Transformation of Trolleybus Transport in Poland. Does In-Motion Charging (Technology) Matter?
Abstract
:1. Introduction
1.1. Environmental Challenges Facing the Transport Sector in Cities
1.2. Public Transport as a Crucial Element of Environmental Response
1.3. Organisation of the Paper
2. Electromobility’s Impact on PT Markets
2.1. Battery as a Critical Element of the PT’s Electromobility System
- battery-powered vehicles,
- hybrid vehicles,
- fuel-cell vehicles,
- in-motion charging vehicles.
- for a series-type hybrid, a battery is a source of power for the drive which is additionally supported by an internal combustion engine (ICE) transmitting energy to the generator, all to increase the distance the vehicle can travel;
- for a parallel-type hybrid a battery powers the electric motor (EM) which propels the same mechanical transmission together with the combustion engine;
- for a series-parallel-type hybrid, a battery powers the electric motor which propels the same mechanical transmission together with the combustion engine which additionally recharges the battery using a dedicated generator (G).
- high peak current,
- high capacity,
- a large number of work cycles,
- low weight,
- small dimensions,
- user safety.
- working temperature range,
- permitted operating currents,
- requirements regarding dimensions and weight,
- safety requirements,
- maintenance requirements,
- forecasted cost of the battery pack.
2.2. Electromobility in Urban Public Transport
- -
- only charging at the depot (overnight charging),
- -
- charging only at the end of routes (opportunity charging),
- -
- mixed charging at the depot and at the end of routes (mixed, overnight and opportunity charging),
- -
- vehicle charging while driving from the overhead line (in-motion charging).
- ►
- —time needed for the manoeuvre to drive up and down to the charging installation
- ►
- S—length of the bus route [km]
- ►
- Et—empirically determined energy value needed to drive 1 km by an electric vehicle [kWh]
- ►
- Eko—energy required for air conditioning (20% Et), heating (100% Et) for the selected ambient temperature or month [kWh/km].
- ►
- En—nominal battery energy [kWh]
- ►
- C—battery C rating*
- ►
- tcharging—charging time [s].
3. Methods
3.1. Case Study
- RQ1: Does in-motion charging technology contribute to the development of trolleybus transport?
- RQ2: Which factor(s) have the most significant influence on the development of in-motion charging technology in trolleybus transport?
3.2. KPIs
- be general indicators of performance-focused on critical aspects of outputs or outcomes,
- constitute a set of a limited, manageable number of KPIs being maintainable for regular use,
- be possible to implement in the systematic use of KPIs (access to relevant data),
- data collection connected with the calculating of KPIs must be made as simple as possible,
- be possible to use on every project for easy comparison of performance;
- be accepted, understood and owned across the organisation,
- evolve, be possible to change and refine.
4. Public Transport System in Cities of Gdynia, Lublin and Tychy
4.1. Description of the Study Sites
4.2. Current Status of the Electromobility in Study Sites
5. Results and Discussion
5.1. KPIs Selection Process
5.2. Results of KPI Mainframe for Trolleybus Systems in Poland
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BRT | Bus Rapid Transit |
CO | Carbon monoxide |
CO2 | Carbon dioxide |
EU | European Commission |
EV | electric vehicle |
GHG | greenhouse gas |
KPI | Key Performance Indicator |
kWh | kilowatt-hour |
LTO | lithium-titanate |
MPK Lublin sp. z o.o. | a municipal trolleybus and bus transport operator operating in Lublin (PL) |
NiCd | nickel-cadmium |
NMC | nickel manganese cobalt |
NOx | nitrogen oxides |
PKT—Przedsiębiorstwo Komunikacji Trolejbusowej sp. z o. o. | a municipal trolleybus transport operator operating in Gdynia and Sopot (PL) |
