Spatially Disaggregated Cultural Consumption: Empirical Evidence of Cultural Sustainability from Austria
Abstract
:1. Introduction
2. The Determinants of Cultural Consumption: A Brief Review
- Socio-economic attributes of art consumers matter, especially education, and to varying degrees, income, age, gender and professional status.
- There might be different preferences or attendance frequencies between urban and rural areas, even when accounting for socio-economic differences.
- Travel-cost approaches have been used successfully to compute the consumer surplus of single sites, or of attendances to cultural events.
- Socio-economic characteristics of respondents might influence the frequency of attendance, and the participation in cultural events, differently.
3. Methods
3.1. Representative Household Survey
- Introductory questions related to the levels of knowledge, importance and satisfaction of local and regional cultural infrastructure;
- Travel distance of cultural infrastructure from the respondent’s residence;
- Frequency of attendance and level of satisfaction with cultural events in general;
- Description of the two most memorable cultural events attended in the last year;
- Experiences with cultural events during childhood;
- Equipment and use of digital media in the respondents’ households;
- Elicitation of willingness-to-pay for sustaining and improving regional cultural infrastructure, and general assessment of cultural policy issues;
- Voluntary or full-time work of respondents for cultural institutions.
3.2. Budgetary Data and Statistics
4. Descriptive Empirical Results: The Frequency of Cultural Consumption
5. Econometric Results: The Economic Value of Cultural Events
5.1. Determinants of the Frequency of Attendance at Cultural Events (Cultural Consumption)
- Existence of (regional/local) cultural infrastructure, i.e., how large is the distance to travel between the household’s residence and the cultural venue (variable distance); and
- average costs of attending a certain event out of seven different groups of events denoted by the dummy variables Event01 to Event07.
5.2. Factors Explaining Cultural Participation
6. Discussion, Summary and Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- UNESCO. Convention on the Protection and Promotion of the Diversity of Cultural Expressions; United Nations Educational, Scientific and Cultural Organization (UNESCO): Paris, France, 2005.
- Bundeskanzleramt. Kunst-Kultur-Bericht 2018; Federal Chancellery (BKA): Vienna, Austria, 2019.
- BMUK. Kulturbericht 1975; Federal Ministry of Education and Culture (BMUK): Vienna, Austria, 1975.
- IFES. Kultur-Monitoring Bevölkerungsbefragung; Report for the Austrian Ministy for Education, the Arts and Culture, Report 23800007; IFES (Institut für Empirische Sozialforschung): Vienna, Austria, 2007. [Google Scholar]
- Kirchberg, V.; Kuchar, R. States of comparability: A meta-study of representative population surveys and studies on cultural consumption. Poetics 2014, 43, 172–191. [Google Scholar] [CrossRef]
