Application of Biomimetics to Architectural and Urban Design: A Review across Scales
Abstract
:1. Introduction
2. Trends of Application of Biomimetics in the Fields of Architectural and Urban Design
3. Architectural Design
3.1. Reduction of Environmental Impact
3.2. Enhancement of Well-Being
4. Urban Design
4.1. Application of the Concept of an Ecosystem and Its Components
4.2. Improvement of Socioecological Functions of Cities
5. Future Challenges in the Application of Biomimetics in Urban and Architectural Design
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Topics and Target Scales of the Reviewed Papers
Architecture/Urban | Author (Year of Publication) | 1. Material | 2. Structure | 3. System | 4. Biophillia |
---|---|---|---|---|---|
Architecture | Edmondson, A. C. (1986). | ○ | |||
Architecture | Aldersey-Williams, H. (2004) | ○ | ○ | ||
Architecture | Dollens, D. (2006) | ○ | |||
Architecture | Vincent, J. F. V. (2006) | ○ | |||
Architecture | Building Research Establishment (BRE). (2007). Naturally innovative : | ○ | ○ | ||
Architecture | Badarnah, L. & Knaack, U., (2008) | ○ | |||
Architecture | Turner, J. S., & Soar, R. C. (2008, May) | ○ | ○ | ||
Architecture | Memmott, P., Hyde, R., & O’Rourke, T. (2009) | ○ | ○ | ||
Architecture | Vincent, J. F. V. (2009) | ○ | ○ | ||
Architecture | Royall, E. (2010) | ○ | ○ | ||
Architecture | Eilouti, B. H. (2011) | ○ | ○ | ||
Architecture | French, J.R.J. and Ahmed, B.M. (2011) | ○ | ○ | ||
Architecture | Gamage, A., & Hyde, R. (2011) | ○ | ○ | ○ | |
Architecture | Gruber, P. (2011) | ○ | ○ | ○ | |
Architecture | Kellert, S. R., Heerwagen, J., & Mador, M. (2011) | ○ | ○ | ||
Architecture | Peters, T. (2011) | ○ | |||
Architecture | Knippers, J., & Speck, T. (2012) | ○ | |||
Architecture | Menges, A. (2012) | ○ | |||
Architecture | Fernández, M. L., Rubio, R., & González, S. M. (2013) | ○ | ○ | ||
Architecture | Taghizade, K., & Taraz, M. (2013) | ○ | |||
Architecture | Van Renterghem, T., Hornikx, M., Forssen, J., & Botteldooren, D. (2013) | ○ | |||
Architecture | Webb, M., Aye, L., & Green, R. (2013) | ○ | |||
Architecture | Zare, M., & Falahat, M. (2013) | ○ | ○ | ||
Architecture | Chen, D. A., Ross, B. E., & Klotz, L. E. (2014) | ○ | |||
Architecture | Raoa, R. (2014) | ○ | ○ | ||
Architecture | Browning, W.D., Ryan, C.O., & Clancy, J.O. (2014). | ○ | |||
Architecture | Garcia-Holguera, M., Clark, G., Sprecher, A., & Gaskin, S. (2015) | ○ | |||
Architecture | Gil, P., Rossi, C., & Coral, W. (2015, July) | ○ | |||
Architecture | Han, Y., Taylor, J. E., & Pisello, A. L. (2015) | ○ | |||
Architecture | Ramzy, N. (2015) | ○ | |||
Architecture | Sara, K., & Noureddine, Z. (2015, May) | ○ | |||
Architecture | Shimomura, M. (2015) | ○ | ○ | ○ | |
Architecture | Madre, F., Clergeau, P., Machon, N., & Vergnes, A. (2015). | ○ | |||
Architecture | Menges, A., & Reichert, S. (2015). | ○ | ○ | ||
Architecture | Achal, V., Mukherjee, A., & Zhang, Q. (2016) | ○ | ○ | ||
Architecture | Elmeligy, D. A. (2016) | ○ | ○ | ○ | |
Architecture | Fujii, S., et al. (2016) | ○ | |||
Architecture | Tsujino, M. (2016) | ○ | |||
Architecture | Vuja, A., Lečić, M., & Čolić-Damjanović, V. M. (2016, November) | ○ | |||
Architecture | Garcia-Holguera, M., Clark, O. G., Sprecher, A., & Gaskin, S. (2016). | ○ | |||
Architecture | López, M., Rubio, R., Martín, S., & Croxford, B. (2017) | ○ | ○ | ||
Architecture | Al-Obaidi, K. M., Ismail, M. A., Hussein, H., & Rahman, A. M. A. (2017). | ○ | |||
Architecture | Bechthold, M., & Weaver, J. C. (2017). | ○ | ○ | ||
Architecture | Chayaamor-Heil, N., & Hannachi-Belkadi, N. (2017). | ○ | |||