PM2.5 | atmospheric particulate matter with a diameter of less than 2.5 micrometres |
PM10 | coarse atmospheric matter with a diameter of less than 10 micrometres |
PT | public transport |
TLT Tychy sp. z o.o. | a municipal trolleybus transport operator operating in Tychy (PL) |
SUMP | Sustainable Urban Mobility Plan |
References
- Newman, P.W.G.; Kenworthy, J.R. The land use-transport connection: An overview. Land Use Policy 1996, 13, 1–22. [Google Scholar] [CrossRef]
- Priemus, H.; Nijkamp, P.; Banister, D. Mobility and spatial dynamics: An uneasy relationship. J. Transp. Geogr. 2001, 9, 167–171. [Google Scholar] [CrossRef]
- Broto, V.C. Energy landscapes and urban trajectories towards sustainability. Energy Policy 2017. [Google Scholar] [CrossRef]
- Wang, S.H.; Huang, S.L.; Huang, P.J. Can spatial planning really mitigate carbon dioxide emissions in urban areas? A case study in Taipei, Taiwan. Landsc. Urban Plan. 2018, 169, 22–36. [Google Scholar] [CrossRef]
- Un-Habitat. Planning and Design for Sustainable Urban Mobility; Un-Habitat: Nairobi, Kenya, 2013. [Google Scholar]
- Pietrzak, K.; Pietrzak, O. Environmental effects of electromobility in a sustainable urban public transport. Sustainability 2020, 12. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Action Plan on Urban Mobility; COM(2009) 490 Final; European Commission: Brussels, Belgium, 2009; pp. 1–13. [Google Scholar]
- European Commission. A European Strategy for Low-Emission Mobility; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Gärling, T.; Schuitema, G. Travel demand management targeting reduced private car use: Effectiveness, public acceptability and political feasibility. J. Soc. Issues 2007, 63. [Google Scholar] [CrossRef]
- Chiou, Y.C.; Fu, C. Responses of drivers and motorcyclists to congestion charge. Transp. Res. Proc. 2017, 25, 2961–2973. [Google Scholar] [CrossRef]
- Song, Y.; Preston, J.; Ogilvie, D. New walking and cycling infrastructure and modal shift in the UK: A quasi-experimental panel study. Transp. Res. Part A Policy Pract. 2017, 95. [Google Scholar] [CrossRef]
- Welcome to 2030: The Mega-Trends. Available online: https://ec.europa.eu/assets/epsc/pages/espas/chapter1.html (accessed on 25 October 2020).
- Malmö Stad. Sustainable Urban Mobility Plan: Creating a More Accessible Malmö; Malmö Stad: Malmö, Sweden, 2016. [Google Scholar]
- World Economic Forum. A Report on the Global Agenda Council on Competitiveness; World Economic Forum: Cologny, Switzerland, 2014; p. 60. [Google Scholar]
- Maraš, V.; Bugarinović, M.; Anoyrkati, E.; Avarello, A. Megatrends, a way to identify the future transport challenges. Intell. Syst. Comput. 2019, 879, 34–41. [Google Scholar]
- European Commissions. Public Transport Trends; Executive Summary; European Commissions: Brussels, Belgium, 2019. [Google Scholar]
- Urbanek, A. Data-Driven Transport Policy in Cities: A Literature Review and Implications for Future Developments. In Integration as Solution for Advanced Smart Urban Transport Systems, Proceedings of the 15th Scientific and Technical Conference “Transport Systems. Theory & Practice’’, Katowice, Poland, 20–21 September 2018; Sierpiński, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 61–74. [Google Scholar]
- Kłos-Adamkiewicz, Z. Examples of development of electromobility in public transport in Poland. Eur. J. Serv. Manag. 2018, 27. [Google Scholar] [CrossRef]
- Liebl, F.; Schwarz, J.O. Normality of the future: Trend diagnosis for strategic foresight. Futures 2010, 42. [Google Scholar] [CrossRef]
- United Nations. Paris Agreement; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Fuhr, H.; Hickmann, T.; Kern, K. The role of cities in multi-level climate governance: Local climate policies and the 1.5 °C target. Curr. Opin. Environ. Sustain. 2018, 30, 1–6. [Google Scholar] [CrossRef]
- National Travel Survey. Stat. Release 2017; National Travel Survey: London, UK, 2018.
