Prediction of Municipal Waste Generation in Poland Using Neural Network Modeling
Abstract
:1. Introduction
- Is there a possibility of applying artificial neural networks for the successful prediction of MSW (categorized waste) levels based on the social and economic factors?
- Is there a possibility of applying artificial neural networks for the successful prediction of future trends in waste generation based on historical data?
2. Materials and Methods
2.1. Datasets
2.2. Statistical Analyzis
2.3. Neural Network
3. Results
3.1. Investigation of the Correlation Coefficients between Explanatory Variables and Dependent Variable
3.2. Waste Generation Modeling and Prediction
3.2.1. Modeling of Municipal Waste in Cities
3.2.2. Prediction of Municipal Waste in Cities
3.2.3. Modeling of Waste Generation in Poland
3.2.4. Modeling and Prediction of Waste Generation in Poland
4. Discussion
5. Conclusions
- The statistical data from 2010–2019 indicate that the levels of generated waste are constantly rising. They are affected to the greatest extent by population and the number of entities by type of business activity (industry/construction), whereas the number of entities enlisted in REGON per 10,000 people has the least notable influence.
- The neural network models, generated using the Neural Network library in MatLab and Simulink, show good predictive strength in terms of determining the waste production trends both in the local context of Polish cities (in individual categories: paper and cardboard, glass, plastics and metals, biodegradable and other) and nationwide (total and household waste). The general regression for the first network was equal to 0.914 and for the second network, it was equal to 0.9895. These results determine that the networks may be sound predictors with respect to the tested data.
Author Contributions
Funding
Conflicts of Interest
References
- Pošiváková, T.; Hromada, T.; Pošivák, J.; Molnár, L.; Harvanová, J. Selected aspects of integrated environmental management. Ann. Agric. Environ. Med. 2018, 25, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Švajlenka, J.; Kozlovská, M.; Pošiváková, T. Analysis of selected building constructions used in industrial construction in terms of sustainability benefits. Sustainability 2018, 10, 4394. [Google Scholar] [CrossRef] [Green Version]
- National Waste Management, Act of 14 December 2012 on waste. J. Laws 2013, 21. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20130000021 (accessed on 20 October 2020).
- The European Environment—State and Outlook 2020: Knowledge for Transition to a Sustainable Europe. Available online: https://www.eea.europa.eu/soer/2010/countries/pl/waste-outlook-2020-poland (accessed on 1 September 2020).
- Boer, E.; Jedrczak, A.; Kowalski, Z.; Kulczycka, J.; Szpadt, R. A review of municipal solid waste composition and quantities in Poland. Waste Manag. 2010, 30, 369–377. [Google Scholar] [CrossRef]
- Maslahati, R.A.; Shreeshivadasan, C.; Maslahati, A. Quality and quantity of municipal solid waste in Mashhad. Res. J. Pharm. 2014, 10, 101–109. [Google Scholar]
- Sieja, L.; Tomborowska, A. Volume and quality of municipal wastes in Poland. A prognosis of changes taking into account wastes collection and recycling. Air Prot. Waste Probl. 2003, 37, 1–2. [Google Scholar]
- Basic Data of Statistical Surveys of Public Statistics in Poland. Available online: https://stat.gov.pl/publikacje/publikacje-a-z/ (accessed on 1 September 2020).
- Decision of the European Parliament and of the Council No. 1386/2013 / EU of 20 November 2013 on the general EU environmental action program “Good quality of life, within the limits of our planet”. J. Laws 2013, 171. Available online: https://eur-lex.europa.eu/legal-content/pl/ALL/?uri=CELEX%3A32013D1386 (accessed on 20 October 2020).
