Continuous Anaerobic Co-Digestion of Biowaste with Crude Glycerol under Mesophilic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
- Total solids, volatile solids (usually as a mixed sample for the whole group);
- Volatile organic acids (FOS), titration (buffer capacity—TAC) for each fermenter;
- Fermentation acid pattern (GC-FID) for each fermenter.
2.2. Biowaste, Crude Glycerol, and Inoculum Origin
2.3. Analytical Procedure and Methods
3. Results
3.1. Specific Methane Yield
3.2. Methane Content in Biogas
3.3. pH Value and Acids in the Effluent
3.4. Hydrogen Sulfide
3.5. Volatile Organic Acids Content (FOS) and Buffer Capacity (TAC)
3.6. Conductivity
4. Discussion
- (1)
- Long-chain fatty acids
- (2)
- Chloride
- (3)
- Sulfates
4.1. Inhibition by the Accumulation of Intermediaries
4.2. Inhibition by Chloride
4.3. Inhibition by Sulfates
5. Conclusions
- (1)
- Decreasing methane yield
- (2)
- Volatile methane content in biogas
- (3)
- Decreasing pH value
- (4)
- Increasing conductivity
- (5)
- Increasing FOS/TAC ratio
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lanzini, A.; Ferrero, D.; Papurello, D.; Santarelli, M. Reporting Degradation from Different Fuel Contaminants in Ni-anode SOFCs. Fuel Cells 2017, 17, 423–433. [Google Scholar] [CrossRef]
- Cakir, F.Y.; Stenstrom, M.K. Greenhouse gas production: A comparison between aerobic and anaerobic wastewater treatment technology. Water Res. 2005, 39, 4197–4203. [Google Scholar] [CrossRef]
- Stan, C.; Collaguazo, G.; Streche, C.; Apostol, T.; Cocarta, D. Pilot-Scale Anaerobic Co-Digestion of the OFMSW: Improving Biogas Production and Startup. Sustainability 2018, 10, 1939. [Google Scholar] [CrossRef] [Green Version]
- Chaher, N.E.H.; Chakchouk, M.; Engler, N.; Nassour, A.; Nelles, M.; Hamdi, M. Optimization of Food Waste and Biochar In-Vessel Co-Composting. Sustainability 2020, 12, 1356. [Google Scholar] [CrossRef] [Green Version]
- Hwang, H.Y.; Kim, S.H.; Shim, J.; Park, S.J. Composting Process and Gas Emissions during Food Waste Composting under the Effect of Different Additives. Sustainability 2020, 12, 7811. [Google Scholar] [CrossRef]
- Mumme, J.; Srocke, F.; Heeg, K.; Werner, M. Use of biochars in anaerobic digestion. Bioresour. Technol. 2014, 164, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; He, P.; Wang, Y.; Shao, L.; Lü, F. Effects and optimization of the use of biochar in anaerobic digestion of food wastes. Waste Manag. Res. 2016, 34, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Luz, F.C.; Cordiner, S.; Manni, A.; Mulone, V.; Rocco, V. Biochar characteristics and early applications in anaerobic digestion—A review. J. Environ. Chem. Eng. 2018, 6, 2892–2909. [Google Scholar] [CrossRef]
- Baba, Y.; Tada, C.; Watanabe, R.; Fukuda, Y.; Chida, N.; Nakai, Y. Anaerobic digestion of crude glycerol from biodiesel manufacturing using a large-scale pilot plant: Methane production and application of digested sludge as fertilizer. Bioresour. Technol. 2013, 140, 342–348. [Google Scholar] [CrossRef]
- Astals, S.; Nolla-Ardèvol, V.; Mata-Alvarez, J. Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: Biogas and digestate. Bioresour. Technol. 2012, 110, 63–70. [Google Scholar] [CrossRef]
- Gesetz für den Ausbau Erneuerbarer Energien (Erneuerbare-Energien-Gesetz - EEG 2017): EEG 2017. (Translation: Act for the Development of Renewable Energies (Renewable Energy Sources Act - EEG 2017)). Available online: https://www.gesetze-im-internet.de/eeg_2014/EEG_2017.pdf (accessed on 28 May 2019).
- Union zur Förderung von Öl- und Proteinpflanzen e.V. Biodiesel & Co. 2019/2020. Available online: https://www.ufop.de/files/2616/0197/7754/RL_UFOP_1751_GB_2020_Auszug_de_061020.pdf (accessed on 3 November 2020).
- Union zur Förderung von Öl- und Proteinpflanzen e.V. UFOP-Bericht zur Globalen Marktversorgung 2017/2018: Der Europäische und Globale Biomassebedarf für die Biokraftstoffproduktion im Kontext der Versorgung an den Nahrungs- und Futtermittelmärkten. Available online: https://www.ufop.de/files/7115/1515/2636/UFOP-Bericht_zur_globalen_Marktversorgung_2017-2018.pdf (accessed on 2 August 2019).