- Lozzi, G.; Rodrigues, M.; Marcucci, E.; Teoh, T.; Gatta, V.; Pacelli, V. COVID-19 and Urban Mobility: Impacts and Perspectives; European Parliament: Brussels, Belgium, 2020. [Google Scholar]
- Hebel, K. Travel behaviour survey of urban inhabitants conducted in Polish cities. The theoretical and practical aspects; Wyd. Fundacji Rozwoju Uniwersytetu Gdańskiego: Gdańsk, Poland, 2013; ISBN 978837531226-3. (In Polish) [Google Scholar]
- Trinh, T.A.; Linh Le, T.P. Investigating Proenvironmental Behavior: The Case of Commuting Mode Choice. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Banda Aceh, Indonesia, 26–27 September 2018; Volume 143. [Google Scholar] [CrossRef]
- Ardila-Gomez, A.; Ortegón-Sánchez, A. Sustainable Urban Transport Financing from the Sidewalk to the Subway: Capital, Operations, and Maintenance Financing; World Bank Group: Washington, DC, USA, 2015; ISBN 9781464807565. [Google Scholar]
- Bucsky, P. Modal share changes due to COVID-19: The case of Budapest. Transp. Res. Interdiscip. Perspect. 2020, 8, 100141. [Google Scholar] [CrossRef]
- Smith, K. UITP Projects €40bn Hit for European Public Transport in 2020. IRJ, 13 May 2020. [Google Scholar]
- Tirachini, A.; Cats, O. COVID-19 and public transportation: Current assessment, prospects, and research needs. J. Public Transp. 2020, 22, 1–34. [Google Scholar] [CrossRef]
- Civity Management Consultant. Verkehrswende: Aufgehoben oder Aufgeschoben? Corona-Szenarien für den ÖPNV. Executive Summary; Civity Management Consultant: Warsaw, Poland, 2020. [Google Scholar]
- Wołek, M.; Wyszomirski, O.; Hebel, K.; Grzelec, K.; Połom, M.; Bartłomiejczyk, M.; Pudło, J.; Czermański, E.; Kołodziejski, H.; Dębicka, O.; et al. The Trolleybus as an Urban Means of Transport in the Light of the Trolley Project; Wolek, M., Wyszomirski, O., Eds.; University of Gdansk Press: Sopot, Poland, 2013; ISBN 9788378651741. [Google Scholar]
- Hamacek, Š.; Bartłomiejczyk, M.; Hrbáč, R.; Mišák, S.; Stýskala, V. Energy recovery effectiveness in trolleybus transport. Electr. Power Syst. Res. 2014, 112, 1–11. [Google Scholar] [CrossRef]
- Penina, N.; Turygin, Y.V.; Racek, V. Comparative analysis of different types of hybrid electric vehicles. In Proceedings of the 13th International Symposium on Mechatronics, Mechatronika, Teplice, Slovakia, 2–4 June 2010. [Google Scholar]
- Fayyad, S.M.; Abuzalata, M.; Abu-Ein, S. Optimization of the Electrical Motor Generator in Hybrid Automobiles; University of Waterloo: Waterloo, Belgium, 2012; Volume 5. [Google Scholar]
- Gay, S.E.; Gao, H.; Ehsani, M. Fuel cell hybrid drive train configurations and motor drive selection. In Proceedings of the IEEE Vehicular Technology Conference, Vancouver, BC, Canada, 24–28 September 2002; Volume 56. [Google Scholar]
- Ruiz, V.; Di Persio, F. Standards for the Performance and Durability Assessment of Electric Vehicle Batteries; JRC Technol. Reports; Publications Office of the European Union: Brussels, Belgium, 2018. [Google Scholar]
- Koniak, M.; Czerepicki, A.; Tomczuk, P.; Şamşul, B. Simulation of the Battery Pack Exploitation Based on Real Measurement Data of Applied Chemical Cells. In Proceedings of the MATEC Web of Conferences, Chongqing, China, 15–17 June 2016; Volume 77. [Google Scholar]