- Ahuja, N.J.; Bahukhandi, K.D. International Review on Computers and Software (I.RE.CO.S.) Expert systems for Solid Waste Management: A Review. Int. Rev. Comput. Softw. 2012, 7, 1608–1613. [Google Scholar]
- Basri, H.B.; Stentiford, E.I. Expert systems in solid waste management. Waste Manag. Res. 1995, 13, 67–89. [Google Scholar] [CrossRef]
- Nassereldeen, A.; Kabbashi, S.; Mohammed, A.; Munif, J.; Nur, A. Integrated schedule waste management system in Kuala Lumpur using expert system. Afr. J. Biotechnol. 2011, 10, 1871–1878. [Google Scholar]
- Camero, A.; Toutouh, J.; Ferrer, J.; Alba, E. Waste generation prediction under uncertainty in smart cities through deep neuroevolution. Rev. Fac. Ing. Univ. Antioq. 2019, 93, 128–138. [Google Scholar] [CrossRef]
- Azarmi, S.L.; Oladipo, A.A.; Roozbeh, V.; Alipour, H. Comparative Modelling and Artificial Neural Network Inspired Prediction of Waste Generation Rates of Hospitality Industry: The Case of North Cyprus. Sustainability 2018, 10, 2965. [Google Scholar] [CrossRef] [Green Version]
- Yamin, H.; Shahidehpour, S.; Li, Z. Adaptive short-termelectricity price forecasting using artificial neural networks inthe restructured power markets. Electr. Power Energy Syst. 2004, 26, 571–581. [Google Scholar] [CrossRef]
- Jalili, G.Z.M.; Noori, R. Prediction of municipal solid wastegeneration by use of artificial neural network: A case study of Mashhad. Int. J. Environ. Res. Public Health 2008, 2, 13–22. [Google Scholar]
- Kurtulus, H.O.; Ucan, O.N.; Sahin, U.; Borat, M.; Bayat, C. Artificial neural network modeling of methane emissions at Istanbul Kemerburgaz-Odayeri landfill site. J. Sci. Ind. Res. 2006, 65, 128–134. [Google Scholar]
- Ponce, E.O.; Samarasinghe, S.; Torgerson, A. Model for assessing waste generation factors and forecasting waste generation using artificial neural networks: A case study of Chile. In Proceedings of the Waste and Recycle 2004 Conference, Fremantle, Australia, 21–24 September 2004; pp. 1–11. [Google Scholar]
- Araiza-Aguilar, J.A.; Rojas-Valencia, M.N.; Aguilar-Vera, R.A. Forecast generation model of municipal solid waste using multiple linear regression. Glob. J. Environ. Sci. Manag. 2020, 6, 1–14. [Google Scholar]
- Ceylan, Z. Estimation of municipal waste generation of Turkey using socio-economic indicators by Bayesian optimization tuned Gaussian process regression. Waste Manag. Res. 2020, 38, 840–850. [Google Scholar] [CrossRef]
- Azadi, S.; Karimiashni, A. Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: A case study of Fars province, Iran. Waste Manag. 2016, 48, 14–23. [Google Scholar] [CrossRef]
- Sun, N.C.S.; Chungpaibulpatana, S. Development of an Appropriate Model for Forecasting Municipal Solid Waste Generation in Bangkok. Energy Procedia 2017, 138, 907–912. [Google Scholar] [CrossRef]
- Lee, K.; Chung, N.; Hwang, S. Application of an artificial neural network (ANN) model for predicting mosquito abundances in urban areas. Ecol. Inform. 2016, 36, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Yin, C.; Rosendahl, L.; Luo, Z. Methods to improve prediction performance of ANN models. Simul. Model. Pract. Theory 2003, 11, 211–222. [Google Scholar] [CrossRef]
- Awtoniuk, M.; Daniun, M.; Komarchuk, D.; Syrotyuk, S. Predictive modelling for air temperature and humidity in a mushroom production process. IOP Conf. Ser. Mater. Sci. 2019, 710, 012011. [Google Scholar] [CrossRef]
- Rymarczyk, T.; Kłosowski, G. Innovative methods of neural reconstruction for tomographic images in maintenance of tank industrial reactors. Eksploat Niezawodn 2019, 21, 261–267. [Google Scholar] [CrossRef]
- Noori, R.; Abdoli, M.A.; Ghazizade, M.J.; Samieifard, R. Comparison of Neural Network and Principal Component-Regression Analysis to Predict the Solid Waste Generation in Tehran. Iran. J. Public Health 2009, 38, 74–84. [Google Scholar]