- Harabi, M.; Neji, S.; Marrakchi, F.; Chrysikou, L.; Bezergianni, S.; Bouaziz, M. Biodiesel and Crude Glycerol from Waste Frying Oil: Production, Characterization and Evaluation of Biodiesel Oxidative Stability with Diesel Blends. Sustainability 2019, 11, 1937. [Google Scholar] [CrossRef] [Green Version]
- Braune, M.; Grasemann, E.; Gröngröft, A.; Klemm, M.; Oehmichen, K.; Zech, K. (Eds.) Die Biokraftstoffproduktion in Deutschland—Stand der Technik und Optimierungsansätze, 1. Auflage; DBFZ-Report; Nr. 22; Deutsches Biomasseforschungszentrum Gemeinnützige GmbH: Leipzig, Germany, 2016. [Google Scholar]
- Dubois, V.; Breton, S.; Linder, M.; Fanni, J.; Parmentier, M. Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur. J. Lipid Sci. Technol. 2007, 109, 710–732. [Google Scholar] [CrossRef]
- Kolesárová, N.; Hutňan, M.; Špalková, V.; Kuffa, R.; Bodík, I. Anaerobic treatment of biodiesel by-products in a pilot scale reactor. Chem. Pap. 2011, 65, 447–453. [Google Scholar] [CrossRef]
- Robra, S.; Serpa da Cruz, R.; de Oliveira, A.M.; Neto, J.A.A.; Santos, J.V. Generation of biogas using crude glycerin from biodiesel production as a supplement to cattle slurry. Biomass Bioenergy 2010, 34, 1330–1335. [Google Scholar] [CrossRef]
- Viana, M.B.; Freitas, A.V.; Leitão, R.C.; Pinto, G.A.S.; Santaella, S.T. Anaerobic digestion of crude glycerol: A review. Environ. Technol. Rev. 2012, 1, 81–92. [Google Scholar] [CrossRef]
- Ayoub, M.; Abdullah, A.Z. Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew. Sustain. Energy Rev. 2012, 16, 2671–2686. [Google Scholar] [CrossRef]
- Luna, C.; Luna, D.; Calero, J.; Bautista, F.M.; Romero, A.A.; Posadillo, A.; Verdugo-Escamilla, C. Biochemical catalytic production of biodiesel. In Handbook of Biofuels Production; Elsevier: Amsterdam, The Netherlands, 2016; pp. 165–199. [Google Scholar] [CrossRef]
- Kolesárová, N.; Hutňan, M.; Bodík, I.; Spalková, V. Utilization of biodiesel by-products for biogas production. J. Biomed. Biotechnol. 2011, 2011, 126798. [Google Scholar] [CrossRef]
- Fountoulakis, M.S.; Petousi, I.; Manios, T. Co-digestion of sewage sludge with glycerol to boost biogas production. Waste Manag. (N. Y.) 2010, 30, 1849–1853. [Google Scholar] [CrossRef]
- Ma, J.; van Wambeke, M.; Carballa, M.; Verstraete, W. Improvement of the anaerobic treatment of potato processing wastewater in a UASB reactor by co-digestion with glycerol. Biotechnol. Lett. 2007, 30, 861–867. [Google Scholar] [CrossRef]
- Athanasoulia, E.; Melidis, P.; Aivasidis, A. Co-digestion of sewage sludge and crude glycerol from biodiesel production. Renew. Energy 2014, 62, 73–78. [Google Scholar] [CrossRef]
- Nartker, S.; Ammerman, M.; Aurandt, J.; Stogsdil, M.; Hayden, O.; Antle, C. Increasing biogas production from sewage sludge anaerobic co-digestion process by adding crude glycerol from biodiesel industry. Waste Manag. (N. Y.) 2014, 34, 2567–2571. [Google Scholar] [CrossRef] [PubMed]
- Feher, A. Untersuchungen zur Bioverfügbarkeit von Mikronährstoffen für den Biogasprozess. Master’s Dissertation, Universität Rostock, Agrar- und Umweltwissenschaftliche Fakultät, Rostock, Germany, 2018. [Google Scholar]
- Langhans, G.; Scholwin, F.; Nelles, M. Handbuch Zur Bilanzierung Von Biogasanlagen Für Ingenieure—Band I: Grundlagen und Methoden Für Die Bewertung und Bilanzierung in der Praxis; Springer Vieweg, in Springer Fachmedien Wiesbaden GmbH: Wiesbaden, Germary, 2020. [Google Scholar]
- Rehman, Z.-U. Process Stability in Biogas Digesters: Influencing Parameters and Control Using Carbonate Addition. Ph.D. Dissertation, Ruhr-Universität Bochum, Bochum, Germary, 2019. [Google Scholar]
- Konstantinovic, S.; Danilovic, B.; Ciric, J.; Ilic, S.; Savic, D.; Veljkovic, V. Valorization of crude glycerol from biodiesel production. Chem. Ind. Chem. Eng. Q. 2016, 22, 461–489. [Google Scholar] [CrossRef]
- Verein Deutscher Ingenieure. Charaterisation of the Substrate, Sampling, Collection of Data, Fermentation Tests; Verein Deutscher Ingenieure: Dusseldorf, Germany, 2016; 13.030.30, 27.190; Available online: https://www.vdi.de/fileadmin/pages/vdi_de/redakteure/richtlinien/inhaltsverzeichnisse/2385990.pdf (accessed on 10 June 2020).