- Hong, J.; Tang, M.; Wu, Z.; Miao, Z.; Qiping, G. The evolution of patterns within embodied energy flows in the Chinese economy: A multi-regional-based complex network approach. Sustain. Cities Soc. 2019, 47, 101500. [Google Scholar] [CrossRef]
- Lowe, M.; Tokuoka, S.; Trigg, T.; Gereffi, G. Lithium-ion Batteries for Electric Vehicles; NREL: Golden, CO, USA, 2013; pp. 1–13. [CrossRef]
- Fleurbaey, K.; Omar, N.; Baghdadi, M.; El Timmermans, J.-M.; Van Mierlo, J. Analysis of hybrid rechargeable energy storage systems in series plug-in hybrid electric vehicles based on simulations. Energy Power Eng. 2014, 6. [Google Scholar] [CrossRef] [Green Version]
- Wołek, M.; Wolański, M.; Bartłomiejczyk, M.; Wyszomirski, O.; Grzelec, K.; Hebel, K. Ensuring sustainable development of urban public transport: A case study of the trolleybus system in Gdynia and Sopot (Poland). J. Clean. Prod. 2020, 279. [Google Scholar] [CrossRef]
- Sierpiński, G.; Staniek, M.; Kłos, M.J. Decision making support for local authorities choosing the method for siting of in-city ev charging stations. Energies 2020, 13. [Google Scholar] [CrossRef]
- Electric Vehicle Council. Electric Vehicle Outlook 2020. Executive Summary; Electric Vehicle Council: Sydney, Australia, 2020. [Google Scholar]
- Mathieu, L. Electric Buses Arive on Time-Marketplace, Economic, Technology, Environmental and Policy Perspectives for Fully Electric Buses in the EU; European Federation for Transport and Environment: Brussels, Belgium, 2018. [Google Scholar]
- Lajunen, A. Lifecycle costs and charging requirements of electric buses with different charging methods. J. Clean. Prod. 2018, 172, 56–67. [Google Scholar] [CrossRef]
- Bartłomiejczyk, M. Praktyczna aplikacja In Motion Charging w Gdyni: Trolejbusy w obsłudze linii autobusowych. Autobusy Tech. Eksploat. Syst. Transp. 2016, 7–8, 58–64. [Google Scholar]
- Bergk, F.; Biemann, K.; Lambrecht, U.; Prof, D.; Pütz, R. Potential of in-motion charging buses for the electrification of urban bus lines. J. Earth Sci. Geotechnol. Eng. 2016, 6, 347–362. [Google Scholar]
- Patella, D.; Perchel, A.; Jaques, I.; Lee-Brown, J.; Baker, M.; Joy, O.; Amato, C.; Steinmetz, R.; Van der Ploeg, R.; Breen, E.; et al. Electric Mobility & Development: An Engagement Paper from the World Bank and the International Association of Public Transport; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Wołek, M.; Hebel, K. Strategic planning of the development of trolleybus transportation within the cities of Poland. In Smart and Green Solutions for Transport Systems, Proceedings of the 16th Scientific and Technical Conference “Transport Systems. Theory and Practice 2019”, Katowice, Poland, 16–18 September 2019; Sierpinski, G., Ed.; Springer Nature: Cham, Switzerland, 2020; ISBN 978-3-030-35543-2. [Google Scholar]
- An, K. Battery electric bus infrastructure planning under demand uncertainty. Transp. Res. Part C Emerg. Technol. 2020, 111, 572–587. [Google Scholar] [CrossRef]
- Bartłomiejczyk, M.; Kołacz, R. The reduction of auxiliaries power demand: The challenge for electromobility in public transportation. J. Clean. Prod. 2020, 252. [Google Scholar] [CrossRef]
- Teegavarapu, S.; Summers, J.D. Case Study Method for Design Research: A Justification. In Proceedings of the ASME 2008 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, New York, NY, USA, 3–6 August 2008; pp. 1–9. [Google Scholar]
