Influence of Characteristics of Metropolitan Areas on the Logistics Sprawl: A Case Study for Metropolitan Areas of the State of Paraná (Brazil)
Abstract
:1. Introduction
2. Logistics Sprawl: A Literature Review
Metropolitan Area (Country) | Data Source | Research Method | Time Period | LS Indicator (LSI) (km) |
---|---|---|---|---|
Atlanta (USA) [12] | Public data | Centrographic analysis | 1998–2008 | +6.8 |
Belo Horizonte (Brazil) [13] | Commercial board | Centrographic analysis | 1995–2015 | +1.2 |
Calgary (Canada) [14] | Private data | Centrographic analysis | 2012–2012 | +3.5 |
Chicago (USA) [5] | Public data | Centrographic analysis | 1998–2013 | +8.8 |
Flevoland (Netherlands) [9] | Public data | Centrographic analysis | 2007–2013 | +3.3 |
Gothenburg (Sweden) [14] | Public data | Centrographic analysis | 2000–2014 | + 4.2 |
Halifax (Canada) [15] | Private data | Centrographic analysis | 2012–2012 | +1.1 |
Los Angeles (USA) [16] | Public data | Centrographic analysis | 1998–2009 | +9.8 |
Montreal (Canada) [15] | Private data | Centrographic analysis | 2012–2012 | +0.3 |
Noord Holland (Netherlands) [9] | Public data | Centrographic analysis | 2007–2013 | −2.0 |
Palmas (Brazil) [17] | Public data | Centrographic analysis | 2002–2016 | +0.2 |
Paris (France) [1] | Yellow pages | Centrographic analysis | 1974–2008 | +10 |
Paris (France) [9] | Public data | Centrographic analysis | 2004–2012 | +4.1 |
Phoenix (USA) [5] | Public data | Centrographic analysis | 1998–2015 | +2.7 |
São Paulo (Brazil) [18] | Public data | Centrographic analysis | 2000–2017 | +1.6 |
Seattle (USA) [16] | Public data | Centrographic analysis | 1998–2009 | −1.3 |
Shanghai (China) [7] | Private data | Centrographic analysis | 2005–2018 | +3.44 |
Southern California (USA) [8] | Public data | Centrographic analysis | 1998–2014 | +12 |
Toronto (Canada) [19] | Private data | Centrographic analysis | 2002–2012 | +1.3 |
Tokyo (Japan) [20] | OD survey | Average shipment distance | 1980–2003 | +6,4 |
Vancouver (Canada) [15] | Private data | Centrographic analysis | 2012–2012 | +4.1 |
Utrecht (Netherlands) [9] | Public data | Centrographic analysis | 2007–2013 | +0.5 |
Winnipeg (Canada) [15] | Private data | Centrographic analysis | 2012–2012 | 0.0 |
Wuhan (China) [3] | Public data | Geospatial | 1993–2014 | +8.2 |
Yangtze River Delta (China) [7] | Private data | Centrographic analysis | 2005–2018 | +2.04 |
Zuid Holland (Netherlands) [9] | Public data | Centrographic analysis | 2003–2013 | −1 |
Zurich (Switzerland) [2] | Public data | Distance analysis | 1995–2012 | +7.7 |
Measuring the Logistics Sprawl
3. Research Method
3.1. Data Collection
3.2. Measuring the Logistics Sprawl Indicator
3.3. Factors Influencing the Number of Warehouses
4. Results
4.1. Centrographic Analysis
4.2. Relationship between Characteristics of the Metropolitan Area, Number of Warehouses, and LSI
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dablanc, L.; Rakotonarivo, D. The impacts of logistics sprawl: How does the location of parcel transport terminals affect the energy efficiency of goods’ movements in Paris and what can we do about it? Procedia Soc. Behav. Sci. 2010, 2, 6087–6096. [Google Scholar] [CrossRef] [Green Version]
- Todesco, P.; Weidmann, U.; Haefeli, U. Logistics sprawl in the Region of Zurich. In Proceedings of the 16th Swiss Transport Research Conference, Acona, Switzerland, 18–20 May 2016. [Google Scholar]
