Modelling the Potential Impacts of Climate Change on Rice Cultivation in Mekong Delta, Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Data Compilation
Rice Occurrence Data
Environmental Variables
2.2.2. Rice Habitat Suitability Modelling
Ensemble Model Design for Predicting Potential Distribution of Rice
Evaluation of Salinity and SLR for Rice Habitat Suitability
3. Results
3.1. Model Performances
3.2. Predictor Variable Importance
3.3. Current and Future Projections
3.4. Changes in Rice Habitat Suitability
4. Discussion
4.1. Model Predictions
4.2. Important Variables for Land Suitability of Rice
4.3. Rice Habitat Loss Due to Climate Changes
4.4. Implications on the Impacts of Rice Habitat Loss on Sustainability
4.5. Recommendations on Sustainable Production of Rice in the MD
4.6. Study Limitations and Contribution
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yoon, C.G. Wise use of paddy rice fields to partially compensate for the loss of natural wetlands. Paddy Water Environ. 2009, 7, 357–366. [Google Scholar] [CrossRef]
- Settele, J.; Heong, K.L.; Kühn, I.; Klotz, S.; Spangenberg, J.H.; Arida, G.; Beaurepaire, A.; Beck, S.; Bergmeier, E.; Burkhard, B.; et al. Rice ecosystem services in South-east Asia. Paddy Water Environ. 2018, 16, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Eom, K.-C. Environmentally Beneficial Function of Rice Culture and Paddy Soil. Rice culture in Asia; International Commission on Irrigation and Drainage and Korean National Committee on Irrigation and Drainage: Gwangju, Korea, 2001; pp. 28–35. [Google Scholar]
- Kim, T.-C.; Gim, U.-S.; Kim, J.S.; Kim, D.-S. The multi-functionality of paddy farming in Korea. Paddy Water Environ. 2006, 4, 169–179. [Google Scholar] [CrossRef]
- Czech, H.A.; Parsons, K.C. Agricultural wetlands and waterbirds: A review. Waterbirds 2002, 25, 56–65. [Google Scholar]
- Bambaradeniya, C.N.B. Biodiversity Associated with the Rice Field Agroecosystem in Asian Countries: A Brief Review; IWWI: Anand, India, 2003; Volume 63. [Google Scholar]
- GSO, Statistical Figures of Landuse Status in Vietnam and the Mekong Delta in 2018 from General Statistics Office of Vietnam. Available online: https://www.gso.gov.vn/default_en.aspx?tabid=778 (accessed on 15 August 2020).
- Nguyen, D.; Clauss, K.; Cao, S.; Naeimi, V.; Kuenzer, C.; Wagner, W. Mapping Rice Seasonality in the Mekong Delta with Multi-Year Envisat ASAR WSM Data. Remote Sens. 2015, 7, 15868–15893. [Google Scholar] [CrossRef] [Green Version]
- GSO. Statistical Yearbook of Vietnam; General Statistics Office of Vietnam, Statistical Publishing House: Hanoi, Vietnam, 2015. [Google Scholar]
- Tong, Y.D. Rice Intensive Cropping and Balanced Cropping in the Mekong Delta, Vietnam—Economic and Ecological Considerations. Ecol. Econ. 2017, 132, 205–212. [Google Scholar] [CrossRef]
- Trisurat, Y.; Aekakkararungroj, A.; Ma, H.-O.; Johnston, J.M. Basin-wide impacts of climate change on ecosystem services in the Lower Mekong Basin. Ecol. Res. 2018, 33, 73–86. [Google Scholar] [CrossRef]
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate change has likely already affected global food production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.F.; Chang, L.Y.; Duc, H.N.; Nguyen, L.D. Prediction of rice crop yield using MODIS EVI−LAI data in the Mekong Delta, Vietnam. Int. J. Remote Sens. 2013, 34, 7275–7292. [Google Scholar] [CrossRef]
- Wassmann, R.; Hien, N.X.; Hoanh, C.T.; Tuong, T.P. Sea Level Rise Affecting the Vietnamese Mekong Delta: Water Elevation in the Flood Season and Implications for Rice Production. Clim. Chang. 2004, 66, 89–107. [Google Scholar] [CrossRef]
- Berg, H.; Söderholm, A.E.; Söderström, A.-S.; Tam, N.T. Recognizing wetland ecosystem services for sustainable rice farming in the Mekong Delta, Vietnam. Sustain. Sci. 2017, 12, 137–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phuong, L.T.H.; Tuan, T.D.; Phuc, N.T.N. Transformative Social Learning for Agricultural Sustainability and Climate Change Adaptation in the Vietnam Mekong Delta. Sustainability 2019, 11, 6775. [Google Scholar] [CrossRef] [Green Version]
- Dinh, Q.T. Vietnam-Mekong Delta Integrated Climate Resilience and Sustainable Livelihoods (MD-ICRSL) Project: Environmental assessment (English). Project Report. 2016, pp. 1–176. Available online: http://documents.worldbank.org/curated/en/855731468312052747/Regional-environmental-assessment-report (accessed on 15 August 2020).