- Yin, R.K. Case study research: Desing and Methods. Appl. Soc. Res. Methods Ser. 2003, 5. [Google Scholar] [CrossRef]
- Bos, R.; Temme, R. A Roadmap towards sustainable mobility in Breda. Transp. Res. Procedia 2014, 4, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Lindholm, M.; Behrends, S. Challenges in urban freight transport planning–a review in the Baltic Sea Region. J. Transp. Geogr. 2012, 22, 129–136. [Google Scholar] [CrossRef]
- Užienė, L. City’s intellectual capital framework: The performance measurement point of view. Econ. Manag. 2013, 18, 198–209. [Google Scholar] [CrossRef] [Green Version]
- Eisenhardt, K.M. Theory building from cases: Opportunities and challenges. Acad. Manag. J. 2007, 50, 25–32. [Google Scholar] [CrossRef]
- Steenhuis, H.-J.; de Bruijn, E.J. Building Theories from Case Study Research: The Progressive Case Study. OM in the new world uncertainties. In Proceedings of the 17th Annual Conference of POMS, Boston, MA, USA, 28 April–1 May 2006; pp. 1–13. [Google Scholar]
- Yin, R.K. Case Study Research. Design and Methods. Z. Pers. 2012, 26, 93–96. [Google Scholar]
- Miles, R. Complexity, representation and practice: Case study as method and methodology. Issues Educ. Res. 2015, 25, 309–318. [Google Scholar]
- Flyvbjerg, B. Case study. In The Sage Handbook of Qualitative Research; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2014; pp. 301–316a. [Google Scholar]
- Yin, R.K. Applications of case study research. Appl. Soc. Res. Methods Ser. 2013, 34. [Google Scholar] [CrossRef]
- World Economic Forum. World Economic Forum White Paper Digital Transformation of Industries; World Economic Forum: Cologny, Switzerland, 2016; p. 28. [Google Scholar]
- Szumska, E.; Jurecki, R.; Pawelczyk, M. life cycle cost (lcc) level of an urban transport fleet with differentiated share of buses with alternative drive systems. Commun. Univ. Zilina 2020, 22, 68–77. [Google Scholar]
- Buchart-Korol, D.; Gazda-Grzywacz, M.; Zarębska, K. Research and prospects for the development of alternative fuels in the transport sector in Poland: A review. Energies 2020, 13, 2988. [Google Scholar] [CrossRef]
- Zagrajek, K.; Paska, J.; Kłos, M.; Pawlak, K.; Marchel, P.; Bartecka, M.; Michalski, Ł.; Terlikowski, P. Impact of electric bus charging on distribution substation and local grid in Warsaw. Energies 2020, 13, 1210. [Google Scholar] [CrossRef] [Green Version]
- Di Vaio, A.; Varriale, L.; Alvino, F. Key performance indicators for developing environmentally sustainable and energy e ffi cient ports: Evidence from Italy. Energy Policy 2018, 122, 229–240. [Google Scholar] [CrossRef]
- Melo, S.; Macedo, J.; Baptista, P. Capacity-sharing in logistics solutions: A new pathway towards sustainability. Transp. Policy 2019, 73, 143–151. [Google Scholar] [CrossRef]
- Karlsson, I.C.M.; Mukhtar-Landgren, D.; Smith, G.; Koglin, T.; Kronsell, A.; Lund, E.; Sarasini, S.; Sochor, J. Development and implementation of Mobility-as-a-Service–A qualitative study of barriers and enabling factors. Transp. Res. Part A Policy Pract. 2019. [Google Scholar] [CrossRef]
- Gammelgaard, B. The emergence of city logistics:The case of Copenhagen’s Citylogistik-kbh. Int. J. Phys. Distrib. Logist. Manag. 2015, 45, 333–351. [Google Scholar] [CrossRef]
