Characterization of Public Transit Mobility Patterns of Different Economic Classes
Abstract
:1. Introduction
- Approaches for inference of the home and most common destination neighborhoods by each user, and the classification of users in different economic classes exploring Census data;
- Characterization of fundamental transit usage patterns of residents of Curitiba, Brazil, studying, for instance, departure times, distances traveled, and destinations reached by different economic classes;
- Construction and study of a network representing common origin and destination of transit users. This structure enabled uncovering relevant transit mobility patterns from users of distinct economic classes.
2. Related Work
3. Background Information
3.1. The City of Curitiba
3.2. Public Transit in Curitiba
3.3. Economic Stratification in Brazil
4. Methodology
4.1. Studied Dataset
- Vehicles—this file contains the location of all vehicles that circulated in Curitiba on the date before its disclosure. The information contained in this file is distributed in five fields: Vehicle Code, Latitude, Longitude, Usage Date, and Line Code.
- Points—a file that contains the information of all existing bus stops in Curitiba. This file has nine information fields: Point Name, Point Number, Latitude, Longitude, Sequence, Group, Direction, Type, and Line Code.
4.2. Dataset Preprocessing
4.3. Network and Metrics
4.4. Discovery of Patterns by Economic Classes
5. Results
5.1. Users Economic Information
5.2. Stratified Transit Mobility Networks
5.3. Temporal Patterns of Urban Transit Mobility
5.4. Spatio-Temporal Patterns of Urban Transit Mobility
5.5. Urban Displacement
5.6. Centrality of Places
6. Validation
6.1. Household Travel Survey Data
6.2. Random Graph Model
6.3. Comparisons
7. Final Discussions and Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Complementary Information
Class | Neighborhoods | Area km | Population | Demographic Density (pop/km) |
---|---|---|---|---|
lower middle | Campo de Santana | 21.57 | 26,657 | 1235.84 |
Caximba | 8.17 | 2522 | 308.69 | |
Ganchinho | 11.20 | 11,178 | 998.04 | |
São Miguel | 7.00 | 4773 | 681.86 | |
Tatuquara | 11.23 | 52,780 | 4699.91 | |
middle | Alto Boqueirão | 12.11 | 53,671 | 4431.96 |
Augusta | 8.84 | 6598 | 746.38 | |
Cachoeira | 3.07 | 9314 | 3033.88 | |
Cajuru | 11.55 | 96,200 | 8329.00 | |
Cidade Industrial | 43.38 | 172,822 | 3983.91 | |
Lamenha Pequena | 3.40 | 1056 | 310.59 | |
Pinheirinho | 10.73 | 50,401 | 4697.20 | |
Prado Velho | 2.43 | 6077 | 2500.82 | |
Riviera | 2.36 | 289 | 122.46 | |
Sítio Cercado | 11.12 | 115,525 | 10,388.94 | |
Umbará | 22.47 | 18,730 | 833.56 | |
upper middle | Abranches | 4.32 | 13,189 | 3053.01 |
Atuba | 4.27 | 15,935 | 3731.85 | |
Bairro Alto | 7.02 | 46,106 | 6567.81 | |
Barreirinha | 3.73 | 18,017 | 4830.29 | |
Boqueirão | 14.80 | 73,178 | 4944.46 | |
Butiatuvinha | 10.58 | 12,876 | 1217.01 | |
Capão da Imbuia | 3.16 | 20,473 | 6478.80 | |
Capão Raso | 5.06 | 36,065 | 7127.47 | |
Fanny | 2.00 | 8415 | 4207.50 | |
Fazendinha | 3.72 | 28,074 | 7546.77 | |
Guaíra | 2.32 | 14,904 | 6424.14 | |
Hauer | 4.02 | 13,315 | 3312.19 | |
Lindóia | 1.18 | 8584 | 7274.58 | |
Novo Mundo | 5.99 | 44,063 | 7356.09 | |
Orleans | 5.12 | 8105 | 1583.01 | |
Parolin | 2.25 | 11,554 | 5135.11 | |
Pilarzinho | 7.13 | 28,480 | 3994.39 | |
Santa Candida | 10.33 | 32,808 | 3175.99 | |
São Braz | 5.01 | 23,559 | 4702.40 | |
Taboão | 1.72 | 3396 | 1974.42 | |
Tingui | 2.11 | 12,319 | 5838.39 | |
