Stochastic Unit Commitment Problem, Incorporating Wind Power and an Energy Storage System
Abstract
:1. Introduction
1.1. Research Background and Related Works
1.2. Contributions of the Work
2. Materials and Methods
2.1. Characterization of Wind Power Uncertainty
2.2. Problem Formulation
2.2.1. Objective Function
2.2.2. Problem Constraints
Security Constraints
Dispatchable Unit Constraints
Minimum Up/Down Times
Spinning Reserve Constraints
Power Balance Constraint
BESS Constraints
2.3. Implementation of the Proposed Method
3. Results and Discussion
3.1. Case 1: Operating Cost with Various Demand
3.2. Case 2: Incorporating Wind Power into Case 1
3.3. Case 3: Adding Energy Storage to Case 2
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
N | Number of units. |
T | Scheduling period in hours. |
S | Set of segments. |
Total production cost in $. | |
, and | Cost coefficients |
Generation in MW of unit i at time t. | |
Status of unit i at time t. | |
Start-up cost of unit i at time t. | |
Shut-down cost of unit i at time t. | |
Total fuel cost function of unit i at time t. | |
No-load cost of unit i. | |
Cost segment of unit i for segment s. | |
Segment generation of unit i at time t, in MW. | |
Hot start-up cost of unit i. | |
Cold start-up cost of unit i. | |
Duration in hours for which unit i is continuously OFF. | |
Duration in hours for which unit i is continuously ON. | |
Minimum down time in hours of unit i. | |
Cold start-up cost of unit i. | |
Minimum up time in hours of unit i. | |
Initial status of unit i. | |
Power flow in line l at time t. | |
Maximum power flow in line l. | |
and | Minimum and maximum generation of unit i. |
Wind power in MW at time t. | |
Storage generation in MW at time t. | |
Total load at time t. | |
Total losses in MW at time t. | |
Probability of event . | |
System spinning reserve at time t. | |
, and | B-loss coefficients. |
Threshold tolerance that the power balance constraint cannot be met. | |
Wind speed in m/s. | |
V | Wind speed random variable in m/s. |
W | Wind power random variable in MW. |
k and c | Shape factor and scale factor of the Weibull distribution, respectively. |
Probability density function. | |
Cumulative distribution function. | |
Rated power of the wind turbine. | |
, and | Cut-in, cut-out, and rated wind speeds in m/s. |
Rated power of the BESS in MW. | |
Rated cost of the BESS. | |
Rated energy of the BESS. | |
Rated energy cost of the BESS. | |
Capital cost of the BESS. | |
Charging/discharging time of the BESS. | |
and | Charging and discharging powers of the BESS at time t, respectively. |
and | Charging and discharging statues of the BESS at time t, respectively. |
and | Maximum charging and discharging powers of the BESS at time t, respectively. |
Discharging efficiency of the BESS. | |
Energy of the BESS at time t. |
References
- Hao, Y.; Liang, J.; Wang, K.; Wu, G.; Joseph, T.; Sun, R. Influence of active power output and control parameters of full-converter wind farms on sub-synchronous oscillation characteristics in weak grids. Energies 2020, 13, 5225. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, Q.; Hu, S.; Xu, H.; Rasmussen, C.N. Review of energy storage system for wind power integration support. Appl. Energy 2015, 137, 545–553. [Google Scholar] [CrossRef]
- Ye, J.; Yuan, R. Integrated Natural Gas, Heat, and Power Dispatch Considering Wind Power and Power-to-Gas. Sustainability 2017, 9, 602. [Google Scholar] [CrossRef] [Green Version]