- Hasitschka, W. Kulturbetriebslehre–Zur Dialektik von Kultur und Organisation; Löcker: Vienna, Austria, 2018. [Google Scholar]
- McCarthy, K.; Ondaatje, E.; Zakaras, L. Guide to the Literature on Participation in the Arts; RAND Foundation, Report No. DRU-2308-WRDF; RAND Foundation: Santa Monica, CA, USA, 2001. [Google Scholar]
- Throsby, D. The production and consumption of the arts: A view of cultural economics. J. Econ. Lit. 1994, 32, 1–29. [Google Scholar]
- Seaman, B. Empirical studies of demand for the performing arts. In Handbook of the Economics of Art and Culture; Ginsburgh, V.A., Throsby, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1, pp. 415–472. [Google Scholar]
- Shoham, A.; Brenčič, M.M. Determinants of the consumption of cultural events. J. Euromark. 2004, 13, 29–47. [Google Scholar] [CrossRef]
- Ateca-Amestoy, V. Determining heterogeneous behavior for theater attendance. J. Cult. Econ. 2008, 32, 127–151. [Google Scholar] [CrossRef]
- Katz-Gerro, T. Highbrow cultural consumption and class distinction in Italy, Israel, West Germany, Sweden, and the United States. Soc. Forces 2002, 81, 207–229. [Google Scholar] [CrossRef]
- Zembylas, T. Kulturbetriebslehre—Grundlagen Einer Interdisziplin; Verlag Für Sozialwissenschaften: Wiesbaden, Germany, 2004. [Google Scholar]
- Loach, K.; Rowley, J.; Griffiths, J. Cultural sustainability as a strategy for the survival of museums and libraries. Int. J. Cult. Policy 2017, 23, 186–198. [Google Scholar] [CrossRef]
- Nijkamp, P.; Riganti, P. Assessing cultural heritage benefits for urban sustainable development. Int. J. Serv. Technol. Manag. 2008, 10, 29–38. [Google Scholar] [CrossRef]
- Throsby, D. Culture, economics and sustainability. J. Cult. Econ. 1995, 19, 199–206. [Google Scholar] [CrossRef]
- Throsby, D. On the Sustainability of Cultural Capital; Research Papers 0510; Department of Economics, Macquarie University: Sydney, Australia, 2005. [Google Scholar]
- Dessein, J.; Battaglini, E. Cultural Sustainability and Regional Development; Horlings, L., Ed.; Routledge: London, UK, 2016. [Google Scholar]
- Birkeland, I.; Burton, R.; Parra, C. Cultural Sustainability and the Nature-Culture Interface: Livelihoods, Policies, and Methodologies; Siivonen, K., Ed.; Routledge: London, UK, 2018. [Google Scholar]
- Kangas, A.; Duxbury, N.; De Beukelaer, C. Cultural Policies for Sustainable Development; Routledge: London, UK, 2018. [Google Scholar]
- Falk, M.; Katz-Gerro, T. Cultural participation in Europe: Can we identify common determinants? J. Cult. Econ. 2016, 40, 127–162. [Google Scholar] [CrossRef]
- Wen, W.-J.; Cheng, T.-C. Performing arts attendance in Taiwan: Who and how often? J. Cult. Econ. 2012, 37, 309–325. [Google Scholar] [CrossRef]
- Borgonovi, F. Performing arts attendance: An economic approach. Appl. Econ. 2004, 36, 1871–1885. [Google Scholar] [CrossRef]
- D’Angelo Furia, D.; Crociata, A.; Castagna, A. Education and culture: Evidence from live performing arts in Italy. Procedia Soc. Behav. Sci. 2010, 9, 1373–1378. [Google Scholar] [CrossRef] [Green Version]