- Saliya, C.A. Doing qualitative case study research in business management. Case Stud. J. 2017, 6, 96–111. [Google Scholar]
- Røge, K.M.; Lennon, N.J. A study on the criteria of internal transparency, efficiency and effectiveness in measuring local government performance. Financ. Account. Manag. 2018, 34, 392–409. [Google Scholar] [CrossRef]
- Favari, E. A new way for physical progress monitoring in high tech infrastructure construction. Int. J. Traffic Transp. Eng. 2013, 3, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Radović, D.; Stević, Ž. Evaluation and selection of kpi in transport using swara method. Transp. Logist. Int. J. 2018, 18, 60–69. [Google Scholar]
- Koh, S.C.L.; Genovese, A.; Acquaye, A.A.; Barratt, P. Decarbonising product supply chains: Design and development of an integrated evidence-based decision support system–the supply chain environmental analysis tool (SCEnAT). Int. J. Prod. Res. 2013, 51, 2092–2109. [Google Scholar] [CrossRef]
- Mourtzis, D.; Fotia, S.; Vlachou, E.; Koutoupes, A. A Lean PSS design and evaluation framework supported by KPI monitoring and context sensitivity tools. J. Adv. Manuf. Technol. 2018, 94, 1623–1637. [Google Scholar] [CrossRef]
- Heeswijk, W.J.A.; Van Mes, M.R.K.; Schutten, J.M.J.; Zijm, W.H.M. Evaluating urban logistics schemes using agent-based simulation. Transp. Sci. 2020, 54, 651–675. [Google Scholar] [CrossRef]
- Benvenuti, F.; Diamantini, C.; Potena, D.; Storti, E. An ontology-based framework to support performance monitoring in public transport systems. Transp. Res. Part C Emerg. Technol. 2017, 81, 188–208. [Google Scholar] [CrossRef]
- Estrada, E.; Maciel, R.; Ochoa, A.; Bernabe-Loranca, B.; Oliva, D.; Larios, V.; Guadalajara, U. De smart city visualization tool for the open data georeferenced analysis utilizing machine learning. Int. J. Comb. Optim. Probl. Inform. 2018, 9, 25–40. [Google Scholar]
- Liyanage, C.; Villalba-Romero, F. Measuring success of PPP transport projects: A cross-case analysis of toll roads. Transp. Rev. 2015, 35, 140–161. [Google Scholar] [CrossRef]
- Metropolitan Area Gdańsk-Sopot-Gdynia. Available online: http://en.metropoliagdansk.pl/ (accessed on 23 September 2020).
- City of Gdynia. Studium Uwarunkowań i Kierunków Zagospodarowania Przestrzennego Gdyni [Spatial Masterplan of the City of Gdynia]; Biuletyn Informacji Publicznej: Gdynia, Poland, 2019. [Google Scholar]
- Kempa, J. Conditions of the local residential real estate market development in Sopot after the year 1990. Świat. Nieruchom. 2017, 101, 45–54. [Google Scholar]
- Zemła, M. Studium Uwarunkowań i Kierunków Zagospodarowania Przestrzennego Miasta Tychy; Biuletyn Informacji Publicznej: Tychy, Poland, 2016. [Google Scholar]
- Borowik, L.; Cywiński, A. Modernization of a trolleybus line system in Tychy as an example of eco-efficient initiative towards a sustainable transport system. J. Clean. Prod. 2016, 117, 188–198. [Google Scholar] [CrossRef]
- Biuletyn Informacji Publicznej. Studium Uwarunkowań i Kierunków Zagospodarowania Przestrzennego Miasta Lublin; Biuletyn Informacji Publicznej: Lublin, Poland, 2019. [Google Scholar]
- Corazza, M.V.; Guida, U.; Musso, A.; Tozzi, M. A European vision for more environmentally friendly buses. Transp. Res. Part D Transp. Environ. 2016, 45, 48–63. [Google Scholar] [CrossRef]
