Integrated Nutrient Management Enhances Soil Quality and Crop Productivity in Maize-Based Cropping System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Depiction of Experimental Location and Crop Husbandry
2.2. Analysis and Sampling of Organic Manures and Soil
2.3. Treatments Application and Management
2.4. Analyses and Sampling of Soil
2.5. Measurement of Plant Root Length
2.6. Measurements of Crop Yield Traits
2.7. Harvest Index
2.8. Agronomic Efficiency of Fertilizers
2.9. Yield Sustainability Index
2.10. Statistical Analysis
3. Results
3.1. Grain Yield and Total Biomass
3.2. Agronomic Efficiency and Yield Sustainability Index
3.3. Effects on Hydrological and Physical Soil Properties
3.4. Effects on Plant Root Length
3.5. Effects on Soil Chemical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Merino, C.; Godoy, R.; Matus, F. Soil enzymes and biological activity at different levels of organic matter stability. J. Soil Sci. Plant Nutr. 2016, 16, 14–30. [Google Scholar]
- Rakotoson, T.; Rabeharisoa, L.; Smolders, E. Effects of soil flooding and organic matter addition on plant accessible phosphorus in a tropical paddy soil: An isotope dilution study. J. Plant Nutr. Soil Sci. 2016, 179, 765–774. [Google Scholar] [CrossRef]
- Egodawatta, W.; Sangakkara, U.; Stamp, P. Impact of green manure and mineral fertilizer inputs on soil organic matter and crop productivity in a sloping landscape of Sri Lanka. Field Crops Res. 2012, 129, 21–27. [Google Scholar] [CrossRef]
- Asai, H.; Samson, B.K.; Stephan, H.M.; Songyikhangsuthor, K.; Homma, K.; Kiyono, Y.; Inoue, Y.; Shiraiwa, T.; Horie, T. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Res. 2009, 111, 81–84. [Google Scholar] [CrossRef]
- Ata-Ul-Karim, S.T.; Liu, X.; Lu, Z.; Yuan, Z.; Zhu, Y.; Cao, W. In-season estimation of rice grain yield using critical nitrogen dilution curve. Field Crops Res. 2016, 195, 1–8. [Google Scholar] [CrossRef]
- Nayak, A.; Gangwar, B.; Shukla, A.K.; Mazumdar, S.P.; Kumar, A.; Raja, R.; Kumar, A.; Kumar, V.; Rai, P.; Mohan, U. Long-term effect of different integrated nutrient management on soil organic carbon and its fractions and sustainability of rice-wheat system in Indo Gangetic Plains of India. Field Crops Res. 2012, 127, 129–139. [Google Scholar] [CrossRef]
- Abid, M.; Tian, Z.; Ata-Ul-Karim, S.T.; Cui, Y.; Liu, Y.; Zahoor, R.; Jiang, D.; Dai, T. Nitrogen nutrition improves the potential of wheat (Triticum aestivum L.) to alleviate the effects of drought stress during vegetative growth periods. Front. Plant Sci. 2016, 7, 981. [Google Scholar] [CrossRef] [Green Version]
- Güereña, D.T.; Kimetu, J.; Riha, S.; Neufeldt, H.; Lehmann, J. Maize productivity dynamics in response to mineral nutrient additions and legacy organic soil inputs of contrasting quality. Field Crops Res. 2016, 188, 113–120. [Google Scholar] [CrossRef]
- Hepperly, P.; Lotter, D.; Ulsh, C.Z.; Seidel, R.; Reider, C. Compost, manure and synthetic fertilizer influences crop yields, soil properties, nitrate leaching and crop nutrient content. Compost Sci. Util. 2009, 17, 117–126. [Google Scholar] [CrossRef]
- Arif, M.; Ali, K.; Jan, M.T.; Shah, Z.; Jones, D.L.; Quilliam, R.S. Integration of biochar with animal manure and nitrogen for improving maize yields and soil properties in calcareous semi-arid agroecosystems. Field Crops Res. 2016, 195, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Ram, N. Effect of continuous fertilizer use on soil fertility and productivity of a Mollisol. In Long-Term Soil Fertility Management through Integrated Plant Nutrient Supply: Proceedings of a National Workshop Held during 2–4 April, 1998 at Indian Institute of Soil Science, Bhopal; All India Coordinated Research Project on Long-Term Fertilizer Experiments: Bhopal, India, 1998; pp. 229–237. [Google Scholar]
- Gangwar, K.; Singh, K.; Sharma, S.; Tomar, O. Alternative tillage and crop residue management in wheat after rice in sandy loam soils of Indo-Gangetic plains. Soil and Tillage Res. 2006, 88, 242–252. [Google Scholar] [CrossRef]
