.80 | 0.65 | 7.72 | 3.47 | 5.81 |
F1 | 5.46 | 7.92 | 7.88 | 6.51 | 1.43 | 0.14 | 14.24 | 3.48 | 0.46 | 25.63 | 36.25 | 42.84 |
Error | 0.37 | 0.20 | 0.25 | 0.78 | 0.14 | 0.39 | 1.53 | 0.76 | 0.77 | 2.75 | 2.62 | 5.81 |
F2 | 5.47 | 7.93 | 7.87 | 6.69 | 1.67 | 0.22 | 14.46 | 3.94 | 0.53 | 25.63 | 31.94 | 38.81 |
Error | 0.45 | 0.17 | 0.36 | 0.81 | 0.50 | 0.25 | 1.57 | 0.79 | 0.60 | 1.47 | 3.80 | 5.26 |
F3 | 5.86 | 8.48 | 7.79 | 7.12 | 4.31 | 0.39 | 15.23 | 3.79 | 0.88 | 25.35 | 29.78 | 36.57 |
Error | 0.21 | 0.66 | 0.29 | 0.87 | 0.11 | 0.23 | 1.51 | 0.76 | 0.52 | 2.02 | 2.05 | 3.90 |
F4 | 5.67 | 8.92 | 6.68 | 6.23 | 1.72 | 0.18 | 13.67 | 4.04 | 0.40 | 26.68 | 34.13 | 31.39 |
Error | 0.27 | 0.15 | 0.32 | 0.55 | 0.13 | 0.14 | 1.12 | 0.70 | 0.31 | 2.05 | 2.57 | 3.08 |
F5 | 6.15 | 8.47 | 7.24 | 5.88 | 2.16 | 0.23 | 12.76 | 4.93 | 0.49 | 28.29 | 36.44 | 30.35 |
Error | 0.34 | 0.11 | 0.48 | 0.48 | 0.12 | 0.22 | 0.94 | 0.99 | 0.48 | 2.12 | 2.26 | 11.09 |
F6 | 5.38 | 6.53 | 4.10 | 4.34 | 1.66 | 0.09 | 9.66 | 3.79 | 0.19 | 32.06 | 32.28 | 28.38 |
Error | 0.24 | 0.14 | 0.18 | 0.45 | 0.12 | 0.16 | 0.90 | 0.74 | 0.32 | 1.72 | 6.04 | 2.35 |
F7 | 4.57 | 6.19 | 5.13 | 5.81 | 2.15 | 0.32 | 12.24 | 4.68 | 0.65 | 29.21 | 30.86 | 27.63 |
Error | 0.20 | 0.11 | 0.15 | 0.59 | 0.14 | 0.30 | 1.28 | 0.77 | 0.61 | 1.91 | 1.83 | 1.70 |
Samples Pressed at 50 MPa | ||||||||||||
F0 | 5.34 | 7.21 | 7.04 | 4.46 | 1.01 | 0.14 | 10.16 | 2.45 | 0.35 | 27.61 | 32.91 | 45.40 |
Error | 0.22 | 0.13 | 0.11 | 0.30 | 0.10 | 0.16 | 0.64 | 0.61 | 0.39 | 1.36 | 2.19 | 3.29 |
F1 | 5.22 | 7.18 | 6.52 | 4.92 | 0.79 | 0.07 | 11.07 | 1.88 | 0.38 | 30.50 | 30.77 | 38.37 |
Error | 0.40 | 0.18 | 0.31 | 0.65 | 0.13 | 0.29 | 1.35 | 0.69 | 0.69 | 2.43 | 2.34 | 2.55 |
F2 | 5.57 | 7.01 | 6.49 | 4.07 | 1.34 | 0.06 | 9.29 | 3.19 | 0.34 | 30.71 | 34.31 | 38.36 |
Error | 0.26 | 0.13 | 0.29 | 0.37 | 0.13 | 0.35 | 0.79 | 0.66 | 0.42 | 1.58 | 2.45 | 4.04 |
F3 | 5.51 | 7.74 | 6.13 | 5.05 | 1.44 | 0.37 | 11.25 | 3.41 | 0.83 | 28.73 | 33.32 | 34.09 |
Error | 0.38 | 0.17 | 0.36 | 0.53 | 0.11 | 0.28 | 1.07 | 0.66 | 0.61 | 1.94 | 2.35 | 2.19 |
F4 | 5.68 | 7.78 | 5.55 | 3.86 | 1.39 | 0.27 | 8.81 | 3.27 | 0.60 | 31.89 | 36.89 | 36.13 |
Error | 0.26 | 0.13 | 0.63 | 0.50 | 0.10 | 0.19 | 1.06 | 0.59 | 0.41 | 3.62 | 2.93 | 2.48 |
F5 | 5.89 | 6.70 | 4.79 | 3.74 | 1.30 | 0.57 | 8.49 | 3.03 | 1.21 | 34.80 | 35.91 | 32.72 |
Error | 0.21 | 0.38 | 0.27 | 0.23 | 0.13 | 0.32 | 0.50 | 0.61 | 0.67 | 1.72 | 2.11 | 2.13 |
F6 | 5.16 | 5.10 | 2.88 | 2.58 | 0.42 | 0.13 | 5.94 | 0.97 | 0.37 | 34.81 | 32.28 | 28.02 |
Error | 0.13 | 0.22 | 0.32 | 0.40 | 0.18 | 0.18 | 0.89 | 0.69 | 0.28 | 2.67 | 2.34 | 2.57 |
F7 | 4.59 | 4.94 | 4.07 | 4.43 | 2.34 | 0.29 | 9.72 | 4.84 | 0.69 | 31.22 | 31.47 | 24.95 |
Error | 0.26 | 0.11 | 0.32 | 0.59 | 0.14 | 0.39 | 1.30 | 0.56 | 0.37 | 2.44 | 2.08 | 5.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, J.V.; Guedes, D.G.; da Costa, F.P.; Rodrigues, A.M.; Neves, G.d.A.; Menezes, R.R.; Santana, L.N.d.L. Sustainable Ceramic Materials Manufactured from Ceramic Formulations Containing Quartzite and Scheelite Tailings. Sustainability 2020, 12, 9417. https://doi.org/10.3390/su12229417
Fernandes JV, Guedes DG, da Costa FP, Rodrigues AM, Neves GdA, Menezes RR, Santana LNdL. Sustainable Ceramic Materials Manufactured from Ceramic Formulations Containing Quartzite and Scheelite Tailings. Sustainability. 2020; 12(22):9417. https://doi.org/10.3390/su12229417
Chicago/Turabian StyleFernandes, Jucielle Veras, Danyelle Garcia Guedes, Fabiana Pereira da Costa, Alisson Mendes Rodrigues, Gelmires de Araújo Neves, Romualdo Rodrigues Menezes, and Lisiane Navarro de Lima Santana. 2020. "Sustainable Ceramic Materials Manufactured from Ceramic Formulations Containing Quartzite and Scheelite Tailings" Sustainability 12, no. 22: 9417. https://doi.org/10.3390/su12229417
APA StyleFernandes, J. V., Guedes, D. G., da Costa, F. P., Rodrigues, A. M., Neves, G. d. A., Menezes, R. R., & Santana, L. N. d. L. (2020). Sustainable Ceramic Materials Manufactured from Ceramic Formulations Containing Quartzite and Scheelite Tailings. Sustainability, 12(22), 9417. https://doi.org/10.3390/su12229417