Architecture | Fecheyr-Lippens, D., & Bhiwapurkar, P. (2017). | ○ | |||
Architecture | Gruber, P., & Imhof, B. (2017). | ○ | |||
Architecture | Speck, O., Speck, D., Horn, R., Gantner, J., & Sedlbauer, K. P. (2017) | ○ | |||
Architecture | Yuan, Y., Yu, X., Yang, X., Xiao, Y., Xiang, B., & Wang, Y. (2017). | ○ | ○ | ||
Architecture | Gao, R., Liu, K., Li, A., Fang, Z., Yang, Z., & Cong, B. (2018). | ○ | |||
Architecture | Webb, M., Aye, L., & Green, R. (2018). | ○ | |||
Architecture | Xing, Y., Jones, P., Bosch, M., Donnison, I., Spear, M., & Ormondroyd, G. (2018) | ○ | ○ | ||
Architecture | Cuce, E., Nachan, Z., Cuce, P. M., Sher, F., & Neighbour, G. B. (2019). | ○ | |||
Architecture | Khelil, S., & Zemmouri, N. (2019). | ○ | |||
Architecture | Sheikh, W. T., & Asghar, Q. (2019). | ○ | |||
Architecture | Terrier, P., Glaus, M., & Raufflet, E. (2019). | ○ | |||
Urban | Todd, N. J., & Todd, J. (1994) | ○ | |||
Urban | McLennan, J. F. (2004) | ○ | |||
Urban | Pedersen Zari, M. and Storey J. B. (2007) | ○ | |||
Urban | Pedersen Zari, M. (2010) | ○ | |||
Urban | Tero, A. et al. (2010) | ○ | |||
Urban | Kenny, J., Desha, C., Kumar, A., & Hargroves, C. (2012) | ○ | ○ | ||
Urban | Gruber, P., & Benti, D. (2013) | ○ | ○ | ||
Urban | Goel, S., Bush, S. F., & Ravindranathan, K. (2014, November) | ○ | |||
Urban | Hidalgo, A.K. (2014) | ○ | |||
Urban | Buck, N. T. (2015). | ○ | ○ | ||
Urban | Pacheco-Torgal, F. (2015) | ○ | ○ | ○ | ○ |
Urban | Pedersen Zari, M. (2015) | ○ | |||
Urban | Fink, H. S. (2016) | ○ | |||
Urban | Pedersen Zari, M. (2016) | ○ | |||
Urban | Pedersen Zari, M. (2017). | ○ | |||
Urban | Pedersen Zari, M. (2018). | ○ | |||
Urban | Ferwati, M. S., Al Suwaidi, M., Shafaghat, A., & Keyvanfar, A. (2019). | ○ | ○ | ○ |
References
- ISO 18458. Biomimetics—Terminology, Concepts and Methodology; International Organization for Standardization: Geneva, Switzerland, 2015. [Google Scholar]
- Benyus, J. Biomimetics: Innovation Inspired by Nature; William Morrow & Company, Inc.: New York, NY, USA, 1997. [Google Scholar]
- Bar-Cohen, Y. Biomimetics—Using nature to inspire human innovation. Bioinspir. Biomim. 2006, 1, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, M. The new trends in next generation biomimetics material technology: Learning from biodiversity. Sci. Technol. Trends Q. Rev. 2010, 3, 53–75. [Google Scholar]
- Shimomura, M. New trend of biomimetics: Innovative material technology towards sustainability. Eng. Mater. 2015, 63, 18–22. [Google Scholar]
- McMahon, M.; Hadfield, M. The butterfly effect: Creative sustainable design solutions through systems thinking. In FAIM: Intelligent Manufacturing Now; University of Limerick: Limerick, Ireland, 2007; pp. 247–254. [Google Scholar]
- Blizzard, J.L.; Klotz, L.E. A framework for sustainable whole systems design. Des. Stud. 2012, 33, 456–479. [Google Scholar] [CrossRef]
- Gebeshuber, I.C.; Gruber, P.; Drack, M. A gaze into the crystal ball: Biomimetics in the year 2059. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2009, 223, 2899–2918. [Google Scholar] [CrossRef]
- Gruber, P. Biomimetics in architecture [Architekturbionik]. In Biomimetics—Materials, Structures and Processes; Springer: Berlin/Heidelberg, Germany, 2011; pp. 127–148. [Google Scholar]
- Tamayo, U.; Vargas, G. Biomimetic economy: Human ecological-economic systems emulating natural ecological systems. Soc. Responsib. J. 2019, 15, 772–785. [Google Scholar] [CrossRef]
- Speck, O.; Speck, D.; Horn, R.; Gantner, J.; Sedlbauer, K.P. Biomimetic bio-inspired biomorph sustainable? An attempt to classify and clarify biology-derived technical developments. Bioinspir. Biomim. 2017, 12, 011004. [Google Scholar] [CrossRef]
