Construction 4.0: A Literature Review
Abstract
:1. Introduction
2. Methodology
2.1. Theoretical Framework and Preliminary Analysis
2.2. Literature Review
- (i)
- Research articles, reports, and conference proceedings were included;
- (ii)
- The search looked for words in the title, abstract and keywords of the articles;
- (iii)
- The search was restricted to English language only. However, in the case that other languages are used but at least the title, the abstract, and the keywords were in English, the document was considered valid;
- (iv)
- The temporal span was delimited to 2014–2019, in accordance with the considerations made in the Section 1. Additionally, when a publication was found to comply with those criteria, its keywords were also screened to check whether they bear relationship with those from other selected articles. Once the data was available, the following analysis was conducted to clarify the most relevant trends.
3. Results and Data Analysis
3.1. Quantitative Analysis
3.2. Bibliometric Analysis
3.2.1. Analysis of Keyword Cooccurrence
3.2.2. Analysis of the Number of Publication Citations
3.2.3. Analysis of Article Citations by Country
3.2.4. Analysis of Citations by Journal
4. Discussion of Key Concepts in Relation to Construction 4.0: Definitions, Trends, and Challenges
4.1. Internet of Things
4.2. Computer-Aided Design Technologies (BIM)
4.3. 3D Printing (Additive Manufacturing)
4.4. Big Data
4.5. Artificial Intelligence and Robotics
4.5.1. Artificial Intelligence
4.5.2. Robotics
4.6. Virtual and Augmented Reality
4.7. New Materials Related to Industrialization
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Boyes, H.; Hallaq, B.; Cunningham, J.; Watson, T. The industrial internet of things (IIoT): An analysis framework. Comput. Ind. 2018, 101, 1–12. [Google Scholar] [CrossRef]
- Berger, R. Roland Berger Digitization in the Construction Industry: Building Europe’s Road to “Construction 4.0”; Roland Berger GMBH: Munich, Germany, 2016. [Google Scholar]
- Sawhney, A.; Riley, M.; Irizarry, J. Construction 4.0—An Innovation Platform for the Built Environment; Routledge: New York, NY, USA, 2020; ISBN 978-0-429-39810-0. [Google Scholar]
- Beddiar, K.; Grellier, C.; Woods, E. Construction 4.0: Réinventer le Bâtiment Grâce au Numérique: BIM, DfMA, Lean Management; Dunod: Paris, France, 2019; ISBN 2100790501. [Google Scholar]
- Fokaides, P.A.; Apanaviciene, R.; Černeckienė, J.; Jurelionis, A.; Klumbyte, E.; Kriauciunaite-Neklejonoviene, V.; Pupeikis, D.; Rekus, D.; Sadauskiene, J.; Seduikyte, L.; et al. Research Challenges and Advancements in the field of Sustainable Energy Technologies in the Built Environment. Sustainability 2020, 12, 8417. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Antuchevičiene, J.; Vilutiene, T.; Adeli, H. Sustainable Decision-Making in Civil Engineering, Construction and Building Technology. Sustainability 2017, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Bock, T. The future of construction automation: Technological disruption and the upcoming ubiquity of robotics. Autom. Constr. 2015, 59, 113–121. [Google Scholar] [CrossRef]
- De Soto, B.G.; Agustí-Juan, I.; Hunhevicz, J.; Joss, S.; Graser, K.; Habert, G.; Adey, B.T. Productivity of digital fabrication in construction: Cost and time analysis of a robotically built wall. Autom. Constr. 2018, 92, 297–311. [Google Scholar] [CrossRef]
- Hofmann, E.; Rüsch, M. Industry 4.0 and the current status as well as future prospects on logistics. Comput. Ind. 2017, 89, 23–34. [Google Scholar] [CrossRef]
- Lasi, H.; Fettke, P.; Kemper, H.-G.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242. [Google Scholar] [CrossRef]
- Villani, V.; Pini, F.; Leali, F.; Secchi, C. Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications. Mechatronics 2018, 55, 248–266. [Google Scholar] [CrossRef]
- Li, Q.; Shi, J. Dam construction 4.0. J. Hydroelectr. Eng. 2015, 34, 1–6. [Google Scholar] [CrossRef]