- Astals, S.; Koch, K.; Weinrich, S.; Hafner, S.D.; Tait, S.; Peces, M. Impact of Storage Conditions on the Methanogenic Activity of Anaerobic Digestion Inocula. Water 2020, 12, 1321. [Google Scholar] [CrossRef]
- Sprafke, J.; Engler, N.; Thabit, Q.; Nelles, M.; Schuech, A. Increasing the baseload capacity of biowaste fermentation through optimised substrate management. Detritus 2020, 2020, 68–75. [Google Scholar] [CrossRef]
- Nelles, M. (Ed.) 14. Rostocker Bioenergieforum, Veranstalter: Universität Rostock, Landesforschungsanstalt für Landwirtschaft und Fischerei MV, Deutsches Biomasseforschungszentrum gemeinnützige GmbH-19. Dialog Abfallwirtschaft MV, Veranstalter: Universität Rostock, Ministerium für Landwirtschaft und Umwelt MV, enviMV: Geplant am 16./17. + 18. Juni 2020 an der Universität Rostock (nicht durchgeführt aufgrund der Beschränkungen im Zuge der Corona-Pandemie): Tagungsband; Schriftenreihe Umweltingenieurwesen; Band 95; Universität Rostock, Agrar- und Umweltwissenschaftliche Fakultät: Rostock, Germany, 2020. [Google Scholar]
- Bockreis, A. (Ed.) 9. Wissenschaftskongress Abfall- und Ressourcenwirtschaft: Tagungsband: Am 14. und 15. März 2019 an der Ostbayerischen Technischen Hochschule Amberg-Weiden, 1. Auflage; Innsbruck University Press: Innsbruck, Austria, 2019. [Google Scholar]
- Roitsch, J.; Büscher, W. Charakterisierung und Optimierung von NawaRo-Biogasanlagen in Typischen Ackerbauregionen in NRW: Schriftenreihe des Lehr- und Forschungsschwerpunktes USL 2009. Available online: https://www.usl.uni-bonn.de/pdf/Forschungsbericht%20160.pdf (accessed on 19 August 2019).
- Lili, M.; Biró, G.; Sulyok, E.; Petis, M.; Borbély, J.; Tamás, J. Novel approach on the basis of FOS/TAC method. In Proceedings of the International Symposia “Risk Factors for Environment and Food Safety” & “Natural Resources and Sustainable Development” & “50 Years of Agriculture Researche in Oradea”, Oradea, Romania, 4–5 November 2011; pp. 802–807. [Google Scholar]
- Voß, E.; Weichgrebe, D.; Rosenwinkel, K.-H. FOS/TAC: Herleitung, Methodik, Anwendung und Aussagekraft. Int. Wiss. Biogas Sci. 2009, 3, 675–682. [Google Scholar]
- Meyer-Kohlstock, D.; Haupt, T.; Heldt, E.; Heldt, N.; Kraft, E. Biochar as Additive in Biogas-Production from Bio-Waste. Energies 2016, 9, 247. [Google Scholar] [CrossRef]
- Kurzweil, P. Chemie: Grundlagen, Aufbauwissen, Anwendungen und Experimente, 10., Überarb. Aufl.; Lehrbuch; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Muth, K. Modellgestütztes Monitoring von Störungen der Prozessbiologie in Biogasanlagen. Ph.D. Dissertation, Technische Universität Dresden, Dresden, Germany, 2018. [Google Scholar]
- Schieder, D.; Gronauer, A.; Lebuhn, M.; Bayer, K.; Beck, J.; Hiepp, G.; Binder, S. Prozessmodell Biogas: Zusammengestellt für die Arbeitsgruppe III (Prozessbiologie, -bewertung und Analytik) im “Biogas Forum Bayern”; 2010. Available online: https://www.biogas-forum-bayern.de/publikationen/Prozessmodell_Biogas.pdf (accessed on 11 June 2020).