- Akam, R.; Gruère, G. Rice and risks in the Mekong Delta. OECD Obs. 2018, 312, 1–176. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Niu, H. Spatio-temporal variations in the areas suitable for the cultivation of rice and maize in China under future climate scenarios. Sci. Total Environ. 2017, 601, 518–531. [Google Scholar] [CrossRef]
- Byeon, D.-H.; Jung, S.; Lee, W.-H. Review of CLIMEX and MaxEnt for studying species distribution in South Korea. J. Asia Pac. Biodivers. 2018, 11, 325–333. [Google Scholar] [CrossRef]
- Fourcade, Y.; Engler, J.O.; Rödder, D.; Secondi, J. Mapping Species Distributions with MAXENT Using a Geographically Biased Sample of Presence Data: A Performance Assessment of Methods for Correcting Sampling Bias. PLoS ONE 2014, 9, e97122. [Google Scholar] [CrossRef] [Green Version]
- Remya, K.; Ramachandran, A.; Jayakumar, S. Predicting the current and future suitable habitat distribution of Myristica dactyloides Gaertn. using MaxEnt model in the Eastern Ghats, India. Ecol. Eng. 2015, 82, 184–188. [Google Scholar] [CrossRef]
- Hossell, J.; Ellis, N.; Harley, M.; Hepburn, I. Climate change and nature conservation: Implications for policy and practice in Britain and Ireland. J. Nat. Conserv. 2003, 11, 67–73. [Google Scholar] [CrossRef]
- Lamsal, P.; Kumar, L.; Aryal, A.; Atreya, K. Invasive alien plant species dynamics in the Himalayan region under climate change. Ambio 2018, 47, 697–710. [Google Scholar] [CrossRef]
- Austin, M. Spatial prediction of species distribution: An interface between ecological theory and statistical modelling. Ecol. Model. 2002, 157, 101–118. [Google Scholar] [CrossRef] [Green Version]
- Segurado, P.; Araújo, M.B. An evaluation of methods for modelling species distributions. J. Biogeogr. 2004, 31, 1555–1568. [Google Scholar] [CrossRef]
- Kariyawasam, C.S.; Kumar, L.; Ratnayake, S.S. Invasive Plant Species Establishment and Range Dynamics in Sri Lanka under Climate Change. Entropy 2019, 21, 571. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Zhou, G. Climate-associated distribution of summer maize in China from 1961 to 2010. Agric. Ecosyst. Environ. 2016, 232, 326–335. [Google Scholar] [CrossRef]
- Duan, J.; Zhou, G. Climatic suitability of double rice planting regions in China. Sci. Agric. Sin. 2012, 45, 218–227. [Google Scholar]
- Liu, Z.; Yang, P.; Tang, H.; Wu, W.; Zhang, L.; Yu, Q.; Li, Z. Shifts in the extent and location of rice cropping areas match the climate change pattern in China during 1980–2010. Reg. Environ. Chang. 2015, 15, 919–929. [Google Scholar] [CrossRef]
- Davis, A.P.; Gole, T.W.; Baena, S.; Moat, J. The Impact of Climate Change on Indigenous Arabica Coffee (Coffea arabica): Predicting Future Trends and Identifying Priorities. PLoS ONE 2012, 7, e47981. [Google Scholar] [CrossRef]
- Jalaeian, M.; Golizadeh, A.; Sarafrazi, A.; Naimi, B. Inferring climatic controls of rice stem borers’ spatial distributions using maximum entropy modelling. J. Appl. Èntomol. 2018, 142, 388–396. [Google Scholar] [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R.; Kariyawasam, C.S. Modelling Climate Suitability for Rainfed Maize Cultivation in Kenya Using a Maximum Entropy (MaxENT) Approach. Agronomy 2019, 9, 727. [Google Scholar] [CrossRef] [Green Version]