- Craveiro, F.; Duarte, J.P.; Bartolo, H.; Bartolo, P.J. Additive manufacturing as an enabling technology for digital construction: A perspective on Construction 4.0. Autom. Constr. 2019, 103, 251–267. [Google Scholar] [CrossRef]
- Woodhead, R.; Stephenson, P.; Morrey, D. Digital construction: From point solutions to IoT ecosystem. Autom. Constr. 2018, 93, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Atherinis, D.; Bakowski, B.; Velcek, M.; Moon, S. Developing and Laboratory Testing a Smart System for Automated Falsework Inspection in Construction. J. Constr. Eng. Manag. 2018, 144, 04017119. [Google Scholar] [CrossRef]
- Seuring, S.; Gold, S. Conducting content-analysis based literature reviews in supply chain management. Supply Chain Manag. Int. J. 2012, 17, 544–555. [Google Scholar] [CrossRef]
- Eguaras-Martínez, M.; Vidaurre-Arbizu, M.; Martín-Gómez, C. Simulation and evaluation of Building Information Modeling in a real pilot site. Appl. Energy 2014, 114, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Abanda, F.H.; Byers, L. An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling). Energy 2016, 97, 517–527. [Google Scholar] [CrossRef]
- Johansson, M.; Roupé, M.; Boschsijtsema, P.M. Real-time visualization of building information models (BIM). Autom. Constr. 2015, 54, 69–82. [Google Scholar] [CrossRef]
- Antwi-Afari, M.F.; Li, H.; Pärn, E.A.; Edwards, D.J. Critical success factors for implementing building information modelling (BIM): A longitudinal review. Autom. Constr. 2018, 91, 100–110. [Google Scholar] [CrossRef]
- Zhang, C.; Nizam, R.S.; Tian, L. BIM-based investigation of total energy consumption in delivering building products. Adv. Eng. Inform. 2018, 38, 370–380. [Google Scholar] [CrossRef]
- Kamel, E.; Memari, A.M. Review of BIM’s application in energy simulation: Tools, issues, and solutions. Autom. Constr. 2019, 97, 164–180. [Google Scholar] [CrossRef]
- Chong, H.Y.; Lee, C.-Y.; Wang, X. A mixed review of the adoption of Building Information Modelling (BIM) for sustainability. J. Clean. Prod. 2017, 142, 4114–4126. [Google Scholar] [CrossRef] [Green Version]
- Peng, C. Calculation of a building’s life cycle carbon emissions based on Ecotect and building information modeling. J. Clean. Prod. 2016, 112, 453–465. [Google Scholar] [CrossRef]
- Martínez-Aires, M.D.; López-Alonso, M.; Martínez-Rojas, M. Building information modeling and safety management: A systematic review. Saf. Sci. 2018, 101, 11–18. [Google Scholar] [CrossRef]
- Sun, C.; Jiang, S.; Skibniewski, M.J.; Man, Q.; Shen, L. A literature review of the factors limiting the application of BIM in the construction industry. Technol. Econ. Dev. Econ. 2017, 23, 764–779. [Google Scholar] [CrossRef]
- Gerrish, T.; Ruikar, K.; Cook, M.J.; Johnson, M.; Phillip, M.; Lowry, C. BIM application to building energy performance visualisation and management: Challenges and potential. Energy Build. 2017, 144, 218–228. [Google Scholar] [CrossRef] [Green Version]
- Abanda, F.H.; Vidalakis, C.; Oti, A.H.; Tah, J.H.M. A critical analysis of Building Information Modelling systems used in construction projects. Adv. Eng. Softw. 2015, 90, 183–201. [Google Scholar] [CrossRef]
- Meža, S.; Turk, Ž.; Dolenc, M. Component based engineering of a mobile BIM-based augmented reality system. Autom. Constr. 2014, 42, 1–12. [Google Scholar] [CrossRef]
- Wang, X.; Truijens, M.; Hou, L.; Wang, Y.; Zhou, Y. Integrating Augmented Reality with Building Information Modeling: Onsite construction process controlling for liquefied natural gas industry. Autom. Constr. 2014, 40, 96–105. [Google Scholar] [CrossRef]
- Aly, A.; Griffiths, S.; Stramandinoli, F. Metrics and benchmarks in human-robot interaction: Recent advances in cognitive robotics. Cogn. Syst. Res. 2017, 43, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Aly, A.; Griffiths, S.; Stramandinoli, F. Towards intelligent social robots: Current advances in cognitive robotics. Cogn. Syst. Res. 2017, 43, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Lattanzi, D.; Miller, G. Review of Robotic Infrastructure Inspection Systems. J. Infrastruct. Syst. 2017, 23, 1–16. [Google Scholar] [CrossRef]