- Abdoli, M.A.; Nezhad, M.F.; Sede, R.S.; Sadegh, B. Longterm forecasting of solid waste generation by the artificial neural networks. Environ. Prog. Sustain. Energy 2012, 33, 1–9. [Google Scholar] [CrossRef]
- Batinic, B.; Vukmirovic, S.; Vujic, G.; Stanisavljevic, N.; Ubavin, D.; Vukmirovic, G. Using ANN model to determine future waste characteristics in order to achieve specific waste management targets-case study of Serbia. J. Sci. Ind. Res. 2011, 70, 513–518. [Google Scholar]
- Younes, M.K.; Nopiah, Z.M.; Agmad, N.E.; Basri, H.; Mohammed, F.M. Prediction of municipal solid waste generation using nonlinear autoregressive network. Environ. Monit. Assess. 2015, 187, 1–10. [Google Scholar] [CrossRef]
- Szala, M.; Awtoniuk, M. Neural modelling of cavitation erosion process of 34CrNiMo6 steel. IOP Conf. Ser. Mater. Sci. Eng. 2019, 710, 012016. [Google Scholar] [CrossRef]
- Yusoff, S.; Din, U.N.; Mansor, H.; Midi, N.S.; Zaini, S.A. Neural Network Prediction for Efficient Waste Management in Malaysia. Indones. J. Electr. Eng. 2018, 12, 738–747. [Google Scholar]
- Meza, K.S.; Yepes, D.O.; Rodrigo-Ilarri, J.; Cassiraga, E. Predictive analysis of urban waste generation for the city of Bogotá, Colombia, through the implementation of decision tree-based machine learning, support vector machines and artificial neural networks. Heliyon 2019, 5, 1–11. [Google Scholar]
- Pawlowski, A. Barier of introducing sustainable development—Ecophilosophical point of view. Probl. Sustain. Dev. 2007, 2, 59–65. [Google Scholar]
- Bam, E.K.P.; Akiti, T.T.; Osae, D.S.; Ganyaglo, S.Y.; Gibrilla, A. Multivariate cluster analysis of some major and trace elements distribution in an unsaturated zone profile, Densu river basin, Ghana. Afr. J. Environ. Sci. Technol. 2011, 5, 155–167. [Google Scholar]
- He, Y.; Kitagawa, H.; Choy, K.Y.; Kou, X.; Tsai, P. What affects chinese households’ behavior in sorting solid waste? A case study from Shanghai, Shenyang, and Chengdu. Sustainability 2020, 12, 8831. [Google Scholar] [CrossRef]
- Antanasijević, D.; Pocajt, V.; Popović, I.; Redzˇic, N.; Ristić, M. The forecasting of municipal waste generation using artificial neural networks and sustainability indicators. Sustain. Sci. 2013, 8, 37–46. [Google Scholar] [CrossRef]
Cities | Population [Person] | Revenue Per Capita [PLN] | The Employment-to-Population Ratio [%] | Number of Entities Enlisted in REGON per 10,000 Population [-] | Number of Entities by Type of Business Activity (Industry/Construction) [-] |
---|---|---|---|---|---|
Białystok | 297,554 | 7295.32 | 60.3 | 1212 | 6507 |
Gdańsk | 470,907 | 7738.94 | 58.0 | 1696 | 14,911 |
Głubczyce | 12,521 | 4449.91 | 59.5 | 1201 | 1381 |
Jastrowie | 8633 | 4906.28 | 59.1 | 902 | 208 |
Katowice | 292,774 | 7437.27 | 58.6 | 1655 | 7186 |
Kraków | 779,115 | 7630.02 | 59.1 | 1886 | 22,854 |
Krotoszyn | 28,804 | 4691.94 | 60.0 | 1114 | 731 |
Legnica | 99,350 | 6310.35 | 58.9 | 1393 | 2511 |
Lublin | 33,784 | 6941.85 | 58.6 | 1359 | 7546 |
Łódż | 679,941 | 6600.84 | 56.4 | 1384 | 17,303 |
Małomice | 3458 | 4864.37 | 62.4 | 856 | 92 |
Oleśnica | 1839 | 5821.09 | 58.4 | 1164 | 890 |
Olsztynek | 7514 | 5004.64 | 62.1 | 954 | 132 |
Poznań | 534,813 | 7766.51 | 58.1 | 2158 | 18,365 |
Rzeszów | 196,208 | 7533.14 | 60.1 | 1496 | 4340 |
Slupsk | 90,681 | 6855.05 | 58.0 | 1405 | 2203 |
Staszów | 14,649 | 4622.92 | 59.8 | 969 | 657 |
Suwałki | 69,758 | 7502.33 | 62.0 | 1016 | 1399 |
Szczecin | 401,907 | 6563.20 | 58.3 | 1721 | 14,428 |
Toruń | 201,447 | 6385.79 | 59.0 | 1313 | 4606 |
Warszawa | 1,790,658 | 10,154.88 | 57.3 | 2548 | 60,948 |
Wrocław | 642,869 | 7681.46 | 58.6 | 1909 | 19,714 |