Uberaba | 14.09 | 72,056 | 5113.98 | |
Xaxim | 8.92 | 57,182 | 6410.54 | |
low high | Água Verde | 4.76 | 51,425 | 10,803.57 |
Ahú | 1.84 | 11,506 | 6253.26 | |
Alto da Glória | 0.88 | 5548 | 6304.55 | |
Alto da Rua XV | 1.50 | 8531 | 5687.33 | |
Bacacheri | 6.98 | 23,734 | 3400.29 | |
Batel | 1.76 | 10,878 | 6180.68 | |
Bigorrilho | 3.50 | 28,336 | 8096.00 | |
Boa Vista | 5.14 | 31,052 | 6041.25 | |
Bom Retiro | 1.94 | 5156 | 2657.73 | |
Cabral | 2.04 | 13,060 | 6401.96 | |
Campina do Siqueira | 1.69 | 7326 | 4334.91 | |
Campo Comprido | 8.55 | 28,816 | 3370.29 | |
Cascatinha | 2.57 | 2161 | 840.86 | |
Centro | 3.30 | 37,283 | 11,297.88 | |
Centro Cívico | 0.97 | 4783 | 4930.93 | |
Cristo Rei | 1.46 | 13,795 | 9448.63 | |
Guabirotuba | 2.63 | 11,461 | 4357.79 | |
Hugo Lange | 1.15 | 3392 | 2949.57 | |
Jardim Botânico | 2.77 | 6172 | 2228.16 | |
Jardim das Américas | 3.87 | 15,313 | 3956.85 | |
Jardim Social | 1.89 | 5698 | 3014.81 | |
Juvevê | 1.23 | 11,582 | 9416.26 | |
Mercês | 3.28 | 12,907 | 3935.06 | |
Mossunguê | 3.38 | 9664 | 2859.17 | |
Portão | 5.70 | 42,662 | 7484.56 | |
Rebouças | 2.98 | 14,888 | 4995.97 | |
Santa Felicidade | 12.27 | 31,572 | 2573.11 | |
Santa Quitéria | 2.09 | 12,075 | 5777.51 | |
Santo Inácio | 2.72 | 6494 | 2387.50 | |
São Francisco | 1.36 | 6130 | 4507.35 | |
São João | 3.03 | 3253 | 1073.60 | |
São Lourenço | 2.26 | 6276 | 2776.99 | |
Seminário | 2.13 | 6851 | 3216.43 | |
Tarumã | 4.17 | 8072 | 1935.73 | |
Vila Izabel | 1.21 | 11,610 | 9595.04 | |
Vista Alegre | 3.69 | 11,199 | 3034.96 |
References
- Agarwal, R.; Dhar, V. Big Data, Data Science, and Analytics: The Opportunity and Challenge for IS Research. Inf. Syst. Res. 2014, 25, 443–448. [Google Scholar] [CrossRef]
- Silva, T.H.; Viana, A.C.; Benevenuto, F.; Villas, L.; Salles, J.; Loureiro, A.; Quercia, D. Urban Computing Leveraging Location-Based Social Network Data: A Survey. ACM Comput. Surv. 2019, 52, 17:1–17:39. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.; Tu, W.; Ratti, C. Do different datasets tell the same story about urban mobility—A comparative study of public transit and taxi usage. J. Transp. Geogr. 2018, 70, 78–90. [Google Scholar] [CrossRef]
- Huang, L.; Yang, Y.; Gao, H.; Zhao, X.; Du, Z. Comparing Community Detection Algorithms in Transport Networks via Points of Interest. IEEE Access 2018, 6, 29729–29738. [Google Scholar] [CrossRef]
- De Freitas Miranda, H.; da Silva, A.N.R. Benchmarking sustainable urban mobility: The case of Curitiba, Brazil. Transp. Policy 2012, 21, 141–151. [Google Scholar] [CrossRef]
- Araujo, M.; Melo de Oliveira, J.; Jesus, M.; Sa, N.; Santos, P.; Lima, T. Collective public transportation: Discussing accessibility, mobility and quality of life. Psicol. Soc. 2011, 23, 574–582. [Google Scholar] [CrossRef]
- Ni, Y.; Yi, F.; Ma, S.; Sun, Y. User Journey with Intelligent Public Transportation System in Shanghai. In HCI in Mobility, Transport, and Automotive Systems; Krömker, H., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 487–499. [Google Scholar]
- Salazar, M.; Rossi, F.; Schiffer, M.; Onder, C.H.; Pavone, M. On the Interaction between Autonomous Mobility-on-Demand and Public Transportation Systems. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2262–2269. [Google Scholar]
- Magdolen, M.; Von Behren, S.; Chlond, B.; Hunecke, M.; Vortisch, P. Combining attitudes and travel behavior—A comparison of urban mobility types identified in Shanghai, Berlin and San Francisco. In Proceedings of the Transportation Research Board 98th Annual Meeting, Washington, DC, USA, 13–17 January 2019. [Google Scholar]