- Willmann, J.; Knauss, M.; Bonwetsch, T.; Apolinarska, A.A.; Gramazio, F.; Kohler, M. Robotic timber construction—Expanding additive fabrication to new dimensions. Autom. Constr. 2016, 61, 16–23. [Google Scholar] [CrossRef]
- Bryson, J.J.; Winfield, A.F.T. Standardizing Ethical Design for Artificial Intelligence and Autonomous Systems. Computer 2017, 50, 116–119. [Google Scholar] [CrossRef]
- Huang, M.-H.; Rust, R.T. Artificial Intelligence in Service. J. Serv. Res. 2018, 21, 155–172. [Google Scholar] [CrossRef]
- Li, B.-H.; Hou, B.-C.; Yu, W.-T.; Lu, X.-B.; Yang, C.-W. Applications of artificial intelligence in intelligent manufacturing: A review. Front. Inf. Technol. Electron. Eng. 2017, 18, 86–96. [Google Scholar] [CrossRef]
- Adat, V.; Gupta, B.B. Security in Internet of Things: Issues, challenges, taxonomy, and architecture. Telecommun. Syst. 2018, 67, 423–441. [Google Scholar] [CrossRef]
- Al-Fuqaha, A.I.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Sun, Y.; Song, H.; Jara, A.J.; Bie, R. Internet of Things and Big Data Analytics for Smart and Connected Communities. IEEE Access 2016, 4, 766–773. [Google Scholar] [CrossRef]
- Bibri, S.E. The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability. Sustain. Cities Soc. 2018, 38, 230–253. [Google Scholar] [CrossRef]
- Din, I.U.; Guizani, M.; Rodrigues, J.J.P.C.; Hassan, S.; Korotaev, V.V. Machine learning in the Internet of Things: Designed techniques for smart cities. Future Gener. Comput. Syst. 2019, 100, 826–843. [Google Scholar] [CrossRef]
- Rahmani, A.M.; Gia, T.N.; Negash, B.; Anzanpour, A.; Azimi, I.; Jiang, M.; Liljeberg, P. Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Gener. Comput. Syst. 2018, 78, 641–658. [Google Scholar] [CrossRef]
- Chen, M.; Mao, S.; Liu, Y. Big Data: A Survey. Mob. Netw. Appl. 2014, 19, 171–209. [Google Scholar] [CrossRef]
- Ge, M.; Bangui, H.; Buhnova, B. Big Data for Internet of Things: A Survey. Future Gener. Comput. Syst. 2018, 87, 601–614. [Google Scholar] [CrossRef]
- Caron, X.; Bosua, R.; Maynard, S.B.; Ahmad, A. The Internet of Things (IoT) and its impact on individual privacy: An Australian perspective. Comput. Law Secur. Rev. 2016, 32, 4–15. [Google Scholar] [CrossRef]
- Díaz, M.; Martín, C.; Rubio, B. State-of-the-art, challenges, and open issues in the integration of Internet of things and cloud computing. J. Netw. Comput. Appl. 2016, 67, 99–117. [Google Scholar] [CrossRef]
- Borgia, E. The Internet of Things vision: Key features, applications and open issues. Comput. Commun. 2014, 54, 1–31. [Google Scholar] [CrossRef]
- Botta, A.; De Donato, W.; Persico, V.; Pescape, A. Integration of Cloud computing and Internet of Things: A survey. Future Gener. Comput. Syst. 2016, 56, 684–700. [Google Scholar] [CrossRef]
- Da Xu, L.; He, W.; Li, S. Internet of Things in Industries: A Survey. IEEE Trans. Ind. Informatics 2014, 10, 2233–2243. [Google Scholar] [CrossRef]
- Plageras, A.P.; Psannis, K.E.; Stergiou, C.; Wang, H.; Gupta, B.B. Efficient IoT-based sensor BIG Data collection–processing and analysis in smart buildings. Future Gener. Comput. Syst. 2018, 82, 349–357. [Google Scholar] [CrossRef]
- Wortmann, A.-P.D.F.; Flüchter, K. Internet of Things. Bus. Inf. Syst. Eng. 2015, 57, 221–224. [Google Scholar] [CrossRef]
- Chiarello, F.; Trivelli, L.; Bonaccorsi, A.; Fantoni, G. Extracting and mapping industry 4.0 technologies using wikipedia. Comput. Ind. 2018, 100, 244–257. [Google Scholar] [CrossRef]
- Ni, J.; Zhang, K.; Lin, X.; Shen, X. Securing Fog Computing for Internet of Things Applications: Challenges and Solutions. IEEE Commun. Surv. Tutor. 2018, 20, 601–628. [Google Scholar] [CrossRef]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Da Costa, K.A.P.; Papa, J.P.; Lisboa, C.O.; Munoz, R.; De Albuquerque, V.H.C. Internet of Things: A survey on machine learning-based intrusion detection approaches. Comput. Netw. 2019, 151, 147–157. [Google Scholar] [CrossRef]