- Pedersen Zari, M. Regenerative Urban Design and Ecosystem Biomimicry, 1st ed.; Routledge: Abingdon-on-Thames, UK, 2018; ISBN 9781138079489. [Google Scholar]
- Montana-Hoyos, C.; Fiorentino, C. Bio-Utilization, Bio-Inspiration, and Bio-Affiliation in Design for Sustainability: Biotechnology, Biomimetics, and Biophilic Design. Int. J. Des. Objects 2016, 10, 1–18. [Google Scholar] [CrossRef]
- Wanieck, K.; Fayemi, P.E.; Maranzana, N.; Zollfrank, C.; Jacobs, S. Biomimetics and its tools. Bioinspired Biomim. Nanobiomater. 2017, 6, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Torgal, F. Introduction to biotechnologies and biomimetics for civil engineering. In Biotechnologies and Biomimetics for Civil Engineering; Springer: Berlin, Germany, 2015; pp. 1–19. [Google Scholar]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.G.; Bai, X.M.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- UN-HABITAT. Tracking Progress Towards Inclusive, Safe, Resilient and Sustainable Cities and Human Settlements: SDG 11 Synthesis Report—High Level Political Forum 2018; UN: New York, NY, USA, 2018. [Google Scholar]
- Aldersey-Williams, H. Towards biomimetic architecture. Nat. Mater. 2004, 3, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Dollens, D. The cathedral is alive: Animating biomimetic architecture. Animation 2006, 1, 105–117. [Google Scholar] [CrossRef]
- Raoa, R. Biomimetics in Architecture. Int. J. Adv. Res. Civ. Struct. Environ. Infrastruct. Eng. Dev. 2014, 1, 101–107. [Google Scholar]
- Chayaamor-Heil, N.; Hannachi-Belkadi, N. Towards a platform of investigative tools for biomimicry as a new approach for energy-efficient building design. Buildings 2017, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Holguera, M.; Clark, O.G.; Sprecher, A.; Gaskin, S. Ecosystem biomimetics for resource use optimization in buildings. Build. Res. Inf. 2016, 44, 263–278. [Google Scholar] [CrossRef]
- Van Renterghem, T.; Hornikx, M.; Forssen, J.; Botteldooren, D. The potential of building envelope greening to achieve quietness. Build. Environ. 2013, 61, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Jones, P.; Bosch, M.; Donnison, I.; Spear, M.; Ormondroyd, G. Exploring design principles of biological and living building envelopes: What can we learn from plant cell walls? Intell. Build. Int. 2018, 10, 78–102. [Google Scholar] [CrossRef] [Green Version]
- Ramzy, N. Sustainable spaces with psychological values: Historical architecture as reference book for biomimetic models with biophilic qualities. Int. J. Archit. Res. ArchNet-IJAR 2015, 9, 248–267. [Google Scholar] [CrossRef]
- Vincent, J.F.; Bogatyreva, O.A.; Bogatyrev, N.R.; Bowyer, A.; Pahl, A.K. Biomimetics: Its practice and theory. J. Royal Soc. Interface 2006, 3, 471–482. [Google Scholar] [CrossRef] [Green Version]
- Royall, E. Defining biomimetics: Architectural applications in systems and products. In UTSoA-Seminar in Sustainable Architecture; The University of Texas at Austin: Austin, TX, USA, 2010; pp. 3–13. [Google Scholar]
- Zare, M.; Falahat, M. Characteristics of reptiles as a model for bionic architecture. Adv. Civ. Environ. Eng. 2013, 1, 124–135. [Google Scholar]
- Fujii, S.; Sawada, S.; Nakayama, S.; Kappl, M.; Ueno, K.; Shitajima, K.; Butt, H.-J.; Nakamura, Y. Pressure-sensitive adhesive powder. Mater. Horiz. 2016, 3, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Edmondson, A.C. A Fuller Explanation: The Synergetic Geometry of R. Buckminster Fuller; Birkhaeuser: Boston, MA, USA, 1986; ISBN 978-0817633387. [Google Scholar]