- Toma, M.; Meeds, H. Recent evidence on the determinants of concert attendance for mid-size symphonies. J. Econ. Financ. 2007, 31, 412–421. [Google Scholar] [CrossRef]
- Molina, J.A.; Campaña, J.C.; Ortega, R. Time Dedicated by Consumers to Cultural Goods: Determinants for Spain; MPRA Paper No. 68430; IZA Institute of Labor Economics: Bonn, Germany, 2015. [Google Scholar]
- Favoro, D.; Frateschi, C. A discrete choice model of consumption of cultural goods: The case of music. J. Cult. Econ. 2007, 31, 205–234. [Google Scholar] [CrossRef]
- Diniz, S.C.; Machado, A.F. Analysis of the consumption of artistic-cultural goods and services in Brazil. J. Cult. Econ. 2011, 35, 1–18. [Google Scholar] [CrossRef]
- Brook, O. Spatial equity and cultural participation: How access influences attendance at museums and galleries in London. Cult. Trends 2016, 25, 21–34. [Google Scholar] [CrossRef] [Green Version]
- De Almeida, C.C.R.; Lima, J.P.R.; Gatto, M.F.F. Expenditure on cultural events: Preferences or opportunities? An analysis of Brazilian consumer data. J. Cult. Econ. 2019, 44, 451–480. [Google Scholar] [CrossRef]
- Prieto-Rodríguez, J.; Fernández-Blanco, V. Are popular and classical music listeners the same people? J. Cult. Econ. 2000, 24, 147–164. [Google Scholar] [CrossRef]
- Muñiz, C.; Rodríguez, P.; Suárez, M.J. Sports and cultural habits by gender: An application using count data models. Econ. Model. 2014, 36, 288–297. [Google Scholar] [CrossRef]
- Huber, M. Musikhören im Zeitalter Web 2.0; Springer: Wiesbaden, Germany, 2018. [Google Scholar]
- Boter, J.; Rouwendal, J.; Wedel, M. Employing travel time to compare the value of competing cultural organizations. J. Cult. Econ. 2005, 29, 19–33. [Google Scholar] [CrossRef]
- Hutter, M. The impact of cultural economics on economic theory. J. Cult. Econ. 1996, 20, 263–268. [Google Scholar] [CrossRef]
- Snowball, J.D. Measuring the Value of Culture: Methods and Examples in Cultural Economics; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Towse, R. A Textbook of Cultural Economics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Getzner, M. Urban and rural preferences for cultural policies and infrastructures. Cult. Trends 2020, 1–22. [Google Scholar] [CrossRef]
- Poor, J.P.; Smith, J.M. Travel cost analysis of a cultural heritage site: The case of historic St. Mary’s city of Maryland. J. Cult. Econ. 2004, 28, 217–229. [Google Scholar] [CrossRef]
- Willis, K.G.; Snowball, J.D.; Wymer, C.; Grisolía, J. A count data travel cost model of theatre demand using aggregate theatre booking data. J. Cult. Econ. 2012, 36, 91–112. [Google Scholar] [CrossRef]
- Alberini, A.; Longo, A. Combining the travel cost and contingent behavior methods to value cultural heritage sites: Evidence from Armenia. J. Cult. Econ. 2006, 30, 287–304. [Google Scholar] [CrossRef]