- Jayasinghe, S.L.; Kumar, L.; Sandamali, J. Assessment of Potential Land Suitability for Tea (Camellia sinensis (L.) O. Kuntze) in Sri Lanka Using a GIS-Based Multi-Criteria Approach. Agriculture 2019, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Chhogyel, N.; Kumar, L.; Bajgai, Y.; Jayasinghe, L.S. Prediction of Bhutan’s ecological distribution of rice (Oryza sativa L.) under the impact of climate change through maximum entropy modelling. J. Agric. Sci. 2020, 158, 25–37. [Google Scholar] [CrossRef]
- Ratnayake, S.S.; Kumar, L.; Kariyawasam, C.S. Neglected and Underutilized Fruit Species in Sri Lanka: Prioritisation and Understanding the Potential Distribution under Climate Change. Agronomy 2019, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Thuiller, W.; Guéguen, M.; Renaud, J.; Karger, D.N.; Zimmermann, N.E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Araújo, M.B.; New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 2007, 22, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Grenouillet, G.; Buisson, L.; Casajus, N.; Lek, S. Ensemble modelling of species distribution: The effects of geographical and environmental ranges. Ecography 2011, 34, 9–17. [Google Scholar] [CrossRef]
- Marmion, M.; Parviainen, M.; Luoto, M.; Heikkinen, R.K.; Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 2009, 15, 59–69. [Google Scholar] [CrossRef]
- Scales, K.L.; Miller, P.I.; Ingram, S.N.; Hazen, E.L.; Bograd, S.J.; Phillips, R.A. Identifying predictable foraging habitats for a wide-ranging marine predator using ensemble ecological niche models. Divers. Distrib. 2015, 22, 212–224. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.-Y.; Hu, C.; Zhang, X.; Sun, X.; Zhang, P.; Li, W.-T.; Wen-Tao, L. Selection of aquaculture sites by using an ensemble model method: A case study of Ruditapes philippinarums in Moon Lake. Aquaculture 2020, 519, 734897. [Google Scholar] [CrossRef]
- Rathore, P.; Roy, A.; Karnatak, H. Modelling the vulnerability of Taxus wallichiana to climate change scenarios in South East Asia. Ecol. Indic. 2019, 102, 199–207. [Google Scholar] [CrossRef]
- Rathore, P.; Roy, A.; Karnatak, H. Assessing the vulnerability of Oak (Quercus) forest ecosystems under projected climate and land use land cover changes in Western Himalaya. Biodivers. Conserv. 2018, 28, 2275–2294. [Google Scholar] [CrossRef]
- Shabani, F.; Kumar, L.; Ahmadi, M. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol. Evol. 2016, 6, 5973–5986. [Google Scholar] [CrossRef] [Green Version]
- Ochoa-Ochoa, L.M.; Flores-Villela, O.; Bezaury-Creel, J.E. Using one vs. many, sensitivity and uncertainty analyses of species distribution models with focus on conservation area networks. Ecol. Model. 2016, 320, 372–382. [Google Scholar] [CrossRef]
- Karila, K.; Nevalainen, O.; Krooks, A.; Karjalainen, M.; Kaasalainen, S. Monitoring Changes in Rice Cultivated Area from SAR and Optical Satellite Images in Ben Tre and Tra Vinh Provinces in Mekong Delta, Vietnam. Remote Sens. 2014, 6, 4090–4108. [Google Scholar] [CrossRef] [Green Version]
- Kontgis, C.; Schneider, A.; Ozdogan, M. Mapping rice paddy extent and intensification in the Vietnamese Mekong River Delta with dense time stacks of Landsat data. Remote Sens. Environ. 2015, 169, 255–269. [Google Scholar] [CrossRef]
