Does Water Pollution Influence Willingness to Accept the Installation of a Mine Near a City? Case Study of an Open-Pit Lithium Mine
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Collection
2.2. Choice Experiment
2.3. Econometric Model
2.4. Willingness to Accept
3. Results
3.1. Preferences
3.2. Willingness to Accept
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Heredia, F.; Martinez, A.L.; Surraco Urtubey, V. The importance of lithium for achieving a low-carbon future: Overview of the lithium extraction in the “Lithium Triangle”. J. Energy Nat. Resour. 2020, 24, 1–24. [Google Scholar] [CrossRef]
- Grosjean, C.; Miranda, P.H.; Perrin, M.; Poggi, P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew. Sustain. Energy Rev. 2012, 16, 1735–1744. [Google Scholar] [CrossRef]
- Keersemaker, M. Critical raw materials. In Suriname Revisited: Economic Potential of its Mineral Resources; SpringerBriefs in Earth Sciences; Springer: Cham, Switzerland, 2020; pp. 69–82. [Google Scholar]
- European Commission Study on the Review of the List of Critical Raw Materials—Final Report. 2020. Available online: https://ec.europa.eu/docsroom/documents/42883/attachments/1/translations/en/renditions/native (accessed on 9 December 2020).
- United Nations Framework Convention on Climate Change. Kyoto Protocol Reference Manual; United Nations Framework Convention on Climate Change: New York, NY, USA, 2008. [Google Scholar]
- United Nations Framework Convention on Climate Change. Adoption of the Paris agreement. I: Proposal by the president (draft decision). In Proceedings of the Conference of the Parties, Paris, France, 30 November–11 December 2015; Ash, C., Smith, J., Eds.; United Nations Framework Convention on Climate Change: Geneva, Switzerland, 2019; Volume 364, pp. 39–40. [Google Scholar]
- Del Litio, T.E. A strategic project for the future of Extremadura. Available online: https://www.sanjosevaldeflorez.es/index.html (accessed on 9 December 2020).
- Sun, C.; Lyu, N.; Ouyang, X. Chinese public willingness to pay to avoid having nuclear power plants in the neighborhood. Sustainability 2014, 6, 7197–7223. [Google Scholar] [CrossRef] [Green Version]
- Van der Horst, D. NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies. Energy Policy 2007, 35, 2705–2714. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, S.; Gallagher, L. Protest responses and community attitudes toward accepting compensation to host waste disposal infrastructure. Land Use Policy 2010, 27, 638–652. [Google Scholar] [CrossRef]
- Dai, J.; Li, S.; Bi, J.; Ma, Z. The health risk-benefit feasibility of nuclear power development. J. Clean. Prod. 2019, 224, 198–206. [Google Scholar] [CrossRef]
- Wu, Y. Public acceptance of constructing coastal/inland nuclear power plants in post-Fukushima China. Energy Policy 2017, 101, 484–491. [Google Scholar] [CrossRef]
- Xu, M.; Lin, B. Exploring the “not in my backyard” effect in the construction of waste incineration power plants-based on a survey in metropolises of China. Environ. Impact Assess. Rev. 2020, 82, 106377. [Google Scholar] [CrossRef]
- Sun, C.; Yuan, X.; Yao, X. Social acceptance towards the air pollution in China: Evidence from public’s willingness to pay for smog mitigation. Energy Policy 2016, 92, 313–324. [Google Scholar] [CrossRef]
- Greenberg, M.R. NIMBY, CLAMP, and the location of new nuclear-related facilities: U.S. national and 11 site-specific surveys. Risk Anal. 2009, 29, 1242–1254. [Google Scholar] [CrossRef]
- Badera, J. Problems of the social non-acceptance of mining projects with particular emphasis on the European Union—A literature review. Environ. Socio Econ. Stud. 2015, 2, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Avc, D.; Adaman, F.; Özkaynak, B. Valuation languages in environmental conflicts: How stakeholders oppose or support gold mining at Mount Ida, Turkey. Ecol. Econ. 2010, 70, 228–238. [Google Scholar] [CrossRef]