- Boxall, P.; Englin, J.; Adamowicz, W. The contribution of aboriginal rock paintings to wilderness recreation values in North America. In Valuing Cultural Heritage—Applying Environmental Valuation Techniques to Historic Buildings, Monuments and Artifacts; Ready, R.C., Navrud, S., Eds.; Edward Elgar: Cheltenham, UK, 2002; pp. 105–117. [Google Scholar]
- Ready, R.C.; Navrud, S. Methods for valuing cultural heritage. In Valuing Cultural Heritage—Applying Environmental Valuation Techniques to Historic Buildings, Monuments and Artifacts; Ready, R.C., Navrud, S., Eds.; Edward Elgar: Cheltenham, UK, 2002; pp. 10–30. [Google Scholar]
- Forrest, D.; Grime, K.; Woods, R. Is it worth subsidising regional repertory theatre? Oxf. Econ. Pap. 2000, 52, 381–397. [Google Scholar] [CrossRef]
- NEA. A Decade of Arts Engagement: Findings from the Survey of Public Participation in the Arts, 2002–2012; National Endowments for the Arts: Washington, DC, USA, 2015. [Google Scholar]
- RVS. Nutzen-Kosten-Untersuchungen im Verkehrswesen; Austrian Ministry of Transport Innovation and Technology: Vienna, Austria, 2010. [Google Scholar]
- Getzner, M.; Meyerhoff, J. The influence of forest management on local recreation benefits and the importance of quietude and natural environments. Forests 2020, 11, 326. [Google Scholar] [CrossRef] [Green Version]
- Tschmuck, P. The Economics of Music; Agenda Publishing: Newcastle upon Tyne, UK, 2017. [Google Scholar]
Socioeconomic Attributes of Respondents | Survey Sample | Austrian Average a |
---|---|---|
Gender (female) | 50.02% | 50.84% |
Education | ||
Fundamental school | 23.04% | 25.74% |
Apprenticeship/Master | 46.47% | 45.78% |
High-school | 17.30% | 15.07% |
College/university | 12.19% | 13.41% |
Share of respondents living in Vienna | 15.15% | 21.41% |
Share of respondents living in urban centers | 55.06% | 52.79% |
Income (EUR) | EUR 2540 (mean), EUR 1,082 (std. dev.) | EUR 2,594 |
Age (years) | 41.75 years (mean), 15.17 years (std. dev.) | 42.60 years |
Classification of Municipalities | Importance of Cultural Activities a | ||
---|---|---|---|
Mean | Std. dev. | n | |
Urban centers | 3.15 | 1.02 | 1078 |
Urban periphery/regional centers | 3.13 | 1.02 | 422 |
Rural/peripheral regions | 3.21 | 1.00 | 527 |
All respondents | 3.16 | 1.02 | 2027 |
Classification of Municipalities | Cinema | Concerts/Festivals | Museum, Exhibition | Theater | Perfor-Mances of Schools of Music | Opera, Ballet | Dance, Musical | |
---|---|---|---|---|---|---|---|---|
Urban centers | Mean | 2.19 | 2.35 | 2.62 | 2.77 | 3.04 | 2.86 | 3.13 |
n | 1038 | 1037 | 1029 | 1040 | 1033 | 978 | 1017 | |
Std. Dev. | 1.08 | 1.04 | 1.11 | 1.12 | 1.24 | 1.20 | 1.15 | |
Urban periphery/ regional centers | Mean | 2.48 | 2.48 | 2.83 | 2.81 | 2.81 | 3.15 | 2.98 |
n | 372 | 387 | 386 | 397 | 394 | 330 | 390 | |
Std. Dev. | 1.21 | 1.08 | 1.13 | 1.11 | 1.19 | 1.21 | 1.15 | |
Rural/peripheral regions | Mean | 2.49 | 2.49 | 2.72 | 2.68 | 2.72 | 3.20 | 2.96 |
n | 475 | 489 | 476 | 485 | 500 | 391 | 490 | |
Std. Dev. | 1.10 | 1.06 | 1.08 | 1.09 | 1.16 | 1.13 | 1.15 | |
All respondents | Mean | 2.32 | 2.41 | 2.69 | 2.75 | 2.91 | 2.99 | 3.06 |
n | 1885 | 1913 | 1891 | 1922 | 1927 | 1699 | 1897 | |