- Kouicem, D.E.; Bouabdallah, A.; Lakhlef, H. Internet of things security: A top-down survey. Comput. Netw. 2018, 141, 199–221. [Google Scholar] [CrossRef] [Green Version]
- Conti, M.; Dehghantanha, A.; Franke, K.; Watson, S. Internet of Things security and forensics: Challenges and opportunities. Future Gener. Comput. Syst. 2018, 78, 544–546. [Google Scholar] [CrossRef]
- Gandomi, A.; Haider, M. Beyond the hype: Big data concepts, methods, and analytics. Int. J. Inf. Manag. 2015, 35, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Assunção, M.D.; Calheiros, R.N.; Bianchi, S.; Netto, M.A.S.; Buyya, R. Big Data computing and clouds: Trends and future directions. J. Parallel Distrib. Comput. 2015, 3–15. [Google Scholar] [CrossRef] [Green Version]
- George, G.; Haas, M.R.; Pentland, A. Big data and management. Acad. Manag. J. 2014, 57, 321–326. [Google Scholar] [CrossRef]
- Bilal, M.; Oyedele, L.O.; Qadir, J.; Munir, K.; Ajayi, S.O.; Akinade, O.O.; Owolabi, H.A.; Alaka, H.A.; Pasha, M. Big Data in the construction industry: A review of present status, opportunities, and future trends. Adv. Eng. Inform. 2016, 30, 500–521. [Google Scholar] [CrossRef]
- Bello-Orgaz, G.; Jung, J.J.; Camacho, D. Social big data: Recent achievements and new challenges. Inf. Fusion 2016, 28, 45–59. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, L.T.; Chen, Z.; Li, P. A survey on deep learning for big data. Inf. Fusion 2018, 42, 146–157. [Google Scholar] [CrossRef]
- Lee, I. Big data: Dimensions, evolution, impacts, and challenges. Bus. Horiz. 2017, 60, 293–303. [Google Scholar] [CrossRef]
- Côrte-Real, N.; Oliveira, T.; Ruivo, P. Assessing business value of Big Data Analytics in European firms. J. Bus. Res. 2017, 70, 379–390. [Google Scholar] [CrossRef]
- Weller, C.; Kleer, R.; Piller, F.T. Economic implications of 3D printing: Market structure models in light of additive manufacturing revisited. Int. J. Prod. Econ. 2015, 164, 43–56. [Google Scholar] [CrossRef]
- Gosselin, C.; Duballet, R.; Roux, P.; Gaudillière, N.; Dirrenberger, J.; Morel, P. Large-scale 3D printing of ultra-high performance concrete—A new processing route for architects and builders. Mater. Des. 2016, 100, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.; Kleer, R.; Piller, F.T. Predicting the future of additive manufacturing: A Delphi study on economic and societal implications of 3D printing for 2030. Technol. Forecast. Soc. Chang. 2017, 117, 84–97. [Google Scholar] [CrossRef]
- Asprone, D.; Auricchio, F.; Menna, C.; Mercuri, V. 3D printing of reinforced concrete elements: Technology and design approach. Constr. Build. Mater. 2018, 165, 218–231. [Google Scholar] [CrossRef]
- Wu, P.; Wang, J.; Wang, X. A critical review of the use of 3-D printing in the construction industry. Autom. Constr. 2016, 68, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.C.; Tay, Y.W.D.; Panda, B.; Tan, M.J. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Arch. Civ. Mech. Eng. 2018, 18, 311–319. [Google Scholar] [CrossRef]
- De Schutter, G.; Lesage, K.; Mechtcherine, V.; Nerella, V.N.; Habert, G.; Agusti-Juan, I. Vision of 3D printing with concrete—Technical, economic and environmental potentials. Cem. Concr. Res. 2018, 112, 25–36. [Google Scholar] [CrossRef]
- Oropallo, W.; Piegl, L.A. Ten challenges in 3D printing. Eng. Comput. 2016, 32, 135–148. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F. Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison. IEEE Access 2018, 6, 3585–3593. [Google Scholar] [CrossRef]
- Gavish, N.; Gutiérrez, T.; Webel, S.; Rodríguez, J.; Peveri, M.; Bockholt, U.; Tecchia, F. Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interact. Learn. Environ. 2015, 23, 778–798. [Google Scholar] [CrossRef]
- Berg, L.P.; Vance, J.M. Industry use of virtual reality in product design and manufacturing: A survey. Virtual Real. 2017, 21, 1–17. [Google Scholar] [CrossRef]
- Koch, C.; Neges, M.; König, M.; Abramovici, M. Natural markers for augmented reality-based indoor navigation and facility maintenance. Autom. Constr. 2014, 48, 18–30. [Google Scholar] [CrossRef]