- Bloodworth, A.J.; Scott, P.W.; Mcevoy, F.M. Digging the backyard: Mining and quarrying in the UK and their impact on future land use. Land Use Policy 2009, 26, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Frantál, B. Living on coal: Mined-out identity, community displacement and forming of anti-coal resistance in the Most region, Czech Republic. Resour. Policy 2016, 49, 385–393. [Google Scholar] [CrossRef]
- Neto, H.F.d.S.; Pereira, W.V.d.S.; Dias, Y.N.; de Souza, E.S.; Teixeira, R.A.; de Lima, M.W.; Ramos, S.J.; do Amarante, C.B.; Fernandes, A.R. Environmental and human health risks of arsenic in gold mining areas in the eastern Amazon. Environ. Pollut. 2020, 265, 114969. [Google Scholar] [CrossRef]
- Mensah, A.K.; Marschner, B.; Shaheen, S.M.; Wang, J.; Wang, S.L.; Rinklebe, J. Arsenic contamination in abandoned and active gold mine spoils in Ghana: Geochemical fractionation, speciation, and assessment of the potential human health risk. Environ. Pollut. 2020, 261. [Google Scholar] [CrossRef]
- Martinez-Alier, J. Mining conflicts, environmental justice, and valuation. J. Hazard. Mater. 2001, 86, 153–170. [Google Scholar] [CrossRef]
- Drew, L.J.; Langer, W.H.; Sachs, J.S. Environmentalism and natural aggregate mining. Nat. Resour. Res. 2002, 11, 19–28. [Google Scholar] [CrossRef]
- Szczepankiewicz, E.I.; Mućko, P. CSR reporting practices of polish energy and mining companies. Sustainability 2016, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Christmann, P. Towards a more equitable use of mineral resources. Nat. Resour. Res. 2018, 27, 159–177. [Google Scholar] [CrossRef]
- Van Oostdam, J.; Gilman, A.; Dewailly, E.; Usher, P.; Wheatley, B.; Kuhnlein, H.; Neve, S.; Walker, J.; Tracy, B.; Feeley, M.; et al. Human health implications of environmental contaminants in Arctic Canada: A review. Sci. Total Environ. 1999, 230, 1–82. [Google Scholar] [CrossRef]
- United Nations. SDG15: Sustainably Manage Forests, Combat Desertification, Halt and Reverse Land Degradation, Halt Biodiversity Loss; United Nations: New York, NY, USA, 2015. [Google Scholar]
- United Nations. The Sustainable Development Goals Report; United Nations: New York, NY, USA, 2017. [Google Scholar]
- United Nations. SDG 6—Ensure Availability and Sustainable Management of Water and Sanitation for All; United Nations: New York, NY, USA, 2016. [Google Scholar]
- United Nations. SDG 11—Build Resilient Infrastructure, Promote Inclusive and Sustainable Industrialization and Foster Innovation The Role of Business Key Business Themes Addressed by This SDG Examples of Key Business Actions and Solutions; Examples of Key Business Tools; United Nations: New York, NY, USA, 2016. [Google Scholar]
- United Nations. SDG 13—Take Urgent Action to Combat Climate Change and Its Impacts; United Nations: New York, NY, USA, 2016. [Google Scholar]
- United Nations. SDG 15—Protect, Restore and Promote Sustainable Use of Terrestrial Ecosystems, Sustainably Manage Forests, Combat Desertification, and Halt and Reverse Land Degradation and Halt Biodiversity Loss; United Nations: New York, NY, USA, 2016. [Google Scholar]
- Xu, L.; Yu, B.; Li, Y. Ecological compensation based on willingness to accept for conservation of drinking water sources. Front. Environ. Sci. Eng. 2014, 9, 58–65. [Google Scholar] [CrossRef]
- Del Saz-Salazar, S.; Hernández-Sancho, F.; Sala-Garrido, R. The social benefits of restoring water quality in the context of the Water Framework Directive: A comparison of willingness to pay and willingness to accept. Sci. Total Environ. 2009, 407, 4574–4583. [Google Scholar] [CrossRef] [PubMed]
- Casey, J.F.; Kahn, J.R.; Rivas, A.A.F. Willingness to accept compensation for the environmental risks of oil transport on the Amazon: A choice modeling experiment. Ecol. Econ. 2008, 67, 552–559. [Google Scholar] [CrossRef]
- Basili, M.; di Matteo, M.; Ferrini, S. Analysing demand for environmental quality: A willingness to pay/accept study in the province of Siena (Italy). Waste Manag. 2006, 26, 209–219. [Google Scholar] [CrossRef]
- Wuepper, D.; Clemm, A.; Wree, P. The preference for sustainable coffee and a new approach for dealing with hypothetical bias. J. Econ. Behav. Organ. 2019, 158, 475–486. [Google Scholar] [CrossRef]
