Sustainable Wastewater Treatment and Utilization: A Conceptual Innovative Recycling Solution System for Water Resource Recovery
Abstract
:1. Introduction
2. Background
3. Materials and Methods
3.1. Study Area
3.2. Study Framework
3.3. Phase-I: Power Generation Mechanism Using Belgian Vortex Turbine
- hydroelectric energy
- m = mass of water in the storage
- H = height of water level from respecting turbine
- g = gravity acceleration with value of 9.81 m/s2
- Here,
- a, represents area of the orifice
- , represents the discharge coefficient which is equal to the product of contraction coefficient and velocity coefficient.
- h, represents the height of the water level
- Let us assume the value of
3.4. Phase-II: Water Quality Assessment and Treatment Process
4. Results and Analysis
4.1. Power Generation Mechanism
4.2. Water Quality Mechanism
5. Discussion
6. Conclusions
7. Limitations of the Study
Author Contributions
Funding
Conflicts of Interest
References
- Pearce, F. When the Rivers Run Dry, Fully Revised and Updated Edition: Water–The Defining Crisis Of The Twenty-First Century; Beacon Press: Boston, MA, USA, 2018. [Google Scholar]
- Norling, P.; Wood-Black, F.; Masciangioli, T.M.; National Research Council (US) Chemical Sciences Roundtable. Water and Sustainable Development: Opportunities for the Chemical Sciences: A Workshop Report to the Chemical Sciences Roundtable; National Academies Press: Washington, DC, USA, 2004. [Google Scholar]
- Dongare, P.D.; Alabastri, A.; Neumann, O.; Nordlander, P.; Halas, N.J. Solar thermal desalination as a nonlinear optical process. Proc. Natl. Acad. Sci. USA 2019, 116, 13182–13187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, N.L.; Nunes, S.P. Materials and membrane technologies for water and energy sustainability. Sustain. Mater. Technol. 2016, 7, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Nafey, A.; Mohamad, M.; Sharaf, M. Enhancement of solar water distillation process by surfactant additives. Desalination 2008, 220, 514–523. [Google Scholar] [CrossRef]
- Omara, Z.; Eltawil, M.A. Hybrid of solar dish concentrator, new boiler and simple solar collector for brackish water desalination. Desalination 2013, 326, 62–68. [Google Scholar] [CrossRef]
- Li, Q.; Beier, L.-J.; Tan, J.; Brown, C.; Lian, B.; Zhong, W.; Wang, Y.; Ji, C.; Dai, P.; Li, T. An integrated, solar-driven membrane distillation system for water purification and energy generation. Appl. Energy 2019, 237, 534–548. [Google Scholar] [CrossRef]
- Bouaddi, S.; Fernández-García, A.; Sansom, C.; Sarasua, J.A.; Wolfertstetter, F.; Bouzekri, H.; Sutter, F.; Azpitarte, I. A review of conventional and innovative-sustainable methods for cleaning reflectors in concentrating solar power plants. Sustainability 2018, 10, 3937. [Google Scholar] [CrossRef] [Green Version]
- Gakkhar, N.; Soni, M.K.; Jakhar, S. Solar Energy Technologies and Water Potential for Distillation: A Pre-Feasibility Investigation for Rajasthan, India. Prog. Sol. Energy Technol. Appl. 2019, 39–82. [Google Scholar] [CrossRef]
- Pourmand, E.; Mahjouri, N.; Hosseini, M.; Nik-Hemmat, F. A Multi-Criteria Group Decision Making Methodology Using Interval Type-2 Fuzzy Sets: Application to Water Resources Management. Water Resour. Manag. 2020, 34, 4067–4092. [Google Scholar] [CrossRef]