- Lotero, L.; Hurtado, R.G.; Floría, L.M.; Gómez-Gardeñes, J. Rich do not rise early: Spatio-temporal patterns in the mobility networks of different socio-economic classes. R. Soc. Open Sci. 2016, 3, 150654. [Google Scholar] [CrossRef] [Green Version]
- Oviedo, D.; Scholl, L.; Innao, M.; Pedraza, L. Do Bus Rapid Transit Systems Improve Accessibility to Job Opportunities for the Poor? The Case of Lima, Peru. Sustainability 2019, 11, 2795. [Google Scholar] [CrossRef] [Green Version]
- IPPUC. Curitiba Institute of Urban Planning and Research—Origen and Destination Survey. 2017. Available online: https://ippuc.org.br/visualizar.php?doc=http://admsite2013.ippuc.org.br/arquivos/documentos/D536/D536_002_BR.pdf (accessed on 10 March 2020).
- Balcan, D.; Gonçalves, B.; Hu, H.; Ramasco, J.J.; Colizza, V.; Vespignani, A. Modeling the spatial spread of infectious diseases: The Global Epidemic and Mobility computational model. J. Comput. Sci. 2010, 1, 132–145. [Google Scholar] [CrossRef] [Green Version]
- Van den Broeck, W.; Gioannini, C.; Gonçalves, B.; Quaggiotto, M.; Colizza, V.; Vespignani, A. The GLEAMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. BMC Infect. Dis. 2011, 11, 37. [Google Scholar] [CrossRef] [Green Version]
- Cardillo, A.; Zanin, M.; Gómez-Gardeñes, J.; Romance, M.; García del Amo, A.J.; Boccaletti, S. Modeling the multi-layer nature of the European Air Transport Network: Resilience and passengers re-scheduling under random failures. Eur. Phys. J. Spec. Top. 2013, 215, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Ganin, A.A.; Kitsak, M.; Marchese, D.; Keisler, J.M.; Seager, T.; Linkov, I. Resilience and efficiency in transportation networks. Sci. Adv. 2017, 3, e1701079. [Google Scholar] [CrossRef] [Green Version]
- Marques-Neto, H.T.; Xavier, F.H.Z.; Xavier, W.Z.; Malab, C.H.S.; Ziviani, A.; Silveira, L.M.; Almeida, J.M. Understanding Human Mobility and Workload Dynamics Due to Different Large-Scale Events Using Mobile Phone Data. J. Netw. Syst. Manag. 2018, 26, 1079–1100. [Google Scholar] [CrossRef]
- Yang, Y.; Heppenstall, A.; Turner, A.; Comber, A. Who, Where, Why and When? Using Smart Card and Social Media Data to Understand Urban Mobility. ISPRS Int. J. Geo-Inf. 2019, 8, 271. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Belyi, A.; Bojic, I.; Ratti, C. Human mobility and socioeconomic status: Analysis of Singapore and Boston. Comput. Environ. Urban Syst. 2018, 72, 51–67. [Google Scholar] [CrossRef]
- IPPUC. Curitiba Institute of Urban Planning and Research—Maps from Curitiba. 2019. Available online: https://www.urbs.curitiba.pr.gov.br/transporte/rede-integrada-de-transporte/32 (accessed on 7 November 2019).
- Taniguchi, G.; Duarte, F. Personal Smart Cards: From Transportation to a City Smart Card—The Database Integration of Public Services in Curitiba. In City Competitiveness and Improving Urban Subsystems: Technologies and Applications; IGI Global: Pennsylvania, PA, USA, 2012; pp. 217–232. [Google Scholar] [CrossRef]
- URBS. URBS in Numbers. 2018. Available online: https://www.urbs.curitiba.pr.gov.br/institucional/urbs-em-numeros (accessed on 7 November 2019).
- Ninis, A.B.; Paes de Barros, R.; Grosner, D.; Franco, S.; Rosalém, A.; Bugarin, K.; Sayuri Sataka, G.; Jorge, J. Relatório de Definição da Classe Média. 2012. Available online: https://issuu.com/sae.pr/docs/relatoriocm (accessed on 17 January 2020).