- Elnaz, N.M.; Turaj, A.; Saberi, O.S. Stochastic very short-term economic dispatch for wind power operation using flexible ramp reserve. Int. Trans. Electr. Energy Syst. 2020, 30, e12454. [Google Scholar]
- Daneshi, H.; Srivastava, A.K. Security-constrained unit commitment with wind generation and compressed air energy storage. IET Gener. Transm. Distrib. 2012, 6, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Zhou, M.; Li, G.; Lee, K.Y. Stochastic unit commitment of wind-integrated power system considering air-conditioning loads for demand response. Appl. Sci. 2017, 7, 1154. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Huddar, A.P. Multi-objective-based robust unit commitment using hydro-thermal-wind: A hybrid technique. Int. J. Energy Sect. Manag. 2019, 13, 804–827. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Chatzis, S.; Poullikkas, A. Renewable energy integration through optimal unit commitment and electricity storage in weak power networks. Int. J. Sustain. Energy 2019, 38, 398–414. [Google Scholar] [CrossRef]
- Sediqi, M.M.; Lotfy, M.E.; Ibrahimi, A.M.; Senjyu, T.; Narayanan, K. Stochastic unit commitment and optimal power trading incorporating PV uncertainty. Sustainability 2019, 11, 4504. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Park, J.; Park, J.Y.; Heo, J.H. Considering maintenance cost in unit commitment problems. Energies 2017, 10, 1917. [Google Scholar] [CrossRef] [Green Version]
- Morales-Espana, G.; Lorca, A.; de Weerdt, M.M. Robust unit commitment with dispatchable wind power. Electr. Power Syst. Res. 2018, 155, 58–66. [Google Scholar] [CrossRef]
- Zhang, Y.; Lundblad, A.; Campana, P.E.; Yan, J. Comparative study of battery storage and hydrogen storage to increase photovoltaic self-sufficiency in a residential building of Sweden. Energy Procedia 2016, 103, 268–273. [Google Scholar] [CrossRef]
- Basu, M. Economic environmental dispatch of solar-wind-hydro-thermal power system. Renew. Energy Focus 2019, 30, 107–122. [Google Scholar] [CrossRef]
- Ortega, A.; Milano, F. Voltage stability of converter-interfaced energy storage systems. IFAC-PapersOnLine 2019, 52, 222–227. [Google Scholar] [CrossRef]
- Paliwal, N.K.; Singh, A.K.; Singh, N.K.; Kumar, P. Optimal sizing and operation of battery storage for economic operation of hybrid power system using artificial bee colony algorithm. Int. Trans. Electr. Energy Syst. 2019, 29, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wu, X.; Du, J.; Song, Z.; Wu, G. Optimal sizing of a wind-energy storage system considering battery life. Renew. Energy 2020, 147, 2470–2483. [Google Scholar] [CrossRef]
- Sebastian, R. Battery energy storage for increasing stability and reliability of an isolated wind diesel power system. IET Renew. Power Gener. 2017, 11, 296–303. [Google Scholar] [CrossRef]
- Liu, J.; Yao, W.; Fang, J.; Wen, J.; Cheng, S. Stability analysis and energy storage-based solution of wind farm during low voltage ride through. Int. J. Electr. Power 2018, 101, 75–84. [Google Scholar] [CrossRef]
- Gurung, S.; Naetiladdanon, S.; Sangswang, A. Coordination of power-system stabilizers and battery energy-storage system controllers to improve probabilistic small-signal stability considering integration of renewable-energy resources. Appl. Sci. 2019, 9, 1109. [Google Scholar] [CrossRef] [Green Version]
- Abbey, C.; Joos, G. Supercapacitor energy storage for wind energy applications. IEEE Trans. Ind. Appl. 2007, 43, 769–776. [Google Scholar] [CrossRef]
- Zhang, S.; Mishra, Y.; Shahidehpour, M. Fuzzy-logic based frequency controller for wind farms augmented with energy storage systems. IEEE Trans. Power Syst. 2015, 31, 1595–1603. [Google Scholar] [CrossRef]