- Al-Obaidi, K.M.; Ismail, M.A.; Hussein, H.; Rahman, A.M.A. Biomimetic building skins: An adaptive approach. Renew. Sustain. Energy Rev. 2017, 79, 1472–1491. [Google Scholar] [CrossRef]
- Buck, N.T. The art of imitating life: The potential contribution of biomimicry in shaping the future of our cities. Environ. Plan. B Urban Anal. City Sci. 2017, 44, 120–140. [Google Scholar] [CrossRef]
- Building Research Establishment (BRE). Naturally Innovative: A Briefing Paper for the Construction Industry. 2007. Available online: https://www.bre.co.uk/filelibrary/pdf/cap/Biomimetics.pdf (accessed on 1 August 2019).
- Sara, K.; Noureddine, Z. A bio problem-solver for supporting the design, towards the optimization of the energy efficiency. In Proceedings of the 2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), Istanbul, Turkey, 27–29 May 2015; IEEE: New York, NY, USA, 2015; pp. 1–6. [Google Scholar]
- Elmeligy, D.A. Biomimetics for ecologically sustainable design in architecture: A proposed methodological study. Eco-Archit. VI Harmon. Archit. Nat. 2016, 161, 45–57. [Google Scholar]
- Yuan, Y.; Yu, X.; Yang, X.; Xiao, Y.; Xiang, B.; Wang, Y. Bionic building energy efficiency and bionic green architecture: A review. Renew. Sustain. Energy Rev. 2017, 74, 771–787. [Google Scholar] [CrossRef]
- Khelil, S.; Zemmouri, N. Biomimetic: A new strategy for a passive sustainable ventilation system design in hot and arid regions. Int. J. Environ. Sci. Technol. 2019, 16, 2821–2830. [Google Scholar] [CrossRef]
- Gao, R.; Liu, K.; Li, A.; Fang, Z.; Yang, Z.; Cong, B. Biomimetic duct tee for reducing the local resistance of a ventilation and air-conditioning system. Build. Environ. 2018, 129, 130–141. [Google Scholar] [CrossRef]
- Zhou, H.; Guo, J.; Li, P.; Fan, T.; Zhang, D.; Ye, J. Leaf-architectured 3D hierarchical artificial photosynthetic system of perovskite titanates towards CO2 photoreduction into hydrocarbon fuels. Sci. Rep. 2013, 3, 1667. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.A.; Ross, B.E.; Klotz, L.E. Lessons from a coral reef: Biomimetics for structural engineers. J. Struct. Eng. 2014, 141, 02514002. [Google Scholar] [CrossRef]
- Mirzaali, M.J.; Mussi, V.; Vena, P.; Libonati, F.; Vergani, L.; Strano, M. Mimicking the loading adaptation of bone microstructure with aluminum foams. Mater. Des. 2017, 126, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Gruber, P.; Imhof, B. Patterns of growth—Biomimetics and architectural design. Buildings 2017, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Taylor, J.E.; Pisello, A.L. Toward mitigating urban heat island effects: Investigating the thermal-energy impact of bio-inspired retro-reflective building envelopes in dense urban settings. Energy Build. 2015, 102, 380–389. [Google Scholar] [CrossRef] [Green Version]
- Madre, F.; Clergeau, P.; Machon, N.; Vergnes, A. Building biodiversity: Vegetated façades as habitats for spider and beetle assemblages. Glob. Ecol. Conserv. 2015, 3, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, W.T.; Asghar, Q. Adaptive biomimetic facades: Enhancing energy efficiency of highly glazed buildings. Front. Archit. Res. 2019, 8, 319–331. [Google Scholar] [CrossRef]
- Webb, M.; Aye, L.; Green, R. Investigating potential comfort benefits of biologically-inspired building skins. In Proceedings of the 13th Conference of International Building Performance Simulation Association, Chambéry, France, 26–28 August 2013; pp. 2634–2641. [Google Scholar]
- Webb, M.; Aye, L.; Green, R. Simulation of a biomimetic façade using TRNSYS. Appl. Energy 2018, 213, 670–694. [Google Scholar] [CrossRef]