- Ocampo-Duque, W.; Ferre-Huguet, N.; Domingo, J.L.; Schuhmacher, M. Assessing water quality in rivers with fuzzy inference systems: A case study. Environ. Int. 2006, 32, 733–742. [Google Scholar] [CrossRef]
- Torres-Sanchez, R.; Navarro-Hellin, H.; Guillamon-Frutos, A.; San-Segundo, R.; Ruiz-Abellón, M.C.; Domingo-Miguel, R. A Decision Support System for Irrigation Management: Analysis and Implementation of Different Learning Techniques. Water 2020, 12, 548. [Google Scholar] [CrossRef] [Green Version]
- Jajac, N.; Marović, I.; Rogulj, K.; Kilić, J. Decision Support Concept to Selection of Wastewater Treatment Plant Location—The Case Study of Town of Kutina, Croatia. Water 2019, 11, 717. [Google Scholar] [CrossRef] [Green Version]
- Van der Hoek, W.; Boelee, E.; Konradsen, F. Irrigation, domestic water supply and human health. In Water And Development–Vol. II; Encyclopedia of Life Support Systems (EOLSS): Paris, France, 2002. [Google Scholar]
- Abdelhafez, A.A.; Metwalley, S.M.; Abbas, H. Irrigation: Water Resources, Types and Common Problems in Egypt. In Technological and Modern Irrigation Environment in Egypt; Springer: Cham, Switzerland, 2020; pp. 15–34. [Google Scholar]
- Qureshi, A.S. Water management in the Indus basin in Pakistan: Challenges and opportunities. Mt. Res. Dev. 2011, 31, 252–260. [Google Scholar] [CrossRef]
- FAO. Towards a Water and Food Secure Future. Critical Perspectives for Policy-Makers; Food Agriculture Organization of the United Nations World Water Council; White Paper Rome: Rome, Italy, 2015. [Google Scholar]
- Falkenmark, M. Growing water scarcity in agriculture: Future challenge to global water security. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shock, C.C.; Shock, B.; Welch, T. Strategies for Efficient Irrigation Water Use; Malheur Experiment Station, Oregon State University; Wild Iris Communications; Teresa Welch: Corvallis, OR, USA, 2013. [Google Scholar]
- Hofste, R.W.; Reig, P.; Schleifer, L. 17 Countries, Home to One-Quarter of the World’s Population, Face Extremely High Water Stress; World Resources Insitute: Washington, DC, USA, 2019; p. 1. [Google Scholar]
- Batie, S.S.; Cox, C.A. Soil and water quality: An agenda for agriculture. J. Soil Water Conserv. 1994, 49, 456A. [Google Scholar]
- Ravindra, K.; Mor, S.; Pinnaka, V.L. Water uses, treatment, and sanitation practices in rural areas of Chandigarh and its relation with waterborne diseases. Environ. Sci. Pollut. Res. 2019, 26, 19512–19522. [Google Scholar] [CrossRef]
- Akimoto, H.; Tanaka, K.; Uzawa, K. A conceptual study of floating axis water current turbine for low-cost energy capturing from river, tide and ocean currents. Renew. Energy 2013, 57, 283–288. [Google Scholar] [CrossRef]
- TURBULENT. Hydroelectric Turbines for Green, Decentralized, Off-grid Living: The Vortex Turbine. Available online: https://www.turbulent.be/downloads (accessed on 8 August 2020).
- Williams, A. Pumps as turbines for low cost micro hydro power. Renew. Energy 1996, 9, 1227–1234. [Google Scholar] [CrossRef]
- Liu, D.; Liu, H.; Wang, X.; Kremere, E. World Small Hydropower Development Report 2019: Case Studies. United Nations Industrial Development Organization; International Center on Small Hydro Power: Hangzhou, China, 2019. [Google Scholar]
- Singh, G. Gravitational Water Vortex 15 kW Mini Hydro Turbine. Available online: https://5.imimg.com/data5/SM/YL/CC/SELLER-7846758/micro-hydro-turbine.pdf (accessed on 8 August 2020).