- Barote, L.; Marinescu, C. Storage analysis for stand-alone wind energy applications. In Proceedings of the 12th International Conference on Optimization of Electrical and Electronic Equipment 2010, Basov, Romania, 20–22 May 2010; pp. 1180–1185. [Google Scholar]
- Black, M.; Strbac, G. Value of bulk energy storage for managing wind power fluctuations. IEEE Trans. Energy Convers. 2007, 22, 197–205. [Google Scholar] [CrossRef]
- Luo, F.; Meng, K.; Dong, Z.Y.; Zheng, Y.; Chen, Y.; Wong, K.P. Coordinated operational planning for wind farm with battery energy storage system. IEEE Trans. Sustain. Energy 2015, 6, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Arabali, A.; Ghofrani, M.; Etezadi-Amoli, M.; Fadali, M.S. Stochastic performance assessment and sizing for a hybrid power system of solar/wind/energy storage. IEEE Trans. Sustain. Energy 2013, 5, 363–371. [Google Scholar] [CrossRef]
- Ghofrani, M.; Arabali, A.; Etezadi-Amoli, M.; Fadali, M.S. Energy storage application for performance enhancement of wind integration. IEEE Trans. Power Syst. 2013, 28, 4803–4811. [Google Scholar] [CrossRef]
- Dicorato, M.; Forte, G.; Pisani, M.; Trovato, M. Planning and operating combined wind-storage system in electricity market. IEEE Trans. Sustain. Energy 2012, 3, 209–217. [Google Scholar] [CrossRef]
- Reuter, W.H.; Fuss, S.; Szolgayova, J.; Obersteiner, M. Investment in wind power and pumped storage in a real options model. Renew. Sustain. Energy Rev. 2012, 16, 2242–2248. [Google Scholar] [CrossRef]
- Delille, G.; Francois, B.; Malarange, G. Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system’s inertia. IEEE Trans. Sustain. Energy 2012, 3, 931–939. [Google Scholar] [CrossRef]
- Such, M.C.; Hill, C. Battery energy storage and wind energy integrated into the Smart Grid. In Proceedings of the IEEE PES Innovative Smart Grid Technologies 2012, Washington, DC, USA, 16–20 January 2012. [Google Scholar]
- Hu, P.; Karki, R.; Billinton, R. Reliability evaluation of generating systems containing wind power and energy storage. IET Gener. Transm. Distrib. 2009, 3, 783–791. [Google Scholar] [CrossRef]
- Teleke, S.; Baran, M.E.; Bhattacharya, S.; Huang, A.Q. Optimal control of battery energy storage for wind farm dispatching. IEEE Trans. Energy Convers. 2010, 25, 787–794. [Google Scholar] [CrossRef]
- Guesmi, T.; Farah, A.; Marouani, I.; Alshammari, B.; Hadj Abdallah, H. Chaotic sine–cosine algorithm for chance constrained economic emission dispatch problem including wind energy. IET Renew. Power Gener. 2020, 14, 1808–1821. [Google Scholar] [CrossRef]
- Moazzami, M.; Ghanbari, M.; Moradi, J.; Shahinzadeh, H.; Gharehpetian, G.B. Probabilistic SCUC considering implication of compressed air energy storage on redressing intermittent load and stochastic wind generation. Int. J. Renew. Energy Res. 2018, 8, 767–783. [Google Scholar]
- Teleke, S.; Baran, M.E.; Huang, A.Q.; Bhattacharya, S.; Anderson, L. Control strategies for battery energy storage for wind farm dispatching. IEEE Trans. Energy Convers. 2009, 24, 725–732. [Google Scholar] [CrossRef]
- Alham, M.H.; lshahed, M.; Ibrahim, D.K.; Abo El Zahab, E. A dynamic economic emission dispatch considering wind power uncertainty incorporating energy storage system and demand side management. Renew. Energy 2016, 96, 800–811. [Google Scholar] [CrossRef]
- Sundar, K.; Nagarajan, H.; Roald, L.; Misra, S.; Bent, R.; Bienstock, D. Chance-Constrained Unit Commitment with N-1 Security and Wind Uncertainty. IEEE Trans. Control. Netw. 2019, 6, 1062–1074. [Google Scholar] [CrossRef]