- Taghizade, K.; Taraz, M. Designing a mobile facade using bionic approach. Am. J. Mater. Eng. Technol. 2013, 1, 22–29. [Google Scholar]
- Cuce, E.; Nachan, Z.; Cuce, P.M.; Sher, F.; Neighbour, G.B. Strategies for ideal indoor environments towards low/zero carbon buildings through a biomimetic approach. Int. J. Ambient. Energy 2019, 40, 86–95. [Google Scholar] [CrossRef]
- Badarnah, L.; Knaack, U. Organizational features in leaves for application in shading systems for building envelopes. In Design & Nature IV: Comparing Design in Nature with Science and Engineering; Brebbia, C.A., Ed.; WIT Press: Southampton, UK, 2008; pp. 87–96. [Google Scholar]
- Fernández, M.L.; Rubio, R.; González, S.M. Architectural envelopes that interact with their environment. In Proceedings of the 2013 International Conference on New Concepts in Smart Cities: Fostering Public and Private Alliances (SmartMILE), Gijon, Spain, 11–13 December 2013; IEEE: New York, NY, USA, 2003; pp. 1–6. [Google Scholar]
- Menges, A.; Reichert, S. Performative wood: Physically programming the responsive architecture of the Hygroscope and Hygroskin projects. Archit. Des. 2015, 85, 66–73. [Google Scholar]
- Tsujino, M. The technology for enhancement of visual aesthetics of concrete by using biomimetics: Development of “art frame”, Shimizu Corporation. Chem. Econ. 2016, 63, 27–30. [Google Scholar]
- López, M.; Rubio, R.; Martín, S.; Croxford, B. How plants inspire façades. From plants to architecture: Biomimetic principles for the development of adaptive architectural envelopes. Renew. Sustain. Energy Rev. 2017, 67, 692–703. [Google Scholar] [CrossRef]
- Bechthold, M.; Weaver, J.C. Materials science and architecture. Nat. Rev. Mater. 2017, 2, 17082. [Google Scholar] [CrossRef]
- Knippers, J.; Speck, T. Design and construction principles in nature and architecture. Bioinspir. Biomim. 2012, 7, 015002. [Google Scholar] [CrossRef] [PubMed]
- Fecheyr-Lippens, D.; Bhiwapurkar, P. Applying biomimicry to design building envelopes that lower energy consumption in a hot-humid climate. Archit. Sci. Rev. 2017, 60, 360–370. [Google Scholar] [CrossRef]
- Turner, J.S.; Soar, R.C. Beyond biomimetics: What termites can tell us about realizing the living building. In Proceedings of the First International Conference on Industrialized, Integrated, Intelligent Construction at Loughborough University, Loughborough, UK, 14–16 May 2008; pp. 234–248. [Google Scholar]
- French, J.R.J.; Ahmed, B.M. Biomimetics of Termite Social Cohesion and Design to Inspire and Create Sustainable Systems. In On Biomimetics; Pramatarova, L., Ed.; InTech: London, UK, 2011; ISBN 978-953-307-271-5. [Google Scholar]
- Achal, V.; Mukherjee, A.; Zhang, Q. Unearthing ecological wisdom from natural habitats and its ramifications on development of biocement and sustainable cities. Landsc. Urban Plan. 2016, 155, 61–68. [Google Scholar] [CrossRef]
- Alexander, C. The Nature of Order: An Essay on the Art of Building and the Nature of the Universe; Center for Environmental Structure: Berkeley, CA, USA, 2002; Volume 1. [Google Scholar]
- Kellert, S.R.; Heerwagen, J.; Mador, M. Biophilic Design: The Theory, Science and Practice of Bringing Buildings to Life; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Browning, W.D.; Ryan, C.O.; Clancy, J.O. 14 Patterns of Biophilic Design; Terrapin Bright Green, LLC: New York, NY, USA, 2014. [Google Scholar]
- Secretariat of the Convention on Biological Diversity (SCBD) (2012) Cities and Biodiversity Outlook (CBO). Available online: https://www.cbd.int/doc/health/cbo-action-policy-en.pdf (accessed on 22 June 2017).