Zakopane | 27,010 | 6325.61 | 58.0 | 2280 | 785 |
Zamość | 63,437 | 7538.20 | 59.8 | 1190 | 1193 |
Zielona Góra | 141,222 | 7644.04 | 58.3 | 1552 | 4197 |
Cities | Paper and Cardboard [Mg] | Glass [Mg] | Plastics and Metals [Mg] | Biodegradable [Mg] | Other Waste [Mg] |
---|---|---|---|---|---|
Białystok | 5855.36 | 5216.67 | 364.6 | 18,045.18 | 18,326.46 |
Gdańsk | 8771.28 | 8346.51 | 27.61 | 36,140.32 | 19,094.58 |
Głubczyce | 241.56 | 226.52 | 29.34 | 464.05 | 680.49 |
Jastrowie | 13 | 49 | 150 | 89 | 164 |
Katowice | 4874.17 | 4134.68 | 2488.7 | 7293.87 | 17,339.43 |
Kraków | 4622.83 | 13,170.14 | 8978.27 | 59,818.22 | 2696.94 |
Krotoszyn | 132.4 | 417.72 | 609.12 | 1189.47 | 599.33 |
Legnica | 910.12 | 1027.17 | 740.19 | 2223.87 | 5214.49 |
Lublin | 6668.9 | 5262.63 | 13,131.48 | 18,964.98 | 44,017.01 |
Łódź | 1457.96 | 2278.49 | 2686.67 | 68,491.96 | 29,421.61 |
Małomice | 31.37 | 51.71 | 15.19 | 16.89 | 58.17 |
Oleśnica | 3.1 | 26.22 | 8.7 | 21.32 | 108.01 |
Olsztynek | 50 | 76.37 | 74.43 | 8.58 | 142.95 |
Poznań | 10,484.61 | 11,587.43 | 8138.35 | 26,633.73 | 23,721.2 |
Rzeszów | 1768.14 | 2310.57 | 494.26 | 4527.92 | 17,442.53 |
Slupsk | 884.73 | 1080.68 | 1759.44 | 1499.54 | 2446.09 |
Staszów | 67.9 | 130.46 | 58.11 | 412.7 | 403.89 |
Suwałki | 307.62 | 406.84 | 0.32 | 1168.58 | 1950.4 |
Szczecin | 9244.91 | 5741.89 | 1983.22 | 14,934.29 | 10,614.19 |
Toruń | 2436.97 | 2805.92 | 3083.82 | 6781.75 | 3221.41 |
Warszawa | 15,020.34 | 17114.3 | 225.72 | 26,856.4 | 69,894.88 |
Wrocław | 25,497.95 | 16,147.99 | 375.4 | 23,257.64 | 45,811.32 |
Zakopane | 472.88 | 792.84 | 77.87 | 478.32 | 1497.23 |
Zamość | 842.78 | 756.38 | 1076.53 | 1982.94 | 1857.57 |
Zielona Góra | 2214.34 | 1573.6 | 2606.58 | 4053.63 | 2992.81 |
Municipal Waste | ||
---|---|---|
Year | Total Waste [Thousand Mg] | Household Waste [Mg] |
2003 | 9924.61 | 6,978,826.7 |
2004 | 9759.31 | 6,768,209.61 |
2005 | 9352.12 | 6,493,374.7 |
2006 | 9876.59 | 6,885,996.5 |
2007 | 10,082.58 | 7,040,444.77 |
2008 | 10,036.41 | 6,879,243.12 |
2009 | 10,053.5 | 6,907,236.59 |
2010 | 10,040.11 | 6,891,941.28 |
2011 | 9,827.64 | 6,844,363.92 |
2012 | 9,580.87 | 6,820,588.77 |
2013 | 9,473.83 | 7,138,519.04 |
2014 | 10,330.41 | 8,239,812.94 |
2015 | 10,863.5 | 8,888,762.9 |
2016 | 11,654.34 | 9,564,497.3 |
2017 | 11,968.72 | 9,971,219.73 |
2018 | 12,485.42 | 10,445,807.62 |
2019 | 12,752.78 | 10,776,432.15 |
Explanatory Variables | Paper and Cardboard [Mg] | Glass [Mg] | Plastic and Metals [Mg] | Biodegradable [Mg] | Other Waste [Mg] |
---|---|---|---|---|---|
population | 0.661 | 0.846 | 0.419 | 0.650 | 0.773 |
revenue per capita | 0.595 | 0.711 | 0.444 | 0.441 | 0.673 |
the employment-to-population ratio | −0.458 | −0.499 | −0.459 | −0.501 | −0.460 |
number of entities enlisted in REGON per 10,000 people | 0.634 | 0.757 | 0.447 | 0.432 | 0.600 |
number of entities by type of business activity (industry/construction) | 0.680 | 0.855 | 0.476 | 0.597 | 0.812 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulisz, M.; Kujawska, J. Prediction of Municipal Waste Generation in Poland Using Neural Network Modeling. Sustainability 2020, 12, 10088. https://doi.org/10.3390/su122310088
Kulisz M, Kujawska J. Prediction of Municipal Waste Generation in Poland Using Neural Network Modeling. Sustainability. 2020; 12(23):10088. https://doi.org/10.3390/su122310088
Chicago/Turabian StyleKulisz, Monika, and Justyna Kujawska. 2020. "Prediction of Municipal Waste Generation in Poland Using Neural Network Modeling" Sustainability 12, no. 23: 10088. https://doi.org/10.3390/su122310088
APA StyleKulisz, M., & Kujawska, J. (2020). Prediction of Municipal Waste Generation in Poland Using Neural Network Modeling. Sustainability, 12(23), 10088. https://doi.org/10.3390/su122310088