- Bartłomiejczyk, M.; Połom, M. Multiaspect measurement analysis of breaking energy recovery. Energy Convers. Manag. 2016, 127, 35–42. [Google Scholar] [CrossRef]
- Bousse, Y.; Corazza, M.V.; Arriaga, D.S.; Sessing, G. Electrification of Public Transport in Europe: Vision and Practice from the ELIPTIC Project. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe, Palermo, Italy, 12–15 June 2018. [Google Scholar]
- Bartłomiejczyk, M. Smart grid technologies in electric power supply systems of public transport. Transport 2018, 33. [Google Scholar] [CrossRef] [Green Version]
Phase | Step | Tool | Outcome | Part of the Paper | |
---|---|---|---|---|---|
Defining and designing | 1. Identifying the problem | Literature review protocol | Research problem | 1.1.–1.3. | |
2. Building theory | Literature review protocol | Research questions | 2.1.–2.2., 3.1. | ||
3a. Describing the method | 3b. Designing data collection and analysis | Literature review protocol | Case study procedure with protocol | 3.1.–3.2. | |
Preparing, collecting | 4. Conducting a case study | Case study protocol | Filled case study protocol | 4.1.–4.2. | |
Analysing and concluding | 6. Preparing results | Research report template | Filled research report | 5.1.–5.2. | |
7. Compared to rival theories | Literature review protocol, research report template | Finished manuscript | 5.3. | ||
8. Modifying or enhancing theory (if required) | Literature review protocol, research report template | 5.3., 6 | |||
9. Concluding the cross-case report | Research report template, paper template | 6 |
Population (2019) | Population Density in 2019 [Inhabitants per km2] | Budget Revenues per Capita in 2019 [PLN] | GDP per Capita, Current Prices [Poland = 100], 2016 | Motorisation Index [Cars/1000 Inhabitants] | Forestry [%] | |
---|---|---|---|---|---|---|
Gdynia-Sopot | 246,348 (Gdynia), 35,719 (Sopot) | 1823 (Gdynia), 2067 (Sopot) | 7323 (Gdynia), 10,607 (Sopot) | 145.2 * | 622 (Gdynia), 762 (Sopot) | 44% (Gdynia), 52% (Sopot) |
Lublin | 339,784 | 2304 | 6942 | 92.1 ** | 578 | 11.1% |
Tychy | 127,590 | 1560 | 7124 | 126.6 *** | 641 | 26.8% |
Poland | 38,383,000 | 123 | 7466 **** | 100 | 635 | 29.6% |
City | Operator | Means of Transport | Ownership | Total Supply [Vehicle-km] | Length of Catenary [km] | Number of Vehicles | Average Speed [km/h] |
---|---|---|---|---|---|---|---|
Lublin | MPK Lublin sp. z o.o. | T, B, e-B | municipal | 5,028,500 | 145.8 | 121 | 13.6 |
Gdynia-Sopot | PKT Gdynia sp. z o.o. | T | municipal | 5,383,116 | 87.2 | 96 | 14.3 |
Tychy | TLT Tychy sp. z o.o. | T | municipal | 1,292,000 | 44 | 23 | no data |
No | KPI | KPI Category | KPI Description | Unit | Gdynia-Sopot | Lublin | Tychy | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | 2019 | Change | 2014 | 2019 | Change | 2014 | 2019 | Change | |||||
1 | Average mileage | operation | Trolleybus vehicle-km/number of trolleybuses | km | 56,453 | 56,074 | −0.7% | 33,063 | 41,558 | 26% | 61,571 | 56,174 | −9% |
2 | Density of trolleybus supply | operation | Trolleybus vehicle-km/1000 inhabitants | vehicle-km/inhabitants | 17.4 | 19.08 | 9.7% | 8.9 | 14.8 | 66.3% | 10.05 | 10.13 | 0.8% |
3 | Average energy consumption of trolleybus transport | energy | Energy consumption of troleybuses in total/vehicle-kms | kWh/km | 2.15 | 1.98 | −7.9% | 1,87 | 2,24 | 19,8% | 1,74 | 1.87 | 7.5% |