- IBGE. Brazilian Institute of Geography and Statistics—2010 Census. 2010. Available online: https://censo2010.ibge.gov.br/ (accessed on 7 November 2019).
- Guttman, A. R-trees: A Dynamic Index Structure for Spatial Searching. SIGMOD Rec. 1984, 14, 47–57. [Google Scholar] [CrossRef]
- Noulas, A.; Scellato, S.; Lambiotte, R.; Pontil, M.; Mascolo, C. A Tale of Many Cities: Universal Patterns in Human Urban Mobility. PLoS ONE 2012, 7, e0037027. [Google Scholar] [CrossRef]
- Ji, S.; Li, W.; Srivatsa, M.; He, J.S.; Beyah, R. General Graph Data De-Anonymization: From Mobility Traces to Social Networks. ACM Trans. Inf. Syst. Secur. 2016, 18. [Google Scholar] [CrossRef]
- Newman, M. Networks: An Introduction; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Yildirimoglu, M.; Kim, J. Identification of communities in urban mobility networks using multi-layer graphs of network traffic. Transp. Res. Part C Emerg. Technol. 2018, 89, 254–267. [Google Scholar] [CrossRef]
- Croce, A.I.; Musolino, G.; Rindone, C.; Vitetta, A. Transport System Models and Big Data: Zoning and Graph Building with Traditional Surveys, FCD and GIS. ISPRS Int. J. Geo-Inf. 2019, 8, 187. [Google Scholar] [CrossRef] [Green Version]
- Sharov, M. Improving Methods of Estimation of Transport Demand for Urban Passenger Transportation. In Proceedings of the International Conference on Aviamechanical Engineering and Transport, Irkutsk, Russia, 27 May—1 June 2019. [Google Scholar] [CrossRef]
- González, M.C.; Hidalgo, C.A.; Barabási, A.L. Understanding individual human mobility patterns. Nature 2008, 453, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Brandes, U. On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw. 2008, 30, 136–145. [Google Scholar] [CrossRef] [Green Version]
- Litman, T. Smart Transportation Economic Stimulation; Victoria Transport Policy Institute: Victoria, BC, Canada, 2009; Available online: https://www.vtpi.org/econ_stim.pdf (accessed on 17 November 2020).
Group | Average Monthly Family Income |
---|---|
Extremely poor (Class 1) | Up until R$ 324 |
Poor but not extremely poor (Class 2) | Up until R$ 648 |
Vulnerable (Class 3) | Up until R$ 1.164 |
Lower middle class (Class 4) | Up until R$ 1.764 |
Middle class (Class 5) | Up until R$ 2.564 |
Upper middle class (Class 6) | Up until R$ 4.076 |
Low high class (Class 7) | Up until R$ 9.920 |
High class (Class 8) | Above R$ 9.920 |
Curitiba | Class 4 | Class 5 | Class 6 | Class 7 | |
---|---|---|---|---|---|
Official population | 1,751,907 | 97,910 | 530,683 | 602,653 | 520,661 |
% | 5.59% | 30.29% | 34.40% | 29.72% | |
Distinct smart card users | 14,632 | 330 | 3412 | 3826 | 7064 |
% | 2.26% | 23.32% | 26.15% | 48.28% | |
Trips | 721,910 | 14,966 | 163,776 | 180,425 | 362,743 |
% | 2.07% | 22.69% | 24.99% | 50.25% |
Total | Class 4 | Class 5 | Class 6 | Class 7 | |
---|---|---|---|---|---|
Number of nodes | 74 | 31 | 69 | 65 | 67 |
Number of edges | 14,632 | 330 | 3412 | 3826 | 7064 |
Average degree— | 21.227 | 1.912 | 4.028 | 8.014 | 10.269 |
Average strength— | 195.093 | 4.400 | 45.493 | 51.013 | 94.187 |
Aver. path length— | 1.751 | 1.000 | 1.657 | 1.657 | 1.767 |
Class | TOP | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
All Classes | In-Strength | CE | CI | CR | AV | BA | SF | CC | PO | BT | ME |
Out-Strength | CE | CI | SF | BA | AV | CC | SC | AL | PI | CR | |
Betweenness | CE | CI | BA | AV | CC | SF | CR | PN | ME | NM | |
Class 4 | In-Strength | PN | CE | CI | RE | SQ | TA | AV | CC | TR | BA |
Out-Strength | TA | CS | SM | GA | CA | PN | CE | CI | RE | SQ | |
Betweenness | - | - | - | - | - | - | - | - | - | - | |
Class 5 | In-Strength | CE | CI | CR | AV | AL | PO | BT | BA | CC | PN |
Out-Strength | CI | AL | CJ | CH | SI | PV | PN | UM | AG | RI | |
Betweenness | CI | PN | CJ | CH | SI | AB | PV | UM | - | - | |
Class 6 | In-Strength | CE | CR | CI | BA | AV | SC | PI | PO | CC | SF |