- Liu, F.; Seipel, S. Precision study on augmented reality-based visual guidance for facility management tasks. Autom. Constr. 2018, 90, 79–90. [Google Scholar] [CrossRef]
- Fazel, A.; Izadi, A. An interactive augmented reality tool for constructing free-form modular surfaces. Autom. Constr. 2018, 85, 135–145. [Google Scholar] [CrossRef]
- Rebenitsch, L.; Owen, C.B. Review on cybersickness in applications and visual displays. Virtual Real. 2016, 20, 101–125. [Google Scholar] [CrossRef]
- Li, X.; Yi, W.; Chi, H.-L.; Wang, X.; Chan, A.P.C. A critical review of virtual and augmented reality (VR/AR) applications in construction safety. Autom. Constr. 2018, 86, 150–162. [Google Scholar] [CrossRef]
- Kong, X.; Fang, Q.; Chen, L.; Wu, H. A new material model for concrete subjected to intense dynamic loadings. Int. J. Impact Eng. 2018, 120, 60–78. [Google Scholar] [CrossRef]
- Xueping, Z.; Jiaojiao, Z.; Shenglin, L.; Xuanhui, Q.; Ping, L.; Yanbei, G.; Weihua, L. A new solid material for hydrogen storage. Int. J. Hydrogen Energy 2015, 40, 10502–10507. [Google Scholar] [CrossRef]
- Mahmoudi, T.; Wang, Y.; Hahn, Y.-B. Graphene and its derivatives for solar cells application. Nano Energy 2018, 47, 51–65. [Google Scholar] [CrossRef]
- Muth, J.T.; Vogt, D.M.; Truby, R.L.; Mengüç, Y.; Kolesky, D.B.; Wood, R.J.; Lewis, J.A. Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers. Adv. Mater. 2014, 26, 6307–6312. [Google Scholar] [CrossRef]
- Buchli, J.; Giftthaler, M.; Kumar, N.; Lussi, M.; Sandy, T.; Dörfler, K.; Hack, N. Digital in situ fabrication—Challenges and opportunities for robotic in situ fabrication in architecture, construction, and beyond. Cem. Concr. Res. 2018, 112, 66–75. [Google Scholar] [CrossRef]
- Kehoe, B.; Patil, S.; Abbeel, P.; Goldberg, K. A Survey of Research on Cloud Robotics and Automation. IEEE Trans. Autom. Sci. Eng. 2015, 12, 398–409. [Google Scholar] [CrossRef]
- Li, R.; Zhao, Z.; Zhou, X.; Ding, G.; Chen, Y.; Wang, Z.; Zhang, H. Intelligent 5G: When Cellular Networks Meet Artificial Intelligence. IEEE Wirel. Commun. 2017, 24, 175–183. [Google Scholar] [CrossRef]
- Sicari, S.; Rizzardi, A.; Grieco, L.A.; Coenporisini, A. Security, privacy and trust in Internet of Things: The road ahead. Comput. Netw. 2015, 76, 146–164. [Google Scholar] [CrossRef]
- Lu, H.; Li, Y.; Chen, M.; Kim, H.; Serikawa, S. Brain Intelligence: Go beyond Artificial Intelligence. Mob. Netw. Appl. 2018, 23, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Zareiyan, B.; Khoshnevis, B. Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Autom. Constr. 2017, 83, 212–221. [Google Scholar] [CrossRef]
- Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Bus. Horiz. 2015, 58, 431–440. [Google Scholar] [CrossRef]
- Ng, I.C.L.; Wakenshaw, S.Y.L. The Internet-of-Things: Review and research directions. Int. J. Res. Mark. 2017, 34, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.M.; Hassan, W.H. Current research on Internet of Things (IoT) security: A survey. Comput. Netw. 2019, 148, 283–294. [Google Scholar] [CrossRef]
- Carvalho, J.P.; Bragança, L.; Mateus, R. Optimising building sustainability assessment using BIM. Autom. Constr. 2019, 102, 170–182. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, S.; Liao, L.; Zhang, L. A digital construction framework integrating building information modeling and reverse engineering technologies for renovation projects. Autom. Constr. 2019, 102, 45–58. [Google Scholar] [CrossRef]
- Xia, M.; Nematollahi, B.; Sanjayan, J. Printability, accuracy and strength of geopolymer made using powder-based 3D printing for construction applications. Autom. Constr. 2019, 101, 179–189. [Google Scholar] [CrossRef]
- Hosseini, E.; Zakertabrizi, M.; Korayem, A.H.; Xu, G. A novel method to enhance the interlayer bonding of 3D printing concrete: An experimental and computational investigation. Cem. Concr. Compos. 2019, 99, 112–119. [Google Scholar] [CrossRef]