- Ali, F.; Arbab, M. Harvesting Electrical Energy from Water Supply Tank. Sindh Univ. Res. J. Surj (Sci. Ser.) 2014, 46, 169–174. [Google Scholar]
- Bhatti, E.-u.-H.; Khan, M.M.; Shah, S.A.R.; Raza, S.S.; Shoaib, M.; Adnan, M. Dynamics of Water Quality: Impact Assessment Process for Water Resource Management. Processes 2019, 7, 102. [Google Scholar] [CrossRef] [Green Version]
- FAO-UN. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations (FAO-UN): Rome, Italy, 1985; Volume 29. [Google Scholar]
- WHO. Our Planet, Our Health: Report of the WHO Commission on Health and Environment; World Health Organization: Geneva, Switzerland, 1992. [Google Scholar]
- Van Der Hoek, W.; Konradsen, F.; Jehangir, W.A. Domestic use of irrigation water: Health hazard or opportunity? Int. J. Water Resour. Dev. 1999, 15, 107–119. [Google Scholar] [CrossRef]
- Khan, T.A. Water resources situation in Bangladesh. In Proceedings of the Regional Symposium on Water Resources Policy in Agro-Economic Development, Dhaka, Bangladesh, 4–8 August 1985; pp. 139–164. [Google Scholar]
- Yoder, R. Non-Agricultural Uses of Irrigation Systems: Past Experience and Implications for Planning and Design. Paper Prepared for Agricultural Development Council; Cornell University: New York, NY, USA, 1981. [Google Scholar]
- Konradsen, F.; Van der Hoek, W.; Perry, C.; Renault, D. Water: Where from, and for whom? World Health Forum. 1997, 18, 41–43. [Google Scholar] [PubMed]
- Mohebbi, M.R.; Saeedi, R.; Montazeri, A.; Vaghefi, K.A.; Labbafi, S.; Oktaie, S.; Abtahi, M.; Mohagheghian, A. Assessment of water quality in groundwater resources of Iran using a modified drinking water quality index (DWQI). Ecol. Indic. 2013, 30, 28–34. [Google Scholar] [CrossRef]
- Biswas, A.K. Water development and the environment. Int. J. Water Resour. Dev. 1997, 13, 141–168. [Google Scholar] [CrossRef] [Green Version]
- Bern, C.; Martines, J.; De Zoysa, I.; Glass, R. The magnitude of the global problem of diarrhoeal disease: A ten-year update. Bull. World Health Organ. 1992, 70, 705. [Google Scholar] [PubMed]
- Blum, D.; Feachem, R.G. Measuring the impact of water supply and sanitation investments on diarrhoeal diseases: Problems of methodology. Int. J. Epidemiol. 1983, 12, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Kolsky, P. Water, sanitation and diarrhoea: The limits of understanding. Trans. R. Soc. Trop. Med. Hyg. 1993, 87, 43–46. [Google Scholar] [CrossRef]
- Esrey, S.A.; Potash, J.B.; Roberts, L.; Shiff, C. Effects of improved water supply and sanitation on ascariasis, diarrhoea, dracunculiasis, hookworm infection, schistosomiasis, and trachoma. Bull. World Health Organ. 1991, 69, 609. [Google Scholar]
- Henry, F.J. The epidemiologic importance of dysentery in communities. Rev. Infect. Dis. 1991, 13, S238–S244. [Google Scholar] [CrossRef]
- Esrey, S.A. Water, waste, and well-being: A multicountry study. Am. J. Epidemiol. 1996, 143, 608–623. [Google Scholar] [CrossRef] [Green Version]
- VanDerslice, J.; Briscoe, J. Environmental interventions in developing countries: Interactions and their implications. Am. J. Epidemiol. 1995, 141, 135–144. [Google Scholar] [CrossRef]
- West, S.; Munoz, B.; Lynch, M.; Kayongoya, A.; Chilangwa, Z.; Mmbaga, B.; Taylor, H.R. Impact of face-washing on trachoma in Kongwa, Tanzania. Lancet 1995, 345, 156–157. [Google Scholar] [CrossRef]
- Jimenez, B.; Garduno, H.; Dominguez, R. Water availability in Mexico considering quantity, quality, and uses. J. Water Resour. Plan. Manag. 1998, 124, 1–7. [Google Scholar] [CrossRef]
- Bartels, C.R. Reverse Osmosis Membranes Play Key Role in Wastewater Reclamation. Available online: https://www.waterworld.com/international/wastewater/article/16200627/reverse-osmosis-membranes-play-key-role-in-wastewater-reclamation#:~:text=water%2Dshort%20areas.-,In%20particular%2C%20membrane%20treatment%20has%20played%20an%20important%20role%20in,bacteria%2C%20and%20other%20dissolved%20contaminants (accessed on 5 December 2020).