- Jones, D.L.; Healey, J.R. Organic amendments for remediation: Putting waste to good use. Elements 2010, 6, 369–374. [Google Scholar] [CrossRef]
- Abedi, T.; Alemzadeh, A.; Kazemeini, S.A. Effect of organic and inorganic fertilizers on grain yield and protein banding pattern of wheat. Aust. J. Crop Sci. 2010, 4, 384. [Google Scholar]
- Garcıa-Gil, J.; Plaza, C.; Soler-Rovira, P.; Polo, A. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol. Biochem. 2000, 32, 1907–1913. [Google Scholar] [CrossRef]
- Yamato, M.; Okimori, Y.; Wibowo, I.F.; Anshori, S.; Ogawa, M. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci. Plant Nutr. 2006, 52, 489–495. [Google Scholar] [CrossRef]
- Gruhn, P.; Goletti, F.; Yudelman, M. Integrated Nutrient Management, Soil Fertility, and Sustainable Agriculture: Current Issues and Future Challenges; International Food Policy Research Institute: Washington, DC, USA, 2000. [Google Scholar]
- Bodruzzaman, M.; Meisner, C.; Sadat, M.; Hossain, M.I. In Long-term effects of applied organic manures and inorganic fertilizers on yield and soil fertility in a wheat-rice cropping pattern. In Proceedings of the 19th World Congress of Soil Science, Brisbane, Australia, 1–6 August 2010; pp. 10–15. [Google Scholar]
- Brady, N.C.; Weil, R.R. Elements of the Nature and Properties of Soils; Pearson College Div: New York, NY, USA, 2004. [Google Scholar]
- Hathaway-Jenkins, L.; Sakrabani, R.; Pearce, B.; Whitmore, A.; Godwin, R. A comparison of soil and water properties in organic and conventional farming systems in England. Soil Use Manag. 2011, 27, 133–142. [Google Scholar] [CrossRef]
- Shiferaw, B.; Smale, M.; Braun, H.-J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef] [Green Version]
- Ashworth, J.; Keyes, D.; Kirk, R.; Lessard, R. Standard procedure in the hydrometer method for particle size analysis. Commun. Soil Sci. Plant Anal. 2001, 32, 633–642. [Google Scholar] [CrossRef]
- Haghverdi, A.; Öztürk, H.S.; Durner, W. Measurement and estimation of the soil water retention curve using the evaporation method and the pseudo continuous pedotransfer function. J. Hydrol. 2018, 563, 251–259. [Google Scholar] [CrossRef]
- Amoozegar, A. A compact constant-head permeameter for measuring saturated hydraulic conductivity of the vadose zone. Soil Sci. Soc. Am. J. 1989, 53, 1356–1361. [Google Scholar] [CrossRef]
- Hodnett, M.; Tomasella, J. Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: A new water-retention pedo-transfer functions developed for tropical soils. Geoderma 2002, 108, 155–180. [Google Scholar] [CrossRef]
- Walkley, A. A critical examination of a rapid method for determining organic carbon in soils—Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 1947, 63, 251–264. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.; Helmke, P.; Loeppert, R.H. (Eds.) Methods of Soil Analysis, Part 3: Chemical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 14. [Google Scholar]
- Bray, R.H.; Kurtz, L. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Rhoades, J. Salinity: Electrical conductivity and total dissolved solids. In Methods of Soil Analysis: Part 3 Chemical Methods; Soil Science Society of America: Madison, WI, USA; American Society of Agronomy: Madison, WI, USA; Crop Science Society of America: Madison, WI, USA, 1996; Volume 5, pp. 417–435. [Google Scholar]
- Fasihi, S.; Malik, K. Fifty Years of Sugarcane Research (1935–85) at Sugarcane Research Institute Faisalabad; Directorate of Agriculture Information of the Government of Punjab: Lahore, Pakistan, 1989. [Google Scholar]
- Smith, L.; Papendick, R. Soil organic matter dynamics and crop residue management. In Soil Microbial Ecology. Applications in Agricultural and Environmental Management; Metting, F.B., Jr., Ed.; Marcel Dekker: New York, NY, USA, 1993; pp. 65–94. [Google Scholar]
- Berihun, T.; Tadele, M.; Kebede, F. The application of biochar on soil acidity and other physico-chemical properties of soils in southern Ethiopia. J. Plant Nutr. Soil Sci. 2017, 180, 381–388. [Google Scholar] [CrossRef]