- Osman, A.M.S. A novel big data analytics framework for smart cities. Future Gener. Comput. Syst. 2019, 91, 620–633. [Google Scholar] [CrossRef]
- Rehman, M.H.U.; Yaqoob, I.; Salah, K.; Imran, M.; Jayaraman, P.P.; Perera, C. The role of big data analytics in industrial Internet of Things. Future Gener. Comput. Syst. 2019, 99, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Lundeen, K.M.; Kamat, V.R.; Menassa, C.C.; McGee, W. Autonomous motion planning and task execution in geometrically adaptive robotized construction work. Autom. Constr. 2019, 100, 24–45. [Google Scholar] [CrossRef]
- García, R.; Perez, A.; Pulido, J.A.; Ulloa, P.; Forcael, E. Assembly of Stay-In-Place Concrete Blocks Using a Robot. IOP Conf. Series Earth Environ. Sci. 2020, 503, 012077. [Google Scholar] [CrossRef]
- Liang, C.-J.; Lundeen, K.M.; McGee, W.; Menassa, C.C.; Lee, S.; Kamat, V.R. A vision-based marker-less pose estimation system for articulated construction robots. Autom. Constr. 2019, 104, 80–94. [Google Scholar] [CrossRef]
- Shi, Y.; Du, J.; Ahn, C.R.; Ragan, E. Impact assessment of reinforced learning methods on construction workers’ fall risk behavior using virtual reality. Autom. Constr. 2019, 104, 197–214. [Google Scholar] [CrossRef]
- Kwiatek, C.; Sharif, M.; Li, S.; Haas, C.T.; Walbridge, S. Impact of augmented reality and spatial cognition on assembly in construction. Autom. Constr. 2019, 108, 102935. [Google Scholar] [CrossRef]
- Norambuena-Contreras, J.; Liu, Q.; Zhang, L.; Wu, S.; Yalcin, E.; Garcia, A. Influence of encapsulated sunflower oil on the mechanical and self-healing properties of dense-graded asphalt mixtures. Mater. Struct. 2019, 52, 78. [Google Scholar] [CrossRef] [Green Version]
- Buswell, R.A.; De Silva, W.R.L.; Jones, S.Z.; Dirrenberger, J. 3D printing using concrete extrusion: A roadmap for research. Cem. Concr. Res. 2018, 112, 37–49. [Google Scholar] [CrossRef]
- Hack, N.P. Mesh Mould: A Robotically Fabricated Structural Stay-in-Place Formwork System. Ph.D. Thesis, ETH Zürich, Zürich, Germany, 2018. [Google Scholar]
- Abdelmegid, M.A.; González, V.A.; Poshdar, M.; O’Sullivan, M.; Walker, C.G.; Ying, F. Barriers to adopting simulation modelling in construction industry. Autom. Constr. 2020, 111, 103046. [Google Scholar] [CrossRef]
Umbrella Concept | Areas | Emerging Trends |
---|---|---|
Digitization of the construction industry [2] | Digital data, Automation, Connectivity, Digital access | Analytics/big data in operation and production, additive manufacturing, robotics in production, e-commerce, 4PL, multichannel retail, RFID marketing, analytics/big data in marketing, PLM, human-machine collaboration, analytics/big data in logistics, digital WMS, augmented reality in production, M-commerce, Smart MES, logistics software management, predictive maintenance, mobile logistics systems, CRM systems, cloud-based logistics solutions, automated digital marketing, analysis/big data procurement, buyer-side/seller-side e-procurement, location-based marketing, customer service satisfaction, analytics in customer service, social media, field service management, digital content marketing, m-marketing, digital storytelling, e-supplier relationship management, augmented reality in marketing, e-marketplaces |
Transformation of the construction industry towards the 4th industrial revolution [13] | Digitization of the construction industry, Industrialization of the construction process | Resources of the future, circular economy, sensors, building survey, drones, autonomous vehicles, BIM, Nanotechnology, advanced materials, additive manufacturing, robots, advanced manufacturing systems, big data, internet of things, cyber security |
Transformative framework [3] | Industrial production and construction, Cyber-physical systems, Digital technologies | Building Information Modelling (BIM), CDE, unmanned aerial systems, cloud-based project management, Augmented Reality/Virtual reality (AR/VR), artificial intelligence, cybersecurity, big data and analytics, blockchain, laser scanner, robotics and automation, sensors, IoT, workers with wearable sensors, actuators, additive manufacturing, offsite construction and equipment with sensors |