- Dolar, D.; Gros, M.; Rodriguez-Mozaz, S.; Moreno, J.; Comas, J.; Rodriguez-Roda, I.; Barceló, D. Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR–RO. J. Hazard. Mater. 2012, 239, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Slesarenko, V.V. Modelling of RO installations for wastewater treatment plants. Pac. Sci. Rev. 2014, 16, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Shang, R.; Van den Broek, W.B.; Heijman, S.G.; van Agtmaal, S.; Rietveld, L.C. Wastewater reuse through RO: A case study of four RO plants producing industrial water. Desalin. Water Treat. 2011, 34, 408–415. [Google Scholar] [CrossRef]
- Ault, S. Expanding Non-Agricultural Uses of Irrigation for the Disadvantaged: Health Aspects; The Agricultural Development Council Inc.: New York, NY, USA, 1981; 86p. [Google Scholar]
Vortex Turbine Models 5 to 70 kW | Unit | Value |
---|---|---|
Min. Flow | m3/s | 0.7 |
Max. Flow | m3/s | 4 |
Min. Head | M | 1 |
Max Head | M | 4.4 |
Min. Speed | rpm | 80 |
Blade tilt angle range | deg | (−14) to 14 |
Stainless steel type | – | 304 |
Representative Models | Unit | 5 kW | 15 kW | 30 kW | 50 kW | 70 kW |
---|---|---|---|---|---|---|
Turbine hydraulic output | kW | 5.8 | 17.4 | 34.9 | 56.8 | 79.5 |
Electrical output | kW | 5 | 15 | 30 | 50 | 70 |
Maximal energy generation per year | kWh | 40,000 | 120,000 | 240,000 | 400,000 | 560,000 |
Nominal flow | m3/s | 0.7 | 1.5 | 2.2 | 3.1 | 3.8 |
Nominal head | m | 1.6 | 2 | 2.8 | 3.25 | 3.7 |
Impeller diameter | mm | 800 | 1140 | 1200 | 1300 | 1500 |
Rotor height | mm | 385 | 550 | 580 | 625 | 730 |
Vortex turbine core weight | kg | 135 | 275 | 300 | 360 | 475 |
Generator and gearbox weight | kg | 180 | 350 | 600 | 950 | 1200 |
Electrical cabinet. weight | kg | 220 | 270 | 330 | 390 | 480 |
S. No. | Parameters | Analysis/Instrument/Calculation |
---|---|---|
1 | Temperature. | Thermometer |
2 | pH | Eco pH tester |
3 | Electrical conductivity (EC) | Conductivity meter |
4 | Total dissolved solids. (TDS) | Electrical conductivity × 640 |
5 | Chloride. (Cl) | Titration |
6 | Sodium. (Na) | Flame Photometer |
7 | Calcium & Magnesium. (Ca & Mg) | Titration |
8 | Carbonate and Bicarbonate. (CO3 & HCO3) | Titration |
9 | Sodium absorption ratio. (SAR) | |
10 | Sodium Percentage. (SP) | |
11 | Residual sodium carbonate. (RSC) | (CO3 + HCO3) − (Ca + Mg) |
12 | Permeability Index. (PI) | |
13 | Magnesium ratio (MR) | |
14 | Potassium. (K) | Flame photometer |
Potential Irrigation Problem | Parameters | Degree of Restriction on Use | |||
---|---|---|---|---|---|
None | Slight to Moderate | Severe | |||
Salinity | Electrical Conductivity dS/m | <0.7 | 0.7–3.0 | >3.0 | |