- Güneralp, B.; Seto, K.C.; Ramachandran, M. Evidence of urban land teleconnections and impacts on hinterlands. Curr. Opin. Environ. Sustain. 2013, 5, 445–451. [Google Scholar] [CrossRef]
- McDonald, R.I.; Marcotullio, P.J.; Güneralp, B. Urbanization and global trends in biodiversity and ecosystem services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities; Springer: Dordrecht, The Netherlands, 2013; pp. 31–52. [Google Scholar]
- Pedersen Zari, M. Biomimetic design for climate change adaptation and mitigation. Archit. Sci. Rev. 2010, 53, 172–183. [Google Scholar] [CrossRef]
- Steiner, F. Frontiers in urban ecological design and planning research. Landsc. Urban. Plan. 2014, 125, 304–311. [Google Scholar] [CrossRef]
- Pedersen Zari, M. Ecosystem services analysis: Mimicking ecosystem services for regenerative urban design. Int. J. Sustain. Built Environ. 2015, 4, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Pedersen Zari, M. Mimicking ecosystems for bio-inspired intelligent urban built environments. Intell. Build. Int. 2016, 8, 57–77. [Google Scholar] [CrossRef]
- Gruber, P.; Benti, D. Biomimetic strategies for innovation and sustainable development. In Proceedings of the Sustainable Building Conference SB13, Egypt, Cairo, 6–7 November 2013; pp. 578–590. [Google Scholar]
- Pedersen Zari, M. Biomimetic Urban Design: Ecosystem Service Provision of Water and Energy. Buildings 2017, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Nakagaki, T.; Yamada, H.; Hara, M. Smart network solutions in an amoeboid organism. Biophys. Chem. 2004, 107, 1–5. [Google Scholar] [CrossRef]
- Nakagaki, T.; Iima, M.; Ueda, T.; Nishiura, Y.; Saigusa, T.; Tero, A.; Kobayashi, R.; Showalter, K. Minimum-risk path finding by an adaptive amoebal network. Phys. Rev. Lett. 2007, 99, 068104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tero, A.; Takagi, S.; Saigusa, T.; Ito, K.; Bebber, D.P.; Fricker, M.D.; Yumiki, K.; Kobayashi, R.; Nakagaki, T. Rules for biologically inspired adaptive network design. Science 2010, 327, 439–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenny, J.; Desha, C.; Kumar, A.; Hargroves, C. Using biomimetics to inform urban infrastructure design that addresses 21st century needs. In Proceedings of the 1st International Conference on Urban Sustainability and Resilience, London, UK, 5–6 November 2012; UCL: London, UK, 2012. [Google Scholar]
- Goel, S.; Bush, S.F.; Ravindranathan, K. Self-organization of traffic lights for minimizing vehicle delay. In Proceedings of the 2014 International Conference on Connected Vehicles and Expo (ICCVE), Vienna, Austria, 3–7 November 2014; IEEE: New York, NY, USA, 2014; pp. 931–936. [Google Scholar]
- Pereira, P.M.M.; Monteiro, G.A.; Prazeres, D.M.F. General Aspects of Biomimetic Materials. In Biotechnologies and Biomimetics for Civil Engineering; Springer: Berlin, Germany, 2015; pp. 57–79. [Google Scholar]
- Peters, T. Nature as Measure: The Biomimetics Guild. Archit. Des. 2011, 81, 44–47. [Google Scholar]
- Roberts, B.; Lind, R.; Chatterjee, S. Flight dynamics of a pterosaur-inspired aircraft utilizing a variable-placement vertical tail. Bioinspir. Biomim. 2011, 6, 026010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, S.; Lind, R.; Roberts, B. The Novel Characteristics of Pterosaurs: Biological Inspiration for Robotic Vehicles. Int. J. Des. Nat. Ecodyn. 2013, 8, 113–143. [Google Scholar] [CrossRef]