Craveiro et al. [13] | Sawhney et al. [3] | Roland Berger [2] | Proposed Keywords | Emerging Trends |
---|---|---|---|---|
Digitization of the construction industry | Cyber-physical systems, Digital technologies | Digital data, Automation, Connectivity, Digital access | New materials related to industrialization | Product life cycle management (PLM), resources of the future, circular economy, nanotechnology, advanced materials |
3D printing | Additive manufacturing, Smart Manufacturing execution system (MES), additive manufacturing, advanced manufacturing systems | |||
Internet of Things (IoT) | Field service management, sensors, building survey, drones, autonomous vehicles, unmanned aerial systems, laser scanner, actuators | |||
Industrialization of the construction process | Industrial production and construction | Artificial intelligence and robotics | Robotics in production, human-machine collaboration, robots, robotics and automation, workers with wearable sensors, offsite construction and equipment with sensors | |
Computer-aided design technologies (BIM) | Predictive maintenance, Building Information Modelling (BIM), Collaborative development environment (CDE), cloud-based project management | |||
Big data | Analytics/big data in operation and production, e-commerce, 4PL, multichannel retail, RFID marketing, analytics/big data in marketing, analytics/big data in logistics, digital warehouse management system (WMS), M-commerce, logistics software management, mobile logistics systems, Customer relationship management (CRM) systems, cloud-based logistics solutions, automated digital marketing, analysis/big data procurement, buyer-side/seller-side e-procurement, location-based marketing, customer service satisfaction, analytics in customer service, social media, digital content marketing, m-marketing, digital storytelling, e-supplier relationship management, e-marketplaces, cyber security, blockchain | |||
Virtual and augmented reality | Augmented reality in production, augmented reality in marketing Augmented Reality/Virtual reality (AR/VR) |
Journal | Number of Articles |
---|---|
Automation in Construction | 54 |
Future Generation Computer Systems | 18 |
Construction and Building Materials | 10 |
Journal of Cleaner Production | 10 |
Computer Networks | 9 |
Business Horizons | 7 |
Technological Forecasting and Social Change | 7 |
Computers in Industry | 6 |
Journal of Network and Computer Applications | 4 |
International Journal of Information Management | 4 |
Topics | Journals |
---|---|
Internet of Things (Number of journals: 19) (Journals in the top ten: 6) | Business and Information Systems Engineering Business Horizons Computer Communications Computer Networks Computers and Electrical Engineering Computers in Industry Future Generation Computer Systems IEEE Access IEEE Communications Survey and Tutorials IEEE Internet of Things Journal IEEE Transactions on Industrial Informatics International Journal of Digital Earth International Journal of Research in Marketing Journal of Cleaner Production Journal of Network and Computer Applications Sustainable Cities and Society Technological Forecasting and Social Change Telecommunication Systems The International Journal of Advanced Manufacturing Technology |
Technologies in computer-aided design (BIM) (Number of journals: 11) (Journals in the top ten: 3) | Advanced Engineering Informatics Advanced in Engineering Software Applied Energy Automation in Construction Energy Energy and Buildings International Journal of Project Management Journal of Cleaner Production Journal of Management in Engineering Safety Science Technological and Economic Development of Economy |