Total Dissolved Solids | <450 | 450–2000 | >2000 | ||
Infiltration based on SAR and EC | SAR | Electrical Conductivity (dS/m) | |||
0−3 | >0.7 | 0.7–0.2 | <0.2 | ||
3−6 | >1.2 | 1.2–0.3 | <0.3 | ||
6−12 | >1.9 | 1.9–0.5 | <0.5 | ||
Toxicity | Sodium (Na) meq/L | <3 | 3–9 | >9 | |
Chloride (Cl) meq/L | <4 | 4–10 | >10 | ||
Miscellaneous Effects | Bicarbonate (HCO3) meq/L | <1.5 | 1.5–8.5 | >8.5 | |
Potassium (K) mg/L | 0–2 | ||||
pH | 6.5–8.4 |
Power Generation Through 50% Efficient Whirlpool Turbine | Power Generation Through 60% Efficient Whirlpool Turbine | Power Generation Through 70% Efficient Whirlpool Turbine | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Time (t) min | Head (h) m | Discharge (Q) m3/s | Power (P) kW | Time (t) min | Head (h) m | Discharge (Q) m3/s | Power (P) kW | Time (t) min | Head (h) m | Discharge (Q) m3/s | Power (P) kW |
1 | 5 | 10.00 | 981.00 | 1 | 5 | 10.00 | 1177.20 | 1 | 5 | 10.00 | 1373.40 |
2 | 4.9 | 9.80 | 961.38 | 2 | 4.9 | 9.80 | 1153.66 | 2 | 4.9 | 9.80 | 1345.93 |
3 | 4.8 | 9.60 | 941.76 | 3 | 4.8 | 9.60 | 1130.11 | 3 | 4.8 | 9.60 | 1318.46 |
4 | 4.7 | 9.40 | 922.14 | 4 | 4.7 | 9.40 | 1106.57 | 4 | 4.7 | 9.40 | 1291.00 |
5 | 4.6 | 9.20 | 902.52 | 5 | 4.6 | 9.20 | 1083.02 | 5 | 4.6 | 9.20 | 1263.53 |
6 | 4.5 | 9.00 | 882.90 | 6 | 4.5 | 9.00 | 1059.48 | 6 | 4.5 | 9.00 | 1236.06 |
7 | 4.4 | 8.80 | 863.28 | 7 | 4.4 | 8.80 | 1035.94 | 7 | 4.4 | 8.80 | 1208.59 |
8 | 4.3 | 8.60 | 843.66 | 8 | 4.3 | 8.60 | 1012.39 | 8 | 4.3 | 8.60 | 1181.12 |
9 | 4.2 | 8.40 | 824.04 | 9 | 4.2 | 8.40 | 988.85 | 9 | 4.2 | 8.40 | 1153.66 |
10 | 4.1 | 8.20 | 804.42 | 10 | 4.1 | 8.20 | 965.30 | 10 | 4.1 | 8.20 | 1126.19 |
11 | 4 | 8.00 | 784.80 | 11 | 4 | 8.00 | 941.76 | 11 | 4 | 8.00 | 1098.72 |
12 | 3.9 | 7.80 | 765.18 | 12 | 3.9 | 7.80 | 918.22 | 12 | 3.9 | 7.80 | 1071.25 |
13 | 3.8 | 7.60 | 745.56 | 13 | 3.8 | 7.60 | 894.67 | 13 | 3.8 | 7.60 | 1043.78 |
14 | 3.7 | 7.40 | 725.94 | 14 | 3.7 | 7.40 | 871.13 | 14 | 3.7 | 7.40 | 1016.32 |
15 | 3.6 | 7.20 | 706.32 | 15 | 3.6 | 7.20 | 847.58 | 15 | 3.6 | 7.20 | 988.85 |
16 | 3.5 | 7.00 | 686.70 | 16 | 3.5 | 7.00 | 824.04 | 16 | 3.5 | 7.00 | 961.38 |
17 | 3.4 | 6.80 | 667.08 | 17 | 3.4 | 6.80 | 800.50 | 17 | 3.4 | 6.80 | 933.91 |
18 | 3.3 | 6.60 | 647.46 | 18 | 3.3 | 6.60 | 776.95 | 18 | 3.3 | 6.60 | 906.44 |
19 | 3.2 | 6.40 | 627.84 | 19 | 3.2 | 6.40 | 753.41 | 19 | 3.2 | 6.40 | 878.98 |
20 | 3.1 | 6.20 | 608.22 | 20 | 3.1 | 6.20 | 729.86 | 20 | 3.1 | 6.20 | 851.51 |
21 | 3 | 6.00 | 588.60 | 21 | 3 | 6.00 | 706.32 | 21 | 3 | 6.00 | 824.04 |
22 | 2.9 | 5.80 | 568.98 | 22 | 2.9 | 5.80 | 682.78 | 22 | 2.9 | 5.80 | 796.57 |