Std. Dev. | 1.12 | 1.06 | 1.11 | 1.11 | 1.21 | 1.19 | 1.15 | |
ANOVA Prob. | *** | ** | *** | *** | *** | *** |
All Municipalities with/without Vienna | Municipalities According to the Urban-Rural Classification of Statistik Austria | Share a | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Municipalities Outside Vienna | Vienna | Urban Centers | Urban Periphery/Regional Centers | Rural/Peripheral Regions | |||||||
Mean | SD. b | Mean | SD. | Mean | SD. | Mean | SD. | Mean | SD. | ||
Theater | 20.02 | 16.17 | 22.11 | 13.18 | 17.63 | 12.71 | 22.18 | 16.30 | 24.34 | 19.59 | 84.95% |
Opera house | 37.44 | 20.84 | 26.98 | 13.07 | 27.42 | 17.42 | 40.10 | 18.94 | 49.68 | 17.57 | 75.53% |
Music/concert hall | 23.51 | 18.39 | 24.10 | 13.30 | 19.78 | 14.47 | 24.82 | 18.54 | 30.45 | 20.75 | 83.77% |
Museum, exhibition venue | 19.36 | 16.13 | 22.69 | 12.87 | 17.82 | 12.84 | 20.43 | 15.96 | 23.57 | 19.79 | 86.43% |
Cinema | 18.08 | 12.79 | 16.07 | 10.29 | 14.37 | 10.95 | 20.54 | 13.39 | 22.60 | 12.52 | 93.78% |
Library | 10.17 | 9.87 | 12.07 | 8.96 | 11.09 | 9.61 | 9.92 | 9.61 | 9.53 | 10.11 | 88.60% |
Performances of schools of music | 13.82 | 12.44 | 19.67 | 13.63 | 14.46 | 12.13 | 14.00 | 12.39 | 14.75 | 13.92 | 79.43% |
Art school | 24.89 | 18.27 | 20.38 | 13.36 | 19.56 | 14.01 | 27.18 | 18.55 | 31.37 | 20.76 | 67.34% |
Open air/festival venue | 26.27 | 19.43 | 25.37 | 15.73 | 22.83 | 16.50 | 29.01 | 19.30 | 30.74 | 21.84 | 77.75% |
Cultural Event | Attendance: Frequency of Visits (Sub-Sample of Attending Respondents) | Distance to the Preferred Venue (Minutes) | Share of Respondents Participating (%) | Frequency of Visits (Total Sample) | |||
---|---|---|---|---|---|---|---|
Mean | Std.Dev. | Mean | Std.Dev. | Mean | Std.Dev. | ||
Theater | 3.25 | 4.79 | 17.10 | 13.05 | 46.7% | 1.52 | 3.65 |
Opera, ballet, or musical | 3.50 | 5.49 | 28.76 | 18.92 | 34.1% | 1.19 | 3.61 |
Dancing or folk dancing event | 3.92 | 5.75 | 15.86 | 11.56 | 31.1% | 1.22 | 3.68 |
Concert or music festival | 3.61 | 5.34 | 23.08 | 17.35 | 56.3% | 2.03 | 4.39 |
Museum or (art) exhibition | 3.48 | 5.02 | 19.81 | 15.47 | 52.7% | 1.83 | 4.03 |
Cinema | 4.21 | 5.15 | 17.21 | 12.27 | 69.0% | 2.90 | 4.70 |
Performances of schools of music | 3.62 | 5.45 | 14.79 | 12.84 | 35.2% | 1.28 | 3.67 |
Cultural Event | Urban Centers | Urban Periphery Regional Centers | Rural Peripheral Regions | |||
---|---|---|---|---|---|---|
Mean | Std.Dev. | Mean | Std.Dev. | Mean | Std.Dev. | |
Theater | 3.63 | 5.30 | 2.90 | 4.28 | 2.63 | 3.75 |
Opera, ballet, or musical | 3.85 | 5.89 | 3.57 | 5.69 | 2.43 | 3.69 |
Dancing or folk dancing event | 4.62 | 6.60 | 2.64 | 3.68 | 3.50 | 4.94 |
Concert or music festival | 3.98 | 5.91 | 3.22 | 4.65 | 3.05 | 4.27 |
Museum or (art) exhibition | 3.89 | 5.70 | 2.78 | 3.33 | 2.97 | 4.07 |
Cinema | 4.68 | 5.68 | 3.74 | 4.50 | 3.47 | 4.15 |
Performances of schools of music | 4.10 | 6.04 | 3.12 | 4.81 | 3.03 | 4.50 |
Variables | Description |
---|---|
Dependent variables | |
Ai | |