- Vrakopoulou, M.; Li, B.; Mathieu, J.L. Chance Constrained Reserve Scheduling Using Uncertain Controllable Loads Part I: Formulation and Scenario-Based Analysis. IEEE Trans. Smart Grid 2019, 10, 1608–1617. [Google Scholar] [CrossRef]
- Atta Mills, E.F.E.; Yu, B.; Gu, L. On meeting capital requirements with a chance-constrained optimization model. SpringerPlus 2016, 5, 500. [Google Scholar] [CrossRef] [Green Version]
- Pagnoncelli, B.; Ahmed, S.; Shapiro, A. Sample average approximation method for chance constrained programming: Theory and applications. J. Optim. Theory Appl. 2009, 142, 399–416. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xu, W. Economic load dispatch constrained by wind power availability: A here-and-now approach. IEEE Trans. Sustain. Energy 2010, 1, 2–9. [Google Scholar] [CrossRef]
- Saravanan, B.; Kumar, C.; Kothari, D.P. A solution to unit commitment problem using fire works algorithm. Int. J. Electr. Power 2016, 77, 221–227. [Google Scholar] [CrossRef]
Unit | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 150 | 455 | 1000 | 16.19 | 0.00048 | 8 | 8 | 4500 | 9000 | 5 | 8 |
2 | 150 | 455 | 917 | 17.26 | 0.00031 | 8 | 8 | 5000 | 10,000 | 5 | 8 |
3 | 20 | 130 | 700 | 16.60 | 0.00200 | 5 | 5 | 550 | 1100 | 4 | −5 |
4 | 20 | 130 | 680 | 16.50 | 0.00211 | 5 | 5 | 560 | 1120 | 4 | −5 |
5 | 25 | 162 | 450 | 19.70 | 0.00398 | 6 | 6 | 900 | 1800 | 4 | −6 |
6 | 20 | 80 | 370 | 22.26 | 0.00712 | 3 | 3 | 170 | 340 | 2 | −3 |
7 | 25 | 85 | 480 | 27.74 | 0.00079 | 3 | 3 | 260 | 520 | 2 | −3 |
8 | 10 | 55 | 660 | 25.92 | 0.00413 | 1 | 1 | 30 | 60 | 0 | −1 |
9 | 10 | 55 | 665 | 27.27 | 0.00222 | 1 | 1 | 30 | 60 | 0 | −1 |
10 | 10 | 55 | 770 | 27.79 | 0.00173 | 1 | 1 | 30 | 60 | 0 | −1 |
Hour | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Wind | 44 | 70.2 | 76 | 82 | 84 | 84 | 100 | 100 |
Demand | 170 | 175.19 | 165.15 | 158.67 | 154.73 | 155.06 | 160.48 | 173.39 |
Hour | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
Wind | 78 | 64 | 100 | 92 | 84 | 80 | 78 | 32 |
Demand | 177.6 | 186.81 | 206.96 | 228.61 | 236.1 | 242.18 | 243.6 | 248.86 |
Hour | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
Wind | 4 | 0 | 10 | 0 | 6 | 56 | 82 | 52 |
Demand | 255.79 | 256 | 246.74 | 245.97 | 237.35 | 237.31 | 232.67 | 195.93 |
Base Demand | 5% Increase in Demand | 10% Increase in Demand | ||||
---|---|---|---|---|---|---|
Time (h) | Case 1 | Case 2 | Case 1 | Case 2 | Case 1 | Case 2 |
1 | 14,096.871 | 13,085.2771 | 14,703.9326 | 14,204.4081 | 15,311.473 | 14,811.4691 |
2 | 14,964.101 | 13,655.9145 | 15,615.497 | 14,818.407 | 16,266.977 | 15,469.5655 |
3 | 16,701.467 | 15,326.8513 | 17,441.0136 | 16,576.5603 | 18,180.5603 | 17,316.0737 |
4 | 18,478.989 | 16,998.0463 | 19,430.1115 | 18,357.0665 | 20,390.1267 | 19,307.3372 |
5 | 19,480.346 | 20,180.613 | 20,491.8107 | 19,381.2831 | 22,856.3637 | 20,391.5503 |
6 | 22,844.478 | 20,391.5503 | 23,951.4571 | 22,845.8759 | 25,323.6651 | 23,952.8729 |
7 | 22,730.329 | 22,537.7754 | 25,253.7783 | 22,571.1562 | 25,305.4919 | 23,737.4175 |
8 | 23,744.941 | 22,419.7771 | 25,205.0219 | 23,635.7335 | 26,419.8541 | 26,197.1171 |
9 | 27,113.117 | 26,083.9879 | 28,114.2847 | 27,397.8333 | 30,716.1723 | 28,430.7099 |
10 | 28,908.081 | 27,960.1293 | 31,452.7026 | 30,673.9375 | 33,502.7721 | 32,859.8424 |
11 | 30,550.903 | 28,218.4854 | 33,016.3149 | 30,575.0763 | 35,671.6514 | 33,154.4839 |
12 | 32,561.655 | 30,286.2052 | 35,115.7099 | 32,803.7353 | 37,972.325 | 35,528.4463 |