- Hidalgo, A.K. Biophilic design, restorative environments and well-being. In Proceedings of the 9th International Conference on Design and Emotion 2014: The Colors of Care, Bogota, Colombia, 6–10 October 2014; pp. 535–544. [Google Scholar]
- Todd, N.J.; Todd, J. From Eco-Cities to Living Machines: Principles of Ecological Design; North Atlantic Books: Berkeley, CA, USA, 1994. [Google Scholar]
- McLennan, J.F. The Philosophy of Sustainable Design: The Future of Architecture; Ecotone Publishing: Kansas City, MO, USA, 2004. [Google Scholar]
- Lehmann, S. Green urbanism: Formulating a series of holistic principles. Surv. Perspect. Integr. Environ. Soc. 2010, 3, 1–10. [Google Scholar]
- Ferwati, M.S.; Al Suwaidi, M.; Shafaghat, A.; Keyvanfar, A. Employing biomimicry in urban metamorphosis seeking for sustainability: Case studies. Ace Archit. City Environ. 2019, 14, 133–162. [Google Scholar] [CrossRef]
- Fink, H.S. Human-Nature for Climate Action: Nature-Based Solutions for Urban Sustainability. Sustainability 2016, 8, 254. [Google Scholar] [CrossRef] [Green Version]
- Vincent, J.F.; Mann, D.L. Systematic technology transfer from biology to engineering. In Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences; The Royal Society: London, UK, 2002; Volume 360, pp. 159–173. [Google Scholar]
- LaVan, D.A.; Cha, J.N. Approaches for biological and biomimetic energy conversion. Proc. Natl. Acad. Sci. USA 2006, 103, 5251–5255. [Google Scholar] [CrossRef] [Green Version]
- Bruck, H.A.; Gershon, A.L.; Golden, I.; Gupta, S.K.; Gyger, L.S., Jr.; Magrab, E.B.; Spranklin, B.W. Training mechanical engineering students to utilize biological inspiration during product development. Bioinspir. Biomim. 2007, 2, S198. [Google Scholar] [CrossRef] [PubMed]
- Gebeshuber, I.C.; Drack, M. An attempt to reveal synergies between biology and mechanical engineering. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2008, 222, 1281–1287. [Google Scholar] [CrossRef]
- Miray, B.A.; Timur-Öğüt, Ş. Exploring Biomimetics in the Students’ Design Process. In Proceedings of the 3rd International Conference for Design Education Researchers, Chicago, IL, USA, 28–30 June 2015; Aalto University: Helsinki, Finland, 2015; pp. 970–987. [Google Scholar]
- Eilouti, B.H. Environmental Knowledge in Engineering Design Processing. In Proceedings of the 5th International Conference on Knowledge Generation, Communication and Management, Orlando, FL, USA, 27–30 March 2011; pp. 370–375. [Google Scholar]
- Coelho, D.A.; Versos, C.A. A comparative analysis of six bionic design methods. Int. J. Des. Eng. 2011, 4, 114–131. [Google Scholar] [CrossRef]
- Amer, N. Biomimetic Approach in Architectural Education: Case study of ‘Biomimicry in Architecture’ Course. Ain Shams Eng. J. 2019, 10, 499–506. [Google Scholar] [CrossRef]
- The Biomimetics Institute. Biomimetics Taxonomy. Available online: http://www.asknature.org/aof/browse (accessed on 17 November 2016).
- Nature Tech. Research. Consortium (2016) Showroom of Marvelous Nature. Available online: http://nature-sr.com/index.php?Page=1 (accessed on 17 November 2016).