- Ogata, Y.; Ishigaki, T.; Nakagawa, M.; Yamada, M. Effect of Increasing Salinity on Biogas Production in Waste Landfills with Leachate Recirculation: A Lab-Scale Model Study. Biotechnol. Rep. 2016, 10, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Pol, L.W.H.; Lens, P.N.L.; Stams, A.J.M.; Lettinga, G. Anaerobic treatment of sulphate-rich wastewaters. Biodegradation 1998, 9, 213–224. [Google Scholar]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- Dahlhoff, A. Auswirkungen Einer Erhöhten Faulraumbelastung auf die Prozessbiologie bei der Vergärung Nachwachsender Rohstoffe in Landwirtschaftlichen Biogasanlagen: Untersuchung unter besonderer Berücksichtigung der Aktuellen Situation der Biogasproduktion in Nordrhein-Westfalen. @Göttingen, Univ., Diss. 2007. Available online: http://webdoc.sub.gwdg.de/diss/2009/dahlhoff/dahlhoff.pdf (accessed on 11 June 2020).
SFA | MUFA | PUFA | Others | ||||
---|---|---|---|---|---|---|---|
Fatty Acid | Palmitic Acid | Stearic Acid | Oleic Acid | Linoleic Acid | Linolenic Acid | ||
Rapeseed Brassica napus | C-ratio1 | 16:0 | 18:0 | 18:1 | 18:2 | 18:3 | - |
Share [%] | 4–5 | 1–2 | 60 | 20–22 | 7–10 | 2 |
Acid [ng/μL] | Day 1 | Day 9 | Day 12 | Day 15 | Day 17 | |
---|---|---|---|---|---|---|
Unit A | Acetic acid | 506.1 | 1734.2 | 3733.8 | 9369.5 | 13,045.5 |
Propionic acid | 82.1 | 940.9 | 1625.6 | 1082.2 | 1389.7 | |
iso-butyric acid | 0.0 | 155.5 | 304.3 | 503.2 | 520.7 | |
butyric acid | 47.5 | 442.0 | 348.8 | 607.6 | 782.4 | |
iso-pentanoic acid | 56.1 | 168.2 | 317.1 | 658.7 | 694.3 | |
Valeric acid | 97.5 | 371.5 | 185.1 | 109.0 | 159.6 | |
4-Methyl pentanoic acid | 186.2 | - | - | - | 967.2 | |
Hexanoic acid | 179.0 | 378.8 | 4.1 | 114.7 | 91.7 | |
Unit B | Acetic acid | 466.1 | 1844.4 | 4726.9 | 11,035.5 | 12,748.4 |
Propionic acid | 105.3 | 841.4 | 1589.2 | 1801.9 | 2464.0 | |
iso-butyric acid | 50.5 | 176.7 | 305.9 | 440.3 | 521.8 | |
butyric acid | 48.5 | 185.1 | 340.0 | 315.8 | 747.3 | |
iso-pentanoic acid | 62.0 | 156.6 | 356.2 | 515.6 | 655.6 | |
Valeric acid | 91.3 | 165.5 | 361.3 | 259.0 | 149.5 | |
4-Methyl pentanoic acid | 153.7 | - | - | - | - | |
Hexanoic acid | 155.4 | 424.2 | 601.7 |
Day | Unit A | Unit B |
---|---|---|
1 | 24.23 | 24.48 |
12 | 30.75 | 31.70 |
14 | 30.97 | 32.63 |
16 | 31.20 | 33.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sprafke, J.; Shettigondahalli Ekanthalu, V.; Nelles, M. Continuous Anaerobic Co-Digestion of Biowaste with Crude Glycerol under Mesophilic Conditions. Sustainability 2020, 12, 9512. https://doi.org/10.3390/su12229512
Sprafke J, Shettigondahalli Ekanthalu V, Nelles M. Continuous Anaerobic Co-Digestion of Biowaste with Crude Glycerol under Mesophilic Conditions. Sustainability. 2020; 12(22):9512. https://doi.org/10.3390/su12229512
Chicago/Turabian StyleSprafke, Jan, Vicky Shettigondahalli Ekanthalu, and Michael Nelles. 2020. "Continuous Anaerobic Co-Digestion of Biowaste with Crude Glycerol under Mesophilic Conditions" Sustainability 12, no. 22: 9512. https://doi.org/10.3390/su12229512
APA StyleSprafke, J., Shettigondahalli Ekanthalu, V., & Nelles, M. (2020). Continuous Anaerobic Co-Digestion of Biowaste with Crude Glycerol under Mesophilic Conditions. Sustainability, 12(22), 9512. https://doi.org/10.3390/su12229512