- Gschwandtner, A.; Burton, M. Comparing treatments to reduce hypothetical bias in choice experiments regarding organic food. Eur. Rev. Agric. Econ. 2020, 47. [Google Scholar] [CrossRef]
- Louviere, J.J.; Hensher, D.A.; Swait, J.D. Stated Choice Methods Analysis and Applications; Cambridge University Press: Cambridge, UK, 2000; ISBN 0521782759. [Google Scholar]
- Crespo-Cebada, E.; Díaz-Caro, C.; Robina-Ramírez, R.; Sánchez-Hernández, M.I. Is biodiversity a relevant attribute for assessing natural parks? Evidence from Cornalvo Natural Park in Spain. Forests 2020, 11, 410. [Google Scholar] [CrossRef] [Green Version]
- Hanley, N.; Wright, R.E.; Adamowicz, V. Using choice experiments to value the environment: Design issues, current experience and future prospects. Environ. Resour. Econ. 1998, 11, 413–428. [Google Scholar] [CrossRef]
- Hanley, N.; Mourato, S.; Wright, R.E. Choice modelling approaches: A superior alternative for environmental valuatioin? J. Econ. Surv. 2002, 15, 435–462. [Google Scholar] [CrossRef]
- Carlsson, F.; Martinsson, P. Design techniques for stated preference methods in health economics. Health Econ. 2003, 12, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Watson, V.; Becker, F.; de Bekker-Grob, E. Discrete choice experiment response rates: A meta-analysis. Health Econ. 2017, 26, 810–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Caro, C.; García-Torres, S.; Elghannam, A.; Tejerina, D.; Mesias, F.J.; Ortiz, A. Is production system a relevant attribute in consumers’ food preferences? The case of Iberian dry-cured ham in Spain. Meat Sci. 2019, 158, 107908. [Google Scholar] [CrossRef] [PubMed]
- Sama, C.; Crespo-Cebada, E.; Díaz-Caro, C.; Escribano, M.; Mesías, F.J. Consumer Preferences for Foodstuffs Produced in a Socio-environmentally Responsible Manner: A Threat to Fair Trade Producers? Ecol. Econ. 2018, 158. [Google Scholar] [CrossRef]
- Kløjgaard, M.E.; Bech, M.; Søgaard, R. Designing a stated choice experiment: The value of a qualitative process. J. Choice Model. 2012, 5, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Hole, A. DCREATE: Stata module to create efficient designs for discrete choice experiments. 2015. Available online: http://econpapers.repec.org/RePEc:boc:bocode:s458059 (accessed on 9 December 2020).
- McFadden, D. Conditional logit analysis of qualitative choice behavior. In Frontiers in Econometrics; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Revelt, D.; Train, K. Mixed logit with repeated choices: Households’ choices of appliance efficiency level. Rev. Econ. Stat. 1998, 80, 647–657. [Google Scholar] [CrossRef]
- Train, K.E. Discrete Choice Methods with Simulation; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Rehdanz, K.; Schröder, C.; Narita, D.; Okubo, T. Public preferences for alternative electricity mixes in post-Fukushima Japan. Energy Econ. 2017, 65, 262–270. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.U.; Khan, I.; Zhao, M.; Khan, A.A.; Ali, M.A.S. Valuation of ecosystem services using choice experiment with preference heterogeneity: A benefit transfer analysis across inland river basin. Sci. Total Environ. 2019, 679, 126–135. [Google Scholar] [CrossRef]
- Shannon, A.K.; Usmani, F.; Pattanayak, S.K.; Jeuland, M. The price of purity: Willingness to pay for air and water purification technologies in Rajasthan, India. Environ. Resour. Econ. 2019, 73, 1073–1100. [Google Scholar] [CrossRef]
- Dauda, S.A.; Yacob, M.R.; Radam, A. Household’s willingness to pay for heterogeneous attributes of drinking water quality and services improvement: An application of choice experiment. Appl. Water Sci. 2015, 5, 253–259. [Google Scholar] [CrossRef]
- Doherty, E.; Murphy, G.; Hynes, S.; Buckley, C. Valuing ecosystem services across water bodies: Results from a discrete choice experiment. Ecosyst. Serv. 2014, 7, 89–97. [Google Scholar] [CrossRef]
- Eftila, T.; Darrell, B.; Kevin, B.; Elton, M. On consumers’ attitudes and willingness to pay for improved drinking water quality and infrastructure. Water Resour. Res. 2014, 5375–5377. [Google Scholar]