Frequency | Frequency of visits (times per year) of cultural events (cultural consumption) (attendance) |
Ei | |
Visit-all | =1 for respondent’s participation in a cultural event during the last year (participation) |
Visit-hb | =1 for respondent’s participation in a highbrow cultural event during the last year (participation) |
Explanatory variables | |
Ci | |
Distance | Distance of the respondent’s residence to the cultural event (hours) |
Event01 | =1 for attendance at a theater |
Event02 | =1 for attendance at an opera, ballet, or musical |
Event03 | =1 for attendance at a dancing or folk dancing event |
Event04 | =1 for attendance at a concert or music festival |
Event05 | =1 for attendance at a museum or (art) exhibition |
Event06 | =1 for attendance at a cinema |
Event07 | =1 for attendance at a performance of music schools |
Si | |
Expect | =1 for expectations that cultural events mainly provide entertainment |
Income*Pref | Household income (ln EUR, after taxes) (variable combined with high or very high cultural preference/importance) |
Income | Household income (ln EUR, after taxes) |
Age | Respondent’s age (ln years) |
Education | =1 for formal education of respondents equal or higher than a high-school diploma |
Digital | =1 for re |
Childhood | =1 for respondents who stated that they have fond memories of their visits to cultural events such as museums together with their parents when they were a child |
Li | |
Vienna | =1 for respondent’s residence in Vienna |
Urban | =1 for respondent’s residence in urban centers |
Pi | |
Exp-Share | Share of cultural spending of respondent‘s municipality (% of total municipal spending, average 2015 to 2018) |
Exp-PC | Cultural spending of respondent’s municipality (ln EUR per capita and year, average 2015–2018, 2015 prices) |
Variable | Est. 1 | Est. 2 | Est. 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Coeff. | z-Stat. | p | Coeff. | z-Stat. | p | Coeff. | z-Stat. | p | |
Constant | 1.248 | 21.919 | *** | 1.319 | 20.431 | *** | 3.736 | 7.565 | *** |
Distance | −0.240 | −2.595 | *** | −0.234 | −2.581 | *** | −0.196 | −2.259 | ** |
Event02 | 0.107 | 1.796 | * | 0.102 | 1.733 | * | 0.074 | 1.240 | |
Event03 | 0.185 | 2.924 | *** | 0.184 | 2.889 | *** | 0.178 | 2.686 | *** |
Event04 | 0.124 | 2.485 | ** | 0.127 | 2.554 | ** | 0.171 | 3.356 | *** |
Event05 | 0.075 | 1.391 | 0.072 | 1.347 | 0.133 | 2.472 | ** | ||
Event06 | 0.259 | 5.368 | *** | 0.266 | 5.551 | *** | 0.312 | 6.462 | *** |
Event07 | 0.102 | 1.766 | * | 0.098 | 1.697 | * | 0.115 | 1.997 | * |
Expect | −0.184 | −3.161 | *** | −0.147 | −2.592 | *** | |||
Income*Pref | 0.061 | 6.694 | *** | ||||||
Income | −0.134 | −2.034 | ** | ||||||
Age | −0.460 | −6.252 | *** | ||||||
Education | 0.187 | 3.048 | *** | ||||||
S.E. of regression | 5.241 | 5.232 | 5.226 | ||||||
Log likelihood | −15,778.1 | −15,749.0 | −12,103.8 | ||||||
LR statistic | 12,974.0 *** | 13,032.3 *** | 11,559.3 *** | ||||||
N (respondents) | 1723 | 1723 | 1331 | ||||||
n (observations) | 6589 | 6589 | 5151 |