4 | Catenary independence | operation | Vehicle-kms without catenary (battery mode)/total number of vehicle-kms | % | 0 | 8.71% | n.a. | 0.12% | 2.25% | 1775% | 0 | 2.57% | n.a. |
5 | Number of bus lines partly or fully replaced by in-motion charging trolleybus | operation | Number of diesel bus lines replaced with trolleybuses | piece | 0 | 1 | n.a. | 0 | 4 | n.a. | 0 | 0 | n.a. |
6 | Cost of trolleybus vehicle-km | economics | Total costs of trolleybus transport/total number of vehicle-kms of trolleybus transport | PLN/vehicle-km | 8.78 | 10.58 | 20.5% | 10.33 | 10.2 | −1.3% | 7.60 | 10.45 | 37.5% |
7 | Share of battery trolleybuses | battery | Number of trolleybuses with batteries/total number of trolleybuses | % | 36% | 69% | 89% | 18.5% | 54.5% | 195% | 71.4% | 78.3% | 9.7% |
8 | Average battery capacity | battery | Total capacity of batteries in trolleybuses/number of batteries | kWh | 16 | 50.54 | 216% | 34 | 43.3 | 27% | 12 | 19.3 | 61% |
9 | Share of renewable energy in trolleybus transport | energy | Energy from renewable sources/total energy consumed by trolleybuses | % | no data | 27.85% | n.a. | no data | 15.82% | n.a. | no data | 15.82% | n.a. |
10 | Unitary cost of energy | economics | Total costs of energy for trolleybuses/number of vehicle-kilometres | PLN/vehicle-km | no data | 0.70 | n.a. | no data | 1.10 | n.a. | no data | 0.63 | n.a. |
11 | Share of trolleybus lines with in-motion charging operations | operation | Number of trolleybus lines with in-motion charging operations/total number of trolleybus lines | % | 0 | 40% | n.a. | 18% | 92% | 0 | 29% | n.a. |
Drivers | Barriers |
---|---|
Technological advancement in batteries. EU policy supporting transformation of transport system toward zero-emission level. National and local policy supporting electromobility development in public transport. Lack of infrastructure investments in the catenary. Priority in traffic for public transport vehicles (i.e., bus lanes). Complex urban mobility policy aimed on reducing the role of individual car. Focus on greening the energy. | High upfront costs of purchasing modern vehicles. Impact of COVID-19 on the farebox in public transport. Impact of the COVID-19 on the transport behaviour of citizens. Systemic traffic congestion. Increase in electricity costs. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wołek, M.; Szmelter-Jarosz, A.; Koniak, M.; Golejewska, A. Transformation of Trolleybus Transport in Poland. Does In-Motion Charging (Technology) Matter? Sustainability 2020, 12, 9744. https://doi.org/10.3390/su12229744
Wołek M, Szmelter-Jarosz A, Koniak M, Golejewska A. Transformation of Trolleybus Transport in Poland. Does In-Motion Charging (Technology) Matter? Sustainability. 2020; 12(22):9744. https://doi.org/10.3390/su12229744
Chicago/Turabian StyleWołek, Marcin, Agnieszka Szmelter-Jarosz, Marcin Koniak, and Anna Golejewska. 2020. "Transformation of Trolleybus Transport in Poland. Does In-Motion Charging (Technology) Matter?" Sustainability 12, no. 22: 9744. https://doi.org/10.3390/su12229744
APA StyleWołek, M., Szmelter-Jarosz, A., Koniak, M., & Golejewska, A. (2020). Transformation of Trolleybus Transport in Poland. Does In-Motion Charging (Technology) Matter? Sustainability, 12(22), 9744. https://doi.org/10.3390/su12229744