- Chen, C.; Son, N.; Chen, C.; Chang, L.; Chiang, S. Rice Crop Mapping Using Sentinel-1A Phenological Metrics. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 863–865. [Google Scholar] [CrossRef]
- Phan, H.; Le Toan, T.; Bouvet, A.; Nguyen, L.D.; Duy, T.P.; Zribi, M. Mapping of Rice Varieties and Sowing Date Using X-Band SAR Data. Sensors 2018, 18, 316. [Google Scholar] [CrossRef] [Green Version]
- Clauss, K.; Ottinger, M.; Leinenkugel, P.; Kuenzer, C. Estimating rice production in the Mekong Delta, Vietnam, utilizing time series of Sentinel-1 SAR data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 574–585. [Google Scholar] [CrossRef]
- Minh, H.V.T.; Avtar, R.; Mohan, G.; Misra, P.; Kurasaki, M. Monitoring and Mapping of Rice Cropping Pattern in Flooding Area in the Vietnamese Mekong Delta Using Sentinel-1A Data: A Case of An Giang Province. ISPRS Int. J. Geo Inf. 2019, 8, 211. [Google Scholar] [CrossRef] [Green Version]
- Phung, H.P.; Nguyen, L.D. Rice Crop Monitoring in the Mekong Delta, Vietnam Using Multi-temporal Sentinel-1 Data with C-Band. In Lecture Notes in Civil Engineering; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2020; pp. 979–986. [Google Scholar]
- Phung, H.-P.; Nguyen, L.-D.; Thong, N.-H.; Thuy, L.-T.; Apan, A.A. Monitoring rice growth status in the Mekong Delta, Vietnam using multitemporal Sentinel-1 data. J. Appl. Remote Sens. 2020, 14, 014518. [Google Scholar] [CrossRef] [Green Version]
- Phung, H.P.; Lam-Dao, N.; Pham-Van, C.; Chau-Nguyen-Xuan, Q.; Nguyen-Van-Anh, V.; Gummadi, S.; Le-Van, T. Sentinel-1 SAR Time Series-Based Assessment of the Impact of Severe Salinity Intrusion Events on Spatiotemporal Changes in Distribution of Rice Planting Areas in Coastal Provinces of the Mekong Delta, Vietnam. Remote Sens. 2020, 12, 3196. [Google Scholar] [CrossRef]
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. BIOMOD-a platform for ensemble forecasting of species distributions. Ecography 2009, 32, 369–373. [Google Scholar] [CrossRef]
- Nguyen, T.T.X.; Woodroffe, C.D. Assessing relative vulnerability to sea-level rise in the western part of the Mekong River Delta in Vietnam. Sustain. Sci. 2015, 11, 645–659. [Google Scholar] [CrossRef]
- Tessler, Z.D.; Vörösmarty, C.J.; Grossberg, M.; Gladkova, I.; Aizenman, H. A global empirical typology of anthropogenic drivers of environmental change in deltas. Sustain. Sci. 2016, 11, 525–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 2014, 275, 73–77. [Google Scholar] [CrossRef]
- Kramer-Schadt, S.; Niedballa, J.; Pilgrim, J.D.; Schröder, B.; Lindenborn, J.; Reinfelder, V.; Stillfried, M.; Heckmann, I.; Scharf, A.K.; Augeri, D.M.; et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 2013, 19, 1366–1379. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Clim. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Weigel, A.P.; Liniger, M.A.; Appenzeller, C. Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? Q. J. R. Meteorol. Soc. 2008, 134, 241–260. [Google Scholar] [CrossRef]
- Solomon, S.; Manning, M.; Marquis, M.; Qin, D. Climate Change 2007-the Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Griffies, S.M.; Winton, M.; Donner, L.J.; Horowitz, L.W.; Downes, S.M.; Farneti, R.; Gnanadesikan, A.; Hurlin, W.J.; Lee, H.-C.; Liang, Z.; et al. The GFDL CM3 Coupled Climate Model: Characteristics of the Ocean and Sea Ice Simulations. J. Clim. 2011, 24, 3520–3544. [Google Scholar] [CrossRef]