3D printing (Number of journals: 16) (Journals in the top ten: 4) | Advanced Materials Archives of Civil and Mechanical Engineering Automation in Construction Business Horizons Cement and Concrete Composites Cement and Concrete Research Construction and Building Materials Energy Policy Engineering with Computers International Journal of Production Economics JOM Journal of Engineering and Technology Management Materials and Design Materials and Structures Microsystem Technologies Technological Forecasting and Social Change |
Big Data (Number of journals: 16) (Journals in the top ten: 6) | Academy of Management Journal Advanced Engineering Informatics Applied Energy Business Horizons Economic Inquiry Future Generation Computer Systems IEEE Access Information Fusion Information Systems International Journal of Digital Earth International Journal of Information Management International Journal of Production Economics Journal of Business Research Journal of Cleaner Production Journal of Parallel and Distributed Computing Mobile Networks and Applications |
Artificial intelligence and robotics (Number of journals: 20) (Journals in the top ten: 3) | Ad Hoc Networks Automation in Construction Business Horizons Cement and Concrete Research Cognitive Systems Research Computer-Aided Civil and Infrastructure Engineering Computers in Human Behavior Energy and Buildings Engineering Structures Frontiers of Information Technology and Electronic Engineering Future Generation Computer Systems IEEE Transactions on Automation Science and Engineering IEEE Wireless Communications Journal of Computing in Civil Engineering Journal of Infrastructure Systems Journal of Service Research Mechatronics Mobile Networks and Applications Progress in Aerospace Science Robotics and Computer-Integrated Manufacturing |
Virtual and augmented reality (Number of journals: 11) (Journals in the top ten: 4) | Advanced Engineering Informatics Automation in Construction British Journal of Psychology Computers in Human Behavior Computers in Industry Future Generation Computer Systems Interactive Learning Environments Journal of Computing in Civil Engineering Journal of Construction Engineering and Management Surgical Endoscopy Virtual Reality |
New materials related to industrialization (Number of journals: 13) (Journals in the top ten: 2) | Bioresource Technology Carbon Ceramic International Construction and Building Materials Energy International Journal of Hydrogen Energy International Journal of Impact Engineering Journal of Cleaner Production Materials and Structures Nano Energy Renewable and Sustainable Energy Reviews Renewable Energy Safety Science |
Authors Cited | [17,18,19,20,21,22,23,24,25,26,27] | [15,28,29,30] | [7,11,31,32,33,34,35,36,37] | [38,39,40,41,42,43,44,45] | [46,47,48,49,50,51] | [1,46,47,52,53,54,55,56,57,58] | [59,60,61,62,63,64,65,66] | [67,68,69,70,71,72,73,74,75] | [76,77,78,79,80,81,82] | [83,84,85] | [86,87] | [88,89,90] | [91] | [92] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Areas of Construction 4.0 | |||||||||||||||
Internet of Things | • | • | • | • | |||||||||||
Computer-aided design technologies (BIM) | • | • | • | ||||||||||||
3D printing | • | • | • | • | • | ||||||||||
Big Data | • | • | • | • | • | • | |||||||||
Artificial intelligence and robotics | • | • | • | • | • | ||||||||||
Virtual and augmented reality | • | • | • | • | |||||||||||
New materials related to industrialization | • |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forcael, E.; Ferrari, I.; Opazo-Vega, A.; Pulido-Arcas, J.A. Construction 4.0: A Literature Review. Sustainability 2020, 12, 9755. https://doi.org/10.3390/su12229755
Forcael E, Ferrari I, Opazo-Vega A, Pulido-Arcas JA. Construction 4.0: A Literature Review. Sustainability. 2020; 12(22):9755. https://doi.org/10.3390/su12229755
Chicago/Turabian StyleForcael, Eric, Isabella Ferrari, Alexander Opazo-Vega, and Jesús Alberto Pulido-Arcas. 2020. "Construction 4.0: A Literature Review" Sustainability 12, no. 22: 9755. https://doi.org/10.3390/su12229755
APA StyleForcael, E., Ferrari, I., Opazo-Vega, A., & Pulido-Arcas, J. A. (2020). Construction 4.0: A Literature Review. Sustainability, 12(22), 9755. https://doi.org/10.3390/su12229755