- Yuan, Q.; Zhu, J. Logistics sprawl in Chinese metropolises: Evidence from Wuhan. J. Transp. Geogr. 2019, 74, 242–252. [Google Scholar] [CrossRef]
- Taniguchi, E.; Thompson, R.G.; Yamada, T. New opportunities and challenges for city logistics. Transp. Res. Procedia 2016, 12, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Dubie, M.; Kuo, K.C.; Giron-Valderrama, G.; Goodchild, A. An evaluation of logistics sprawl in Chicago and Phoenix. J. Transp. Geogr. 2020, 88, 102298. [Google Scholar] [CrossRef]
- He, M.; Shen, J.; Wu, X.; Luo, J. Logistics Space: A Literature Review from the Sustainability Perspective. Sustainability 2018, 10, 2815. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Zeng, L.; Wu, X.; Luo, J. The Spatial and Temporal Evolution of Logistics Enterprises in the Yangtze River Delta. Sustainability 2019, 11, 5318. [Google Scholar] [CrossRef] [Green Version]
- Jaller, M.; Pineda, L.; Phong, D. Spatial Analysis of Warehouses and Distribution Centers in Southern California. Transp. Res. Rec. J. Transp. Res. Board 2017, 2610, 44–53. [Google Scholar] [CrossRef]
- Heitz, A.; Dablanc, L.; Tavasszy, L.A. Logistics sprawl in monocentric and polycentric metropolitan areas: The cases of Paris, France, and the Randstad, the Netherlands. Region 2017, 4, 93–107. [Google Scholar] [CrossRef] [Green Version]
- Aljohani, K.; Thompson, R.G. Impacts of logistics sprawl on the urban environment and logistics: Taxonomy and review of literature. J. Transp. Geogr. 2016, 57, 255–263. [Google Scholar] [CrossRef]
- Heitz, A.; Launay, P.; Beziat, A. Rethinking Data Collection on Logistics Facilities. Transp. Res. Rec. J. Transp. Res. Board 2017, 2609, 67–76. [Google Scholar] [CrossRef]
- Dablanc, L.; Ross, C. Atlanta: A mega logistics center in the Piedmont Atlantic Megaregion (PAM). J. Transp. Geogr. 2012, 24, 432–442. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, L.K.; Santos, O.R.; Oliveira, R.L.M.; Nóbrega, R.A.A. Is the location of Warehouses Changing in the Belo Horizonte Metropolitan Area (Brazil)? A logistics sprawl analysis in a Latin American Context. Urban Sci. 2018, 2, 43. [Google Scholar] [CrossRef] [Green Version]
- Heitz, A.; Dablanc, L.; Olsson, J.; Sanchez-Diaz, I.; Woxenius, J. Spatial patterns of logistics facilities in Gothenburg, Sweden. J. Transp. Geogr. 2020, 88, 102191. [Google Scholar] [CrossRef]
- Woudsma, C.; Jakubicekb, P. Logistics land use patterns in metropolitan Canada. J. Transp. Geogr. 2020, 88, 102381. [Google Scholar] [CrossRef]
- Dablanc, L.; Ogilvie, S.; Goodchild, A. Logistics Sprawl: Differential Warehousing Development Patterns in Los Angeles, California, and Seattle, Washington. Transp. Res. Rec. J. Transp. Res. Board 2014, 2410, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Bracarense, L.S.F.P.; Assis, T.A.; Oliveira, L.K.; Oliveira, R.L.M. Logistics Sprawl Assessment Applied to Locational Planning: A Case Study in Palmas (Brazil). In City Logistics 2: Modeling and Planning Initiatives; Taniguchi, E., Thompson, R.G., Eds.; ISTE Ltd and John Wiley & Sons, Inc.: London, UK, 2018; Volume 2, pp. 333–349. [Google Scholar]
- Guerin, L.; Vieira, J.G.V. Logistics Sprawl in São Paulo Metro Area. In Logistics 4.0 and Sustainable Supply Chain Management: Innovative Solutions for Logistics and Sustainable Supply Chain Management in the Context of Industry 4.0, Proceedings of the Hamburg International Conference of Logistics (HICL), Hamburg, Germany, 13–14 September 2018; Jahan, C., Kersten, W., Ringle, C.M., Eds.; Hamburg University of Technology: Hamburg, Germany, 2018; Volume 26, pp. 147–165. [Google Scholar]