- Haseyama, M. Realization of Associative Image Search: Development of Image Retrieval Platform for Enhancing Serendipity. In Proceedings of the 2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL), Sapporo, Japan, 18–20 May 2016; pp. 56–59. [Google Scholar]
- Gamage, A.; Hyde, R. Can Biomimetics, as an approach, enhance Ecologically Sustainable Design (ESD)? In Proceedings of the 45th Annual Conference of the Australian and New Zealand Architectural Science Association, Darlington, Australia, 16–19 November 2011; pp. 1–9. [Google Scholar]
- Vincent, J.F.V. The Materials Revolution. J. Bionic Eng. 2006, 3, 217–234. [Google Scholar] [CrossRef]
- Vincent, J.F.V. Biomimetic patterns in architectural design. Archit. Des. 2009, 79, 74–81. [Google Scholar] [CrossRef]
- Pedersen Zari, M.; Storey, J.B. An Ecosystem Based Biomimetic Theory for a Regenerative Built Environment Lisbon Sustainable Building Conference 07; IOS Press: Amsterdam, The Netherlands, 2007; pp. 1–8. [Google Scholar]
- Gamage, A.U.; Wickramanayake, R.S.D. Parallels between nature and design teaching through nature studies. Built Environ. Sri Lanka 2005, 5, 1–12. [Google Scholar]
- Menges, A. Biomimetic design processes in architecture: Morphogenetic and evolutionary computational design. Bioinspir. Biomim. 2012, 7, 015003. [Google Scholar] [CrossRef]
- Vuja, A.; Lečić, M.; Čolić-Damjanović, V.M. Conducting architectural experiments: Some new approaches in architectural design. In Proceedings of the 2016 International Conference Multidisciplinary Engineering Design Optimization (MEDO), Belgrade, Serbia, 14–16 September 2016; IEEE: New York, NY, USA, 2016; pp. 1–4. [Google Scholar]
- Garcia-Holguera, M.; Clark, G.; Sprecher, A.; Gaskin, S. Approaching biomimetics: Optimization of resource use in buildings using a system dynamics modeling tool. In Proceedings of the Symposium on Simulation for Architecture & Urban Design, Alexandria, VA, USA, 12–15 April 2015; Society for Computer Simulation International: San Diego, CA, USA, 2015; pp. 13–21. [Google Scholar]
- Terrier, P.; Glaus, M.; Raufflet, E. BiomiMETRIC Assistance Tool: A Quantitative Performance Tool for Biomimetic Design. Biomimetics 2019, 4, 49. [Google Scholar] [CrossRef] [Green Version]
- Uchiyama, Y.; Hayashi, K.; Kohsaka, R. Typology of cities based on city biodiversity index: Exploring biodiversity potentials and possible collaborations among Japanese cities. Sustainability 2015, 7, 14371–14384. [Google Scholar] [CrossRef] [Green Version]
- Memmott, P.; Hyde, R.; O’Rourke, T. Biomimetic theory and building technology: Use of Aboriginal and scientific knowledge of spinifex grass. Archit. Sci. Rev. 2009, 52, 117–125. [Google Scholar] [CrossRef]
- Ishida, H.; Furukawa, R. Nature Technology: Creating a Fresh Approach to Technology and Lifestyle; Springer Japan Science & Business Media: Tokyo, Japan, 2013. [Google Scholar]
- Kohsaka, R.; Fujihira, Y.; Uchiyama, Y.; Kajima, S.; Nomura, S.; Ebinger, F. Public perception and expectations of biomimetics technology: Empirical survey of museum visitors in Japan. Curator Museum J. 2017, 60, 427–444. [Google Scholar] [CrossRef]
- Kohsaka, R.; Fujihira, Y.; Uchiyama, Y. Biomimetics for business? Industry perceptions and patent application. J. Sci. Technol. Policy Manag. 2019, 10, 597–616. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uchiyama, Y.; Blanco, E.; Kohsaka, R. Application of Biomimetics to Architectural and Urban Design: A Review across Scales. Sustainability 2020, 12, 9813. https://doi.org/10.3390/su12239813
Uchiyama Y, Blanco E, Kohsaka R. Application of Biomimetics to Architectural and Urban Design: A Review across Scales. Sustainability. 2020; 12(23):9813. https://doi.org/10.3390/su12239813
Chicago/Turabian StyleUchiyama, Yuta, Eduardo Blanco, and Ryo Kohsaka. 2020. "Application of Biomimetics to Architectural and Urban Design: A Review across Scales" Sustainability 12, no. 23: 9813. https://doi.org/10.3390/su12239813
APA StyleUchiyama, Y., Blanco, E., & Kohsaka, R. (2020). Application of Biomimetics to Architectural and Urban Design: A Review across Scales. Sustainability, 12(23), 9813. https://doi.org/10.3390/su12239813