Out-Strength | BA | SC | PI | CR | SB | BU | XA | AB | UB | FA | |
Betweenness | BA | PI | CR | SC | UB | NM | SB | XA | AB | BR | |
Class 7 | In-Strength | CE | CR | AV | SF | CI | ME | CC | BT | BA | PN |
Out-Strength | CE | SF | AV | CC | VA | CM | ME | PO | BT | IN | |
Betweenness | CE | AV | CC | SF | ME | SA | TR | PO | BT | RE |
Results | Class 4 | Class 5 | Class 6 | Class 7 |
---|---|---|---|---|
A. Users Economic Information | 2.26% | 23.32% | 26.15% | 48.28% |
B. Stratified Transit Mobility Network | trips more concentrated | almost the same number of users comparing with class 6, but less connected network | most connected network | most connected network |
C. Temporal Patterns of Urban Transit Mobility | 1st access to the public transit system at 5 a.m. | 1st access to the public transit system at 6 a.m. | 1st access to the public transit system at 7 a.m. | 1st access to the public transit system at 7 a.m. |
D. Spatio-Temporal Patterns of Urban Transit Mobility | a large displacement in the morning, with a more uniform distribution in the afternoon and night | an intra-class similarity between the afternoon and evening periods | an intra-class similarity between the afternoon and evening periods | an intra-class similarity between the afternoon and evening periods |
E. Urban Displacement | 80% of users travel more than 9 km | 80% of users travel approximately 6 km | 80% of users travel approximately 6 km | 80% of users travel less than 4 km |
F. Centrality of Places | i-s: “Pinheirinho” neighborhood, contains a practical terminal for users of class 4 to move throughout the city; o-s: the largest outbound displacement occurs in the neighborhood with the largest population for this class, “Tatuquara”; bet: all neighborhoods had this metric equal to zero. | i-s: “Centro” neighborhood, region that occurs the largest displacement of the smart card users studied; o-s: the largest outbound displacement occurs in the neighborhood with the largest population for this class, “Cidade Industrial”; bet: “Cidade Industrial” neighborhood has a bus terminal enabling transfers without paying a new fare to reach all city regions quickly. | i-s: “Centro” neighborhood, region that occurs the largest displacement of the smart card users studied; o-s: “Bairro Alto” is not the most populous neighborhood for this class, but it is one of the neighborhoods in this class with the lowest family income; bet: “Bairro Alto” neighborhood has a bus terminal enabling transfers without paying a new fare to reach all city regions quickly. | i-s: “Centro” neighborhood, region that occurs the largest displacement of the smart card users studied; o-s: “Centro” is not the most populous neighborhood for this class, but it is one of the neighborhoods in this class with the lowest family income; bet: the number of bus lines circulating in “Centro” neighborhood facilitates the movement of users. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santin, P.; Gubert, F.R.; Fonseca, M.; Munaretto, A.; Silva, T.H. Characterization of Public Transit Mobility Patterns of Different Economic Classes. Sustainability 2020, 12, 9603. https://doi.org/10.3390/su12229603
Santin P, Gubert FR, Fonseca M, Munaretto A, Silva TH. Characterization of Public Transit Mobility Patterns of Different Economic Classes. Sustainability. 2020; 12(22):9603. https://doi.org/10.3390/su12229603
Chicago/Turabian StyleSantin, Priscila, Fernanda R. Gubert, Mauro Fonseca, Anelise Munaretto, and Thiago Henrique Silva. 2020. "Characterization of Public Transit Mobility Patterns of Different Economic Classes" Sustainability 12, no. 22: 9603. https://doi.org/10.3390/su12229603
APA StyleSantin, P., Gubert, F. R., Fonseca, M., Munaretto, A., & Silva, T. H. (2020). Characterization of Public Transit Mobility Patterns of Different Economic Classes. Sustainability, 12(22), 9603. https://doi.org/10.3390/su12229603