Variable | Est. 4 | Est. 5 | Est. 6 | Est. 7 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Coeff. | z-Stat. | p | Coeff. | z-Stat. | p | Coeff. | z-Stat. | p | Coeff. | z-Stat. | p | |
Constant | 3.674 | 7.396 | *** | 3.395 | 6.893 | *** | 3.374 | 6.863 | *** | 3.128 | 6.081 | *** |
Distance | −0.209 | −2.507 | ** | −0.150 | −1.758 | * | −0.149 | −1.738 | * | −0.144 | −1.674 | * |
Event02 | 0.073 | 1.228 | 0.061 | 1.010 | 0.061 | 1.015 | 0.061 | 1.022 | ||||
Event03 | 0.175 | 2.657 | *** | 0.179 | 2.723 | *** | 0.180 | 2.741 | *** | 0.181 | 2.756 | *** |
Event04 | 0.169 | 3.332 | *** | 0.169 | 3.306 | *** | 0.169 | 3.310 | *** | 0.167 | 3.286 | *** |
Event05 | 0.128 | 2.368 | ** | 0.126 | 2.349 | ** | 0.126 | 2.354 | ** | 0.124 | 2.314 | ** |
Event06 | 0.305 | 6.360 | *** | 0.309 | 6.415 | *** | 0.310 | 6.440 | *** | 0.309 | 6.465 | *** |
Event07 | 0.122 | 2.119 | ** | 0.125 | 2.171 | ** | 0.125 | 2.172 | ** | 0.123 | 2.155 | ** |
Expect | −0.145 | −2.614 | *** | −0.130 | −2.375 | ** | −0.130 | −2.374 | ** | −0.130 | −2.389 | ** |
Income*Pref | 0.059 | 6.633 | *** | 0.059 | 6.772 | *** | 0.059 | 6.749 | *** | 0.058 | 6.666 | *** |
Income | −0.127 | −1.922 | * | −0.118 | −1.837 | * | −0.117 | −1.828 | * | −0.112 | −1.746 | * |
Age | −0.460 | −6.360 | *** | −0.436 | −6.052 | *** | −0.435 | −6.019 | *** | −0.434 | −6.044 | *** |
Education | 0.161 | 2.666 | *** | 0.170 | 2.841 | *** | 0.171 | 2.853 | *** | 0.171 | 2.851 | *** |
Vienna | 0.191 | 2.274 | ** | |||||||||
Urban | 0.201 | 3.749 | *** | 0.197 | 3.475 | *** | 0.138 | 2.222 | ** | |||
Exp-Share | 0.004 | 0.378 | ||||||||||
Exp-PC | 0.057 | 1.809 | * | |||||||||
S.E. of regression | 5.217 | 5.212 | 5.213 | 5.210 | ||||||||
Log likelihood | −12,088.5 | −12,065.9 | −11,021.8 | −12,060.9 | ||||||||
LR statistic | 11,589.9 *** | 11,615.8 *** | 11,616.3 *** | 11,625.8 *** | ||||||||
N (respondents) | 1331 | 1330 | 1330 | 1330 | ||||||||
n (observations) | 5151 | 5146 | 5146 | 5146 |
Variable | Est. 8 | Est. 9 | Est. 10 | ||||||
---|---|---|---|---|---|---|---|---|---|
Coeff. | z-Stat. | p | Coeff. | z-Stat. | p | Coeff. | z-Stat. | p | |
Constant | 2.950 | 5.774 | *** | 2.947 | 5.805 | *** | 2.780 | 5.533 | *** |
Distance | −0.132 | −1.526 | −0.143 | −1.678 | * | −0.131 | −1.536 | ||
Event02 | 0.058 | 0.962 | 0.062 | 1.03 | 0.059 | 0.972 | |||
Event03 | 0.183 | 2.791 | *** | 0.182 | 2.737 | *** | 0.183 | 2.773 | *** |
Event04 | 0.167 | 3.282 | *** | 0.161 | 3.199 | *** | 0.162 | 3.200 | *** |
Event05 | 0.119 | 2.236 | ** | 0.120 | 2.229 | ** | 0.115 | 2.158 | ** |
Event06 | 0.317 | 6.659 | *** | 0.299 | 6.216 | *** | 0.307 | 6.41 | *** |
Event07 | 0.126 | 2.206 | ** | 0.118 | 2.075 | ** | 0.122 | 2.126 | ** |
Expect | −0.123 | −2.270 | ** | −0.134 | −2.484 | ** | −0.128 | −2.368 | ** |
Income*Pref | 0.057 | 6.600 | *** | 0.055 | 6.73 | *** | 0.054 | 6.681 | *** |
Income | −0.117 | −1.851 | * | −0.126 | −1.984 | ** | −0.130 | −2.075 | ** |
Age | −0.409 | −5.810 | *** | −0.378 | −4.729 | *** | −0.356 | −4.516 | *** |
Education | 0.161 | 2.646 | *** | 0.169 | 2.884 | *** | 0.159 | 2.68 | *** |