- Ahtiainen, H.; Pouta, E.; Artell, J. Modelling asymmetric preferences for water quality in choice experiments with individual-specific status quo alternatives. Water Resour. Econ. 2015, 12, 1–13. [Google Scholar] [CrossRef]
- Diener, A.A.; Muller, R.A.; Robb, A.L. Willingness-to-Pay for Improved Air Quality in Hamilton-Wentworth: A Choice Experiment; McMaster University: Hamilton, ON, Canada, 1997; 30p. [Google Scholar]
- Nayak, T.; Chowdhury, I.R. Health damages from aire pollution: Evidence from open cast coal mining region of Odisha, India. Ecol. Econ. Soc. 2005, 2. [Google Scholar] [CrossRef]
Variable | Sample | City of Cáceres (2019) | |
---|---|---|---|
Age (years) | 37.30 | 45.66 | |
Gender (% woman) | 48.88% | 50.43% 1 | |
Household size | 3.5 | 2.44 2 | |
Household income | <€800 | 10.50% | |
>€801 and <€1400 | 25.11% | €970.72 | |
>€1401 and <€2500 | 38.81% | ||
>€2500 | 51.59% | ||
Educational level (%) | Primary education | 13.34% | 53.7% 2 |
Secondary education | 25.57% | 19.5% 2 | |
Higher education | 57.99% | 26.8% 2 |
Attribute | Levels | Variable |
---|---|---|
Water contamination (increase) | Current situation | Water |
10% | Water- | |
20% | Water-- | |
Air pollution (increase) | Current situation | Air |
10% | Air- | |
20% | Air-- | |
Biodiversity (reduction) | Current situation | Bio |
10% | Bio- | |
20% | Bio-- | |
Price | €10/year | Price |
€20/year | ||
€30/year | ||
€40/year |
Comparison 1 | |||
---|---|---|---|
Attributes | Situation 1 | Situation 2 | Situation 3 |
Water pollution (increase) | 20% | 10% | Maintain current levels (Status Quo) |
Air pollution (increase) | 10% | 10% | |
Biodiversity (reduction) | 20% | Current situation | |
Price | €30/year | €30/year | |
Select option |
Mixed Logit | ||
---|---|---|
Coef. | SE | |
Mean | ||
ASC1 | 1.9773 *** | 0.2601 |
ASC2 | 2.3356 *** | 0.2682 |
Water- | −1.0520 *** | 0.3037 |
Water-- | −2.4762 *** | 0.6243 |
Air- | −1.5233 *** | 0.2886 |
Air-- | −1.4713 *** | 0.2706 |
Bio- | −0.4756 *** | 0.1944 |
Bio-- | −2.1084 *** | 0.2392 |
Price | 0.0974 *** | 0.0093 |
SD | ||
Water- | 3.2254 *** | 0.3625 |
Water-- | 5.9336 *** | 0.5745 |
Air- | 3.0692 *** | 0.3006 |
Air-- | 1.6910 *** | 0.2449 |
Bio- | 0.7875 *** | 0.3136 |
Bio-- | 1.9520 *** | 0.2537 |
N | 219 | |
Log-Likelihood | −1,419,8826 | |
LR chi2 | 194.49 | |
Prob > chi2 | 0.0000 | |
AIC | 2869.765 | |
BIC | 2954.525 |
Mixed Logit | ||
---|---|---|
Variable | WTA (Mean) | Interval for WTA * |
Water- | 10.79 | (4.21–17.37) |
Water-- | 25.41 | (12.15–38.68) |
Air- | 15.63 | (9.31–21.96) |
Air-- | 15.10 | (9.46–20.74) |
Bio- | 4.88 | (0.73–9.03) |
Bio-- | 21.64 | (16.28–27.00) |
Scenario | WTA (Mean) |
---|---|
Water-, Air -, Bio - | €31.30 |
Water-, Air --, Bio - | €30.77 |
Water-, Air -, Bio -- | €48.06 |
Water--, Air -, Bio - | €45.92 |
Water--, Air --, Bio - | €45.39 |
Water--, Air --, Bio -- | €62.68 |
Water-, Air --, Bio -- | €47.53 |
Water--, Air -, Bio -- | €62.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crespo-Cebada, E.; Díaz-Caro, C.; Nevado Gil, M.T.; Mirón Sanguino, Á.S. Does Water Pollution Influence Willingness to Accept the Installation of a Mine Near a City? Case Study of an Open-Pit Lithium Mine. Sustainability 2020, 12, 10377. https://doi.org/10.3390/su122410377
Crespo-Cebada E, Díaz-Caro C, Nevado Gil MT, Mirón Sanguino ÁS. Does Water Pollution Influence Willingness to Accept the Installation of a Mine Near a City? Case Study of an Open-Pit Lithium Mine. Sustainability. 2020; 12(24):10377. https://doi.org/10.3390/su122410377
Chicago/Turabian StyleCrespo-Cebada, Eva, Carlos Díaz-Caro, María Teresa Nevado Gil, and Ángel Sabino Mirón Sanguino. 2020. "Does Water Pollution Influence Willingness to Accept the Installation of a Mine Near a City? Case Study of an Open-Pit Lithium Mine" Sustainability 12, no. 24: 10377. https://doi.org/10.3390/su122410377
APA StyleCrespo-Cebada, E., Díaz-Caro, C., Nevado Gil, M. T., & Mirón Sanguino, Á. S. (2020). Does Water Pollution Influence Willingness to Accept the Installation of a Mine Near a City? Case Study of an Open-Pit