- Yukimoto, S.; Adachi, Y.; Hosaka, M.; Sakami, T.; Yoshimura, H.; Hirabara, M.; Tanaka, T.Y.; Shindo, E.; Tsujino, H.; Deushi, M.; et al. A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3; Model Description and Basic Performance. J. Meteorol. Soc. Jpn. 2012, 90, 23–64. [Google Scholar] [CrossRef] [Green Version]
- Voldoire, A.; Sanchezgomez, E.; Mélia, D.S.Y.; Decharme, B.; Cassou, C.; Senesi, S.; Valcke, S.; Beau, I.; Alias, A.N.; Chevallier, M.; et al. The CNRM-CM5.1 global climate model: Description and basic evaluation. Clim. Dyn. 2013, 40, 2091–2121. [Google Scholar] [CrossRef] [Green Version]
- Trần, T.; Nguyễn, V.T.; Huỳnh, T.L.H.; Mai, V.K.; Nguyễn, X.H.; Doãn, H.P. Climate Change and Sea Level Rise Scenarios for Vietnam; Ministry of Natural Resources and Environment: Ha Noi, Vietnam, 2016; p. 188. [Google Scholar]
- IPCC, Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team; Pachauri, R.K.; Meyer, L.A. (Eds.) IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Mod, H.K.; Scherrer, D.; Luoto, M.; Guisan, A. What we use is not what we know: Environmental predictors in plant distribution models. J. Veg. Sci. 2016, 27, 1308–1322. [Google Scholar] [CrossRef]
- Shabani, F.; Ahmadi, M.; Kumar, L.; Solhjouy-Fard, S.; Tehrany, M.S.; Shabani, F.; Kalantar, B.; Esmaeili, A. Invasive weed species’ threats to global biodiversity: Future scenarios of changes in the number of invasive species in a changing climate. Ecol. Indic. 2020, 116, 106436. [Google Scholar] [CrossRef]
- Dong, N.M.; Brandt, K.K.; Sørensen, J.; Hung, N.N.; Van Hach, C.; Tan, P.S.; Dalsgaard, T. Effects of alternating wetting and drying versus continuous flooding on fertilizer nitrogen fate in rice fields in the Mekong Delta, Vietnam. Soil Biol. Biochem. 2012, 47, 166–174. [Google Scholar] [CrossRef]
- Kawahigashi, M.; Do, N.M.; Nguyen, V.B.; Sumida, H. Effect of land developmental process on soil solution chemistry in acid sulfate soils distributed in the Mekong Delta, Vietnam. Soil Sci. Plant Nutr. 2008, 54, 342–352. [Google Scholar] [CrossRef] [Green Version]
- Van Nguyen, S.; Nguyen, P.T.K.; Araki, M.; Perry, R.N.; Tran, L.B.; Chau, K.M.; Min, Y.Y.; Toyota, K. Effects of cropping systems and soil amendments on nematode community and its relationship with soil physicochemical properties in a paddy rice field in the Vietnamese Mekong Delta. Appl. Soil Ecol. 2020, 156, 103683. [Google Scholar] [CrossRef]
- Tuong, T.P.; Kam, S.P.; Hoanh, C.T.; Dung, L.C.; Khiem, N.T.; Barr, J.; Ben, D.C. Impact of seawater intrusion control on the environment, land use and household incomes in a coastal area. Paddy Water Environ. 2003, 1, 65–73. [Google Scholar] [CrossRef]
- Hai, T.X.; Van Nghi, V.; Hung, V.H.; Tuan, D.N.; Lam, D.T.; Van, C.T. Assessing and Forecasting Saline Intrusion in the Vietnamese Mekong Delta Under the Impact of Upstream flow and Sea Level Rise. J. Environ. Sci. Eng. B 2019, 8, 174. [Google Scholar] [CrossRef] [Green Version]
- MARD (Ministry of Agriculture and Rural Development). Vietnam-Mekong Delta Integrated Climate Resilience and Sustainable Livelihoods (MD-ICRSL) Project. Project Report. Available online: http://documents.worldbank.org/curated/en/855731468312052747/Regional-environmental-assessment-report.2016 (accessed on 20 August 2020).