Urban | 0.138 | 2.244 | ** | 0.139 | 2.271 | ** | 0.140 | 2.298 | ** |
Exp-Share | 0.057 | 1.855 | * | 0.053 | 1.684 | * | 0.053 | 1.729 | * |
Digital | 0.166 | 2.681 | *** | 0.161 | 2.648 | *** | |||
Childhood | 0.099 | 2.584 | *** | 0.096 | 2.474 | ** | |||
S.E. of regression | 5.201 | 5.195 | 5.188255 | ||||||
Log likelihood | −12,045.3 | −12,045.3 | −12,030.63 | ||||||
LR statistic | 11,657.1 | 11,656.9 | 11,686.34 | ||||||
N (respondents) | 5146 | 5146 | 5146 | ||||||
n (observations) | 1330 | 1330 | 1330 |
Variable | Est. 11 | ||
---|---|---|---|
Coeff. | z-Stat. | p | |
Constant | 3.633 | 6.067 | *** |
Distance | −0.228 | −2.375 | ** |
Expect | −0.143 | −2.165 | ** |
Income*Pref | 0.065 | 6.371 | *** |
Income | −0.165 | −2.161 | ** |
Age | −0.376 | −4.301 | *** |
Education | 0.185 | 2.569 | ** |
Urban | 0.126 | 1.638 | * |
Exp-PC | 0.001 | 1.370 | |
S.E. of regression | 5.139 | ||
Log likelihood | −6160.4 | ||
LR statistic | 6128.0 *** | ||
N (respondents) | 1111 | ||
n (observations) | 2675 |
Cultural Event | Consumer Surplus per Visit (hours) | Consumer Surplus per Visit (EUR) |
---|---|---|
Theater | 6.849 | 54.79 |
Opera, ballet, or musical | 6.849 | 54.79 |
Dancing or folk dancing event | 5.623 | 44.99 |
Concert or music festival | 5.822 | 46.58 |
Museum or (art) exhibition | 5.918 | 47.34 |
Cinema | 4.747 | 37.97 |
Performances of music schools | 6.075 | 48.60 |
Variable | Est. 12 | Est. 13 | ||||
---|---|---|---|---|---|---|
Coeff. | z-Stat. | p | Coeff. | z-Stat. | p | |
Constant | −1.797 | −2.94 | *** | −2.608 | −3.724 | *** |
Expect | −0.039 | −0.586 | −0.001 | −0.007 | ||
Income*Pref | 0.088 | 8.069 | *** | 0.099 | 8.06 | *** |
Income | 0.348 | 5.136 | *** | 0.359 | 4.668 | *** |
Age | −0.383 | −4.499 | *** | −0.232 | −2.375 | ** |
Education | 0.402 | 5.616 | *** | 0.386 | 4.718 | *** |
Urban | 0.147 | 1.876 | * | 0.183 | 2.022 | ** |
Exp-PC | 0.001 | 1.246 | 0.001 | 0.143 | ||
S.E. of regression | 0.488 | 0.484 | ||||
Log likelihood | −7231.8 | −4086.3 | ||||
LR statistic | 512.9 *** | 287.4 *** | ||||
N (respondents) | 1546 | 1546 | ||||
n (observations) | 10,822 | 6184 | ||||
n (observations with Visit = 1) | 47.6% | 43.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Getzner, M. Spatially Disaggregated Cultural Consumption: Empirical Evidence of Cultural Sustainability from Austria. Sustainability 2020, 12, 10023. https://doi.org/10.3390/su122310023
Getzner M. Spatially Disaggregated Cultural Consumption: Empirical Evidence of Cultural Sustainability from Austria. Sustainability. 2020; 12(23):10023. https://doi.org/10.3390/su122310023
Chicago/Turabian StyleGetzner, Michael. 2020. "Spatially Disaggregated Cultural Consumption: Empirical Evidence of Cultural Sustainability from Austria" Sustainability 12, no. 23: 10023. https://doi.org/10.3390/su122310023
APA StyleGetzner, M. (2020). Spatially Disaggregated Cultural Consumption: Empirical Evidence of Cultural Sustainability from Austria. Sustainability, 12(23), 10023. https://doi.org/10.3390/su122310023