23 | 2.8 | 5.60 | 549.36 | 23 | 2.8 | 5.60 | 659.23 | 23 | 2.8 | 5.60 | 769.10 |
24 | 2.7 | 5.40 | 529.74 | 24 | 2.7 | 5.40 | 635.69 | 24 | 2.7 | 5.40 | 741.64 |
25 | 2.6 | 5.20 | 510.12 | 25 | 2.6 | 5.20 | 612.14 | 25 | 2.6 | 5.20 | 714.17 |
26 | 2.5 | 5.00 | 490.50 | 26 | 2.5 | 5.00 | 588.60 | 26 | 2.5 | 5.00 | 686.70 |
27 | 2.4 | 4.80 | 470.88 | 27 | 2.4 | 4.80 | 565.06 | 27 | 2.4 | 4.80 | 659.23 |
28 | 2.3 | 4.60 | 451.26 | 28 | 2.3 | 4.60 | 541.51 | 28 | 2.3 | 4.60 | 631.76 |
29 | 2.2 | 4.40 | 431.64 | 29 | 2.2 | 4.40 | 517.97 | 29 | 2.2 | 4.40 | 604.30 |
30 | 2.1 | 4.20 | 412.02 | 30 | 2.1 | 4.20 | 494.42 | 30 | 2.1 | 4.20 | 576.83 |
Parameters | WHO Standards | PCRWR Standards | S-1 | S-2 | S-3 |
---|---|---|---|---|---|
Temp | 25 | 25 | 32.8 | 32.3 | 34.9 |
pH | 6.8–8.5 | 6.5–9.2 | 7.7 | 8.1 | 7.85 |
Color | Un-obj | Un-obj | Yellowish | Yellowish | Colorless |
Odor | Un-obj | Un-obj | Un-obj | Un-obj | Un-obj |
Taste | Un-obj | Un-obj | Un-obj | Un-obj | Un-obj |
Tur. | 5 NTU | 2.5–5 NTU | 59 | 41.6 | 0.45 |
TDS | 1000 mg/L | 500–1500 mg/L | 193 | 44 | 243 |
Ca. | 200 mg/L | 200 mg/L | 24 | 6 | 40 |
Mg. | 150 mg/L | 30–150 mg/L | 5 | 1.25 | 15 |
TH | 500 mg/L | 500 mg/L | 70 | 20 | 160 |
TA | Not Set | Not Set | 2.3 | 5 | 0.9 |
SO42– | 400 mg/L | 200–400 mg/L | 30 | 15 | 30 |
K | 12 mg/L | 12 mg/L | 7.2 | 3.8 | 3.8 |
Na | 200 mg/L | 200 mg/L | 31 | 12 | 43 |
Cl2 | 250 mg/L | 200–600 mg/L | 15 | 15 | 90 |
HCO3 | 1.0 mg/L | 1.5–8.5 mg/L | 115 | 25 | 45 |
EC | – | – | 298 | 69 | 405 |
Remarks | – | – | Unfit | Moderate | Fit |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nisar, M.B.; Shah, S.A.R.; Tariq, M.O.; Waseem, M. Sustainable Wastewater Treatment and Utilization: A Conceptual Innovative Recycling Solution System for Water Resource Recovery. Sustainability 2020, 12, 10350. https://doi.org/10.3390/su122410350
Nisar MB, Shah SAR, Tariq MO, Waseem M. Sustainable Wastewater Treatment and Utilization: A Conceptual Innovative Recycling Solution System for Water Resource Recovery. Sustainability. 2020; 12(24):10350. https://doi.org/10.3390/su122410350
Chicago/Turabian StyleNisar, Muhammad Bin, Syyed Adnan Raheel Shah, Muhammad Owais Tariq, and Muhammad Waseem. 2020. "Sustainable Wastewater Treatment and Utilization: A Conceptual Innovative Recycling Solution System for Water Resource Recovery" Sustainability 12, no. 24: 10350. https://doi.org/10.3390/su122410350
APA StyleNisar, M. B., Shah, S. A. R., Tariq, M. O., & Waseem, M. (2020). Sustainable Wastewater Treatment and Utilization: A Conceptual Innovative Recycling Solution System for Water Resource Recovery. Sustainability, 12(24), 10350. https://doi.org/10.3390/su122410350