- Yaduvanshi, N.; Sharma, D. Tillage and residual organic manures/chemical amendment effects on soil organic matter and yield of wheat under sodic water irrigation. Soil Tillage Res. 2008, 98, 11–16. [Google Scholar] [CrossRef]
- Bilalis, D.; Karkanis, A.; Sidiras, N.; Travlos, L.; Efthimiadou, A.; Thomopoulos, P.; Kakabouki, I. Maize and legumes root growth and yield as influenced by organic fertilization, under mediterranean environmental conditions. Rom. Agric. Res. 2012, 211–217. [Google Scholar]
- Brady, N.C.; Weil, R.R. Elements of the Nature and Properties of Soils; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Moharana, P.; Sharma, B.; Biswas, D.; Dwivedi, B.; Singh, R. Long-term effect of nutrient management on soil fertility and soil organic carbon pools under a 6-year-old pearl millet-wheat cropping system in an Inceptisol of subtropical India. Field Crops Res. 2012, 136, 32–41. [Google Scholar] [CrossRef]
- Gould, C.M. Compost Increases Water Holding Capacity of Droughty Soils; Michigan State University: East Lansing, MI, USA, 2015. [Google Scholar]
- Abd El-Mageed, T.A.; El-Sherif, A.M.; Abd El-Mageed, S.A.; Abdou, N.M. A novel compost alleviate drought stress for sugar beet production grown in Cd-contaminated saline soil. Agric. Water Manag. 2019, 226, 105831. [Google Scholar] [CrossRef]
Nutrient Source | OC (%) | C:N | DM (%) | N (%) | P (%) | K (%) | Ca (%) | Mg (%) | Ash (%) |
---|---|---|---|---|---|---|---|---|---|
FYM | 18.2 | 14 | 65.3 | 1.3 | 0.41 | 0.73 | 1.9 | 0.8 | 42.5 |
PM | 24.2 | 16 | 78.5 | 1.75 | 0.65 | 1.07 | 2.2 | 0.6 | 40.1 |
Urea | - | - | - | 46 | 0 | 0 | - | - | - |
DAP | - | - | - | 18 | 46 | 0 | - | - | - |
SOP | - | - | - | 0 | 0 | 50 | - | - | - |
Treatments | Application Rate |
---|---|
NPK | 250-150-125 kg ha−1 |
FYM | 16 t ha−1 |
PM | 13 t ha−1 |
NPK + FYM | 150-85-50 kg ha−1 + 8.5 t ha−1 |
NPK + PM | 150-85-50 kg ha−1 + 7.0 t ha−1 |
Treatments | Grain Yield (t ha−1) | Total Biomass (t ha−1) | HI | AE (kg Yield/kg NPK) | YSI |
---|---|---|---|---|---|
2012 | |||||
NPK | 7.50 c | 16.71 c | 0.44 b | 6.6 cd | 0.71 c |
FYM | 6.07 e | 14.83 e | 0.40 d | 5.3 e | 0.67 d |
PM | 7.13 d | 15.90 d | 0.43 bc | 6.8 c | 0.72 c |
NPK + FYM | 8.00 b | 17.10 b | 0.46 ab | 8.3 b | 0.83 b |
NPK + PM | 8.43 a | 17.60 a | 0.47 a | 10.3 a | 0.87 a |
2013 | |||||
NPK | 7.61 c | 16.83 c | 0.46 bc | 6.8 d | 0.75 c |
FYM | 6.33 e | 14.85 e | 0.42 d | 5.5 e | 0.71 d |
PM | 7.25 d | 15.96 d | 0.44 c | 7.1 c | 0.75 c |
NPK + FYM | 8.17 b | 17.24 b | 0.48 ab | 8.5 b | 0.84 b |
NPK + PM | 8.54 a | 17.75 a | 0.49 a | 10.5 a | 0.90 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abid, M.; Batool, T.; Siddique, G.; Ali, S.; Binyamin, R.; Shahid, M.J.; Rizwan, M.; Alsahli, A.A.; Alyemeni, M.N. Integrated Nutrient Management Enhances Soil Quality and Crop Productivity in Maize-Based Cropping System. Sustainability 2020, 12, 10214. https://doi.org/10.3390/su122310214
Abid M, Batool T, Siddique G, Ali S, Binyamin R, Shahid MJ, Rizwan M, Alsahli AA, Alyemeni MN. Integrated Nutrient Management Enhances Soil Quality and Crop Productivity in Maize-Based Cropping System. Sustainability. 2020; 12(23):10214. https://doi.org/10.3390/su122310214
Chicago/Turabian StyleAbid, Muhammad, Tahira Batool, Ghulam Siddique, Shafaqat Ali, Rana Binyamin, Munazzam Jawad Shahid, Muhammad Rizwan, Abdulaziz Abdullah Alsahli, and Mohammed Nasser Alyemeni. 2020. "Integrated Nutrient Management Enhances Soil Quality and Crop Productivity in Maize-Based Cropping System" Sustainability 12, no. 23: 10214. https://doi.org/10.3390/su122310214
APA StyleAbid, M., Batool, T., Siddique, G., Ali, S., Binyamin, R., Shahid, M. J., Rizwan, M., Alsahli, A. A., & Alyemeni, M. N. (2020). Integrated Nutrient Management Enhances Soil Quality and Crop Productivity in Maize-Based Cropping System. Sustainability, 12(23), 10214. https://doi.org/10.3390/su122310214