- Woudsma, C.; Jakubicekb, P.; Dablanc, L. Logistics sprawl in North America: Methodological issues and a case study in Toronto. Transp. Res. Procedia 2016, 12, 474–488. [Google Scholar] [CrossRef] [Green Version]
- Sakai, T.; Kawamura, K.; Hyodo, T. Locational dynamics of logistics facilities: Evidence from Tokyo. J. Transp. Geogr. 2015, 46, 10–19. [Google Scholar] [CrossRef]
- Heitz, A.; Dablanc, L. Logistics Spatial Patterns in Paris: Rise of Paris Basin as Logistics Megaregion. Transp. Res. Rec. J. Transp. Res. Board 2015, 2477, 76–84. [Google Scholar] [CrossRef]
- Heitz, A.; Launay, P.; Beziat, A. Heterogeneity of logistics facilities: An issue for a better understanding and planning of the location of logistics facilities. Eur. Transp. Res. Rev. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Strale, M. Logistics sprawl in the Brussels metropolitan area: Toward a socio-geographic typology. J. Transp. Geogr. 2020, 88, 102372. [Google Scholar] [CrossRef]
- Krzysztofik, R.; Kantor-Pietraga, I.; Spórna, T.; Dragan, W.; Mihaylov, V. Beyond ‘logistics sprawl’ and ‘logistics anti-sprawl’. Case of the Katowice region, Poland. Eur. Plan. Stud. 2019, 27, 1646–1660. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, J.; Wei, W. Impact of Time Restriction and Logistics Sprawl on Urban Freight and Environment: The Case of Beijing Agricultural Freight. Sustainability 2019, 11, 3675. [Google Scholar] [CrossRef] [Green Version]
- Kang, S. Relative logistics sprawl: Measuring changes in the relative distribution from warehouses to logistics businesses and the general population. J. Transp. Geogr. 2020, 83, 102636. [Google Scholar] [CrossRef]
- Gupta, S.; Garima. Logistics Sprawl in Timber Markets and its Impact on Freight in Metropolitan City of Delhi, India. Transp. Res. Procedia 2017, 25, 965–977. [Google Scholar] [CrossRef]
- Aljohani, K.; Thompson, R.G. The impacts of relocating a logistics facility on last food miles—The case of Melbourne’s fruit & vegetable wholesale market. Case Study Transp. Policy 2018, 6, 279–288. [Google Scholar] [CrossRef]
- Diziain, D.; Ripert, C.; Dablanc, L. How can we bring logistics back into cities? The case of Paris metropolitan area. Procedia Soc. Behav. Sci. 2012, 39, 269–281. [Google Scholar] [CrossRef] [Green Version]
- Paraná. Perfil das Regiões Metropolitanas. Available online: www.ipardes.gov.br (accessed on 15 July 2020). (In Portuguese)
- Mitchell, A. The ESRI Guide to GIS Analysis Volume 2: Spatial Measurements & Statistics; ESRI Press: Redlands, CA, USA, 2005. [Google Scholar]
- Washington, S.; Karlaftis, M.; Mannering, F. Statistical and Econometric Methods for Transportation Data Analysis; Chapman & Hall/CRC: Boca Raton, FL, USA, 2011. [Google Scholar]
- IBGE. Regiões Metropolitanas, Aglomerações Urbanas e Regiões Integradas de Desenvolvimento; Instituto Brasileiro de Geografia e Estatística: Brasília, Brazil, 2018. (In Portuguese) [Google Scholar]
- Dias, J.M.; Sobanski, G.B.; Silva, J.E.A.R.; Oliveira, L.K.; Vieira, J.G.V. Are Brazilian cities ready to develop an efficient urban freight mobility plan? URBE Rev. Bras. Gest. Urbana 2018, 10, 587–599. [Google Scholar] [CrossRef]