- Breiman, L. Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author). Stat. Sci. 2001, 16, 199–231. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed.; Chapman and Hall: London, UK, 1989. [Google Scholar]
- Friedman, J.H. Multivariate Adaptive Regression Splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Buja, A. Flexible discriminant analysis by optimal scoring. J. Am. Stat. Assoc. 1994, 89, 1255–1270. [Google Scholar] [CrossRef]
- Van Ryzin, J.; Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees. J. Am. Stat. Assoc. 1986, 81, 253. [Google Scholar] [CrossRef]
- Lek, S.; Guégan, J. Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Model. 1999, 120, 65–73. [Google Scholar] [CrossRef]
- Ridgeway, G. The state of boosting. Comput. Sci. Stat. 1999, 172–181. [Google Scholar]
- Breiman, L.; Last, M.; Rice, J. Random Forests: Finding Quasars. Stat. Chall. Astron. 2006, 45, 243–254. [Google Scholar] [CrossRef]
- Senay, S.D.; Worner, S.P.; Ikeda, T. Novel Three-Step Pseudo-Absence Selection Technique for Improved Species Distribution Modelling. PLoS ONE 2013, 8, e71218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capinha, C.; Leung, B.; Anastácio, P.M. Predicting worldwide invasiveness for four major problematic decapods: An evaluation of using different calibration sets. Ecography 2010, 34, 448–459. [Google Scholar] [CrossRef]
- Chatterjee, S.; Hadi, A.S. Regression Analysis by Example; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Naimi, B.; Hamm, N.A.S.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where is positional uncertainty a problem for species distribution modelling? Ecography 2013, 37, 191–203. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2012, 36, 27–46. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. An Application of Hierarchical Kappa-type Statistics in the Assessment of Majority Agreement among Multiple Observers. Biometrics 1977, 33, 363. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [Green Version]
- Gama, M.; Crespo, D.; Dolbeth, M.; Anastácio, P.M. Ensemble forecasting of Corbicula fluminea worldwide distribution: Projections of the impact of climate change. Aquat. Conserv. Mar. Freshw. Ecosyst. 2017, 27, 675–684. [Google Scholar] [CrossRef]
- Pearson, T.A.; Blair, S.N.; Daniels, S.R.; Eckel, R.H.; Fair, J.M.; Fortmann, S.P.; Franklin, B.A.; Goldstein, L.B.; Greenland, P.; Grundy, S.M.; et al. AHA Guidelines for Primary Prevention of Cardiovascular Disease and Stroke: 2002 Update. Circulation 2002, 106, 388–391. [Google Scholar] [CrossRef] [PubMed]
- Vu, D.T.; Yamada, T.; Ishidaira, H. Assessing the impact of sea level rise due to climate change on seawater intrusion in Mekong Delta, Vietnam. Water Sci. Technol. 2018, 77, 1632–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, M.K.; Kumar, L.; Langat, P.K. Geospatial modelling of the inundation levels in the Sundarbans mangrove forests due to the impact of sea level rise and identification of affected species and regions. Geomat. Nat. Hazards Risk 2019, 10, 1028–1046. [Google Scholar] [CrossRef]
- Beaumont, L.J.; Hughes, L.; Poulsen, M. Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Model. 2005, 186, 251–270. [Google Scholar] [CrossRef]
- Gavilán, R.G. The use of climatic parameters and indices in vegetation distribution. A case study in the Spanish Sistema Central. Int. J. Biometeorol. 2005, 50, 111–120. [Google Scholar] [CrossRef]
- Lutz, J.A.; Van Wagtendonk, J.W.; Franklin, J.F. Climatic water deficit, tree species ranges, and climate change in Yosemite National Park. J. Biogeogr. 2010, 37, 936–950. [Google Scholar] [CrossRef]
- Nogués-Bravo, D.; Pulido, F.J.; Araújo, M.B.; Diniz-Filho, J.A.F.; García-Valdés, R.; Kollmann, J.; Svenning, J.-C.; Valladares, F.; Zavala, M.A. Phenotypic correlates of potential range size and range filling in European trees. Perspect. Plant Ecol. Evol. Syst. 2014, 16, 219–227. [Google Scholar] [CrossRef] [Green Version]
- MDP-Mekong Delta Plan. Towards a Mekong Delta Plan; Vietnam-Netherlands Co-operation, Water Sector, Synthesis: Hanoi, Vietnam, 2013. [Google Scholar]