13 | 28,568.081 | 27,340.8953 | 30,932.7026 | 29,451.5533 | 33,442.7721 | 31,351.6221 |
14 | 26,013.117 | 25,183.2736 | 27,774.2847 | 26,271.5988 | 29,856.1723 | 28,061.5536 |
15 | 24,004.372 | 22,710.1047 | 25,205.0219 | 24,183.7104 | 26,419.8541 | 25,386.1307 |
16 | 21,383.604 | 20,401.5602 | 22,295.6764 | 21,931.89 | 23,209.1917 | 22,844.8127 |
17 | 20,515.33 | 19,849.4233 | 21,383.6044 | 21,337.219 | 22,252.2444 | 22,205.859 |
18 | 22,252.244 | 21,724.4791 | 23,209.1917 | 23,209.1917 | 24,203.6651 | 24,203.6651 |
19 | 24,004.372 | 24,977.916 | 25,205.0219 | 25,073.0043 | 26,419.8541 | 26,286.2413 |
20 | 28,908.081 | 28,908.0813 | 32,150.0466 | 32,150.0466 | 34,362.7721 | 34,894.708 |
21 | 26,426.543 | 26,346.4511 | 27,774.2847 | 27,685.119 | 29,856.1723 | 29,866.729 |
22 | 21,803.274 | 21,006.8728 | 23,168.4458 | 22,222.1993 | 24,864.4218 | 23,488.104 |
23 | 17,060.864 | 16,747.3596 | 18,390.4679 | 16,911.0408 | 19,243.1003 | 18,196.5059 |
24 | 15,321.292 | 14,730.2693 | 16,016.7983 | 15,425.1813 | 16,712.8423 | 16,120.8569 |
Base Demand | 15% Increase in Demand | |||||||
---|---|---|---|---|---|---|---|---|
Time (h) | Generating Units | Storage | Wind | Demand | Generating Units | Storage | Wind | Demand |
1 | 671.2 | 28.8 | 700 | 776.2 | 28.8 | 805 | ||
2 | 704.1 | 45.9 | 750 | 816.6 | 45.9 | 862.5 | ||
3 | 800.32 | 49.68 | 850 | 927.82 | 49.68 | 977.5 | ||
4 | 887.39 | 9 | 53.61 | 950 | 1029.89 | 9 | 53.61 | 1092.5 |
5 | 953.07 | −8 | 54.93 | 1000 | 1104.07 | −9 | 54.93 | 1150 |
6 | 1036.07 | 9 | 54.93 | 1100 | 1201.07 | 9 | 54.93 | 1265 |
7 | 1094.63 | −10 | 65.37 | 1150 | 1266.13 | −9 | 65.37 | 1322.5 |
8 | 1134.63 | 65.37 | 1200 | 1314.63 | 65.37 | 1380 | ||
9 | 1249 | 51 | 1300 | 1444 | 51 | 1495 | ||
10 | 1358.15 | 41.85 | 1400 | 1568.15 | 41.85 | 1610 | ||
11 | 1383.63 | 1 | 65.37 | 1450 | 1602.13 | 65.37 | 1667.5 | |
12 | 1430.85 | 9 | 60.15 | 1500 | 1607 | 6.93 | 60.15 | 1674.08 |
13 | 1354.07 | −9 | 54.93 | 1400 | 1552 | 3.07 | 54.93 | 1610 |
14 | 1238.71 | 9 | 52.29 | 1300 | 1442.71 | 52.29 | 1495 | |
15 | 1149 | 51 | 1200 | 1329 | 51 | 1380 | ||
16 | 1039.06 | −10 | 20.94 | 1050 | 1186.56 | 20.94 | 1207.5 | |
17 | 997.33 | 2.67 | 1000 | 1157.33 | −10 | 2.67 | 1150 | |
18 | 1091.43 | 8.57 | 0 | 1100 | 1265 | 0 | 1265 | |
19 | 1202 | −8.57 | 6.57 | 1200 | 1373.43 | 6.57 | 1380 | |
20 | 1391 | 9 | 0 | 1400 | 1601 | 9 | 0 | 1610 |
21 | 1298.41 | −2.37 | 3.96 | 1300 | 1490.04 | 1 | 3.96 | 1495 |
22 | 1060 | 3.37 | 36.63 | 1100 | 1228.37 | 36.63 | 1265 | |
23 | 855.39 | −9 | 53.61 | 900 | 990.39 | −9 | 53.61 | 1035 |
24 | 756.98 | 9 | 34.02 | 800 | 876.98 | 9 | 34.02 | 920 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqunun, K.; Guesmi, T.; Albaker, A.F.; Alturki, M.T. Stochastic Unit Commitment Problem, Incorporating Wind Power and an Energy Storage System. Sustainability 2020, 12, 10100. https://doi.org/10.3390/su122310100
Alqunun K, Guesmi T, Albaker AF, Alturki MT. Stochastic Unit Commitment Problem, Incorporating Wind Power and an Energy Storage System. Sustainability. 2020; 12(23):10100. https://doi.org/10.3390/su122310100
Chicago/Turabian StyleAlqunun, Khalid, Tawfik Guesmi, Abdullah F. Albaker, and Mansoor T. Alturki. 2020. "Stochastic Unit Commitment Problem, Incorporating Wind Power and an Energy Storage System" Sustainability 12, no. 23: 10100. https://doi.org/10.3390/su122310100
APA StyleAlqunun, K., Guesmi, T., Albaker, A. F., & Alturki, M. T. (2020). Stochastic Unit Commitment Problem, Incorporating Wind Power and an Energy Storage System. Sustainability, 12(23), 10100. https://doi.org/10.3390/su122310100