Metropolitan Area | Number of Cities | Area (km2) | Population | Employed Population | Number of Retail Businesses |
---|---|---|---|---|---|
Apucarana | 23 | 6836.19 | 299,359 | 149,630 | 2763 |
Campo Mourão | 25 | 11,937.56 | 330,164 | 161,793 | 3276 |
Cascavel | 23 | 11,270.46 | 526,893 | 258,900 | 5377 |
Curitiba | 29 | 16,627.21 | 3,615,027 | 1,681,454 | 29,483 |
Londrina | 25 | 9069.05 | 1,101,595 | 510,724 | 10,514 |
Maringá | 26 | 5979.34 | 810,774 | 381,274 | 8792 |
Toledo | 18 | 8161.27 | 394,784 | 197,884 | 4298 |
Umuarama | 24 | 12,099.07 | 312,883 | 151,333 | 3139 |
Paraná | 399 | 199,880.20 | 11,348,937 | 5,307,831 | 103,674 |
Metropolitan Area (MA) | 1960s | 1970s | 1980s | 1990s | 2000s | 2010s |
---|---|---|---|---|---|---|
Apucarana | - | - | - | 12 | 26 | 32 |
Campo Mourão | - | - | - | - | 2 | 4 |
Cascavel | - | 1 | 2 | 4 | 9 | 10 |
Curitiba | - | 6 | 13 | 43 | 117 | 141 |
Londrina | 1 | 1 | 4 | 11 | 26 | 32 |
Maringá | - | 1 | 4 | 8 | 20 | 27 |
Toledo | - | 3 | 3 | 6 | 13 | 13 |
Umuarama | - | - | - | - | 4 | 5 |
MA | 1970–1979 | 1980–1989 | 1990–1999 | 2000–2009 | 2010–2018 |
---|---|---|---|---|---|
Apucarana | - | - | 33.7 | 35.9 | 36.9 |
Campo Mourão | - | - | - | * | 2.3 |
Cascavel | * | * | 28.3 | 33.7 | 32.2 |
Curitiba | 19.7 | 16.3 | 13.2 | 11.8 | 11.4 |
Londrina | * | 13.4 | 12.6 | 14.8 | 16.2 |
Maringá | * | 22.1 | 25.6 | 20.5 | 23.3 |
Toledo | 41.2 | 41.2 | 41.3 | 41.0 | 41.0 |
Umuarama | - | - | - | 26.3 | 25.0 |
Metropolitan Area | 1970–1980 | 1980–1990 | 1990–2000 | 2000–2010 | 1970–2018 |
---|---|---|---|---|---|
Apucarana | - | - | 2.2 | 1.0 | 3.2 |
Campo Mourão | - | - | - | - | - |
Cascavel | - | - | 5.4 | −1.5 | 3.9 |
Curitiba | −1.6 | −3.1 | −1.4 | −0.3 | −6.5 |
Londrina | - | −0.9 | 2.2 | 1.4 | 2.7 |
Maringá | - | 3.6 | −5.2 | 2.8 | 1.2 |
Toledo | 0.0 | 0.1 | −0.3 | 0.0 | −0.2 |
Umuarama | - | - | - | −1.3 | −1.3 |
Independent Variable | Dependent Variable | Coefficient | t-Value or Z-Value | p-Value |
---|---|---|---|---|
ln(number of warehouses) | Intercept | 5.764 | 9.287 | <2 × 10–16 *** |
Number of cities | −6.751 × 10–2 | −2.630 | 0.0086 ** | |
Size of metropolitan area | −1.651 × 10–4 | −6.788 | 1.14 × 10-11*** | |
Retail business | 1.592 × 10–4 | 12.711 | <2 × 10–16 *** | |
LSI | Intercept | 7.57 | 2.634 | 0.0388 * |
Area | −0.0007 | −2.626 | 0.0393 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, L.T.M.d.; Oliveira, L.K.d. Influence of Characteristics of Metropolitan Areas on the Logistics Sprawl: A Case Study for Metropolitan Areas of the State of Paraná (Brazil). Sustainability 2020, 12, 9779. https://doi.org/10.3390/su12229779
Sousa LTMd, Oliveira LKd. Influence of Characteristics of Metropolitan Areas on the Logistics Sprawl: A Case Study for Metropolitan Areas of the State of Paraná (Brazil). Sustainability. 2020; 12(22):9779. https://doi.org/10.3390/su12229779
Chicago/Turabian StyleSousa, Luísa Tavares Muzzi de, and Leise Kelli de Oliveira. 2020. "Influence of Characteristics of Metropolitan Areas on the Logistics Sprawl: A Case Study for Metropolitan Areas of the State of Paraná (Brazil)" Sustainability 12, no. 22: 9779. https://doi.org/10.3390/su12229779
APA StyleSousa, L. T. M. d., & Oliveira, L. K. d. (2020). Influence of Characteristics of Metropolitan Areas on the Logistics Sprawl: A Case Study for Metropolitan Areas of the State of Paraná (Brazil). Sustainability, 12(22), 9779. https://doi.org/10.3390/su12229779