- Amin, S.R.; Zhang, J.; Yang, M. Effects of Climate Change on the Yield and Cropping Area of Major Food Crops: A Case of Bangladesh. Sustainability 2015, 7, 898–915. [Google Scholar] [CrossRef] [Green Version]
- Birthal, P.S.; Khan, T.; Negi, D.S.; Agarwal, S. Impact of Climate Change on Yields of Major Food Crops in India: Implications for Food Security. Agric. Econ. Res. Rev. 2014, 27, 145. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, L.; Ma, F.; Yang, J.; Atkin, O.K. Phenotypic plasticity in rice: Responses to fertilization and inoculation with arbuscular mycorrhizal fungi. J. Plant Ecol. 2015, 9, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Chapman, A.; Darby, S. Evaluating sustainable adaptation strategies for vulnerable mega-deltas using system dynamics modelling: Rice agriculture in the Mekong Delta’s An Giang Province, Vietnam. Sci. Total Environ. 2016, 559, 326–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Category | Sources | Variables | Abbreviations | Units |
---|---|---|---|---|
For ensemble model to predict potential distribution of rice | ||||
Bioclimatic | WorldClim—Global Climate Data http://www.worldclim.org/ | Annual mean temperature | BIO1 | °C |
Mean diurnal range | BIO2 | °C | ||
Isothermality | BIO3 | Unitless | ||
Temperature seasonality | BIO4 | Unitless | ||
Max. temperature of warmest month | BIO5 | °C | ||
Min. temperature for coldest month | BIO6 | °C | ||
Temperature annual range | BIO7 | °C | ||
Mean temperature of wettest quarter | BIO8 | °C | ||
Mean temperature of driest quarter | BIO9 | °C | ||
Mean temperature of warmest quarter | BIO10 | °C | ||
Mean temperature of coldest quarter | BIO11 | °C | ||
Annual precipitation | BIO12 | mm | ||
Precipitation of wettest month | BIO13 | mm | ||
Precipitation of driest month | BIO14 | mm | ||
Precipitation seasonality | BIO15 | Unitless | ||
Precipitation of wettest quarter | BIO16 | mm | ||
Precipitation of driest quarter | BIO17 | mm | ||
Precipitation of warmest quarter | BIO18 | mm | ||
Precipitation of coldest quarter | BIO19 | mm | ||
Ecological | FAO www.fao.org/geonetwork | Soil type | Unitless | |
MARD, Vietnam | Soil acidity | Unitless | ||
For analysis to delineate the final maps of rice habitat suitability | ||||
MARD, Vietnam | Saline concentration | (g/L) | ||
MONRE, Vietnam | Sea Level Rise | m |
Evaluation Methods | Value Ranges | Performance | References | |||
---|---|---|---|---|---|---|
Excellent | Good/ Fair/ Useful/ | Poor | No Better than Random | |||
KAPPA | −1 to +1 | > 0.75 | 0.4–0.75 | < 0.4 | [91] | |
ROC/AUC | 0 to +1 | > 0.9 | 0.7–0.9 | 0.5–0.7 | < 0.5 | [92] |
TSS | −1 to +1 | > 0.8 | 0.5–0.8 | 0.2–0.5 | < 0.2 | [93] |
Suitability Level | Change Type | Suitability Areas (km2) under RCP 4.5 | Suitability Areas (km2) under RCP 8.5 |
---|---|---|---|
Optimal | Unchanged | 7604 (73.2%) | 7174 (69.0%) |
Expansion | 1803 (17.3%) | 1438 (13.6%) | |
Reduced | 2799 (26.9%) | 3229 (31.1%) | |
Moderate | Unchanged | 1999 (31.5%) | 1512 (23.9%) |
Expansion | 3701 (58.4%) | 2737 (43.2%) | |
Reduced | 4336 (68.4%) | 4821 (76.1%) | |
Low | Unchanged | 2551 (26.1%) | 1765 (18.1%) |
Expansion | 2068 (21.1%) | 2086 (21.4%) | |
Reduced | 7218 (74.0%) | 8000 (82.0%) | |
Unsuitable | Unchanged | 11,988 (93.5%) | 12,213 (95.2%) |
Expansion | 7439 (58.0%) | 10,208 (79.6%) | |
Reduced | 658 (5.1%) | 419 (3.3%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, A.T.N.; Kumar, L.; Reid, M. Modelling the Potential Impacts of Climate Change on Rice Cultivation in Mekong Delta, Vietnam. Sustainability 2020, 12, 9608. https://doi.org/10.3390/su12229608
Dang ATN, Kumar L, Reid M. Modelling the Potential Impacts of Climate Change on Rice Cultivation in Mekong Delta, Vietnam. Sustainability. 2020; 12(22):9608. https://doi.org/10.3390/su12229608
Chicago/Turabian StyleDang, An T. N., Lalit Kumar, and Michael Reid. 2020. "Modelling the Potential Impacts of Climate Change on Rice Cultivation in Mekong Delta, Vietnam" Sustainability 12, no. 22: 9608. https://doi.org/10.3390/su12229608
APA StyleDang, A. T. N., Kumar, L., & Reid, M. (2020). Modelling the Potential Impacts of Climate Change on Rice Cultivation in Mekong Delta, Vietnam. Sustainability, 12(22), 9608. https://doi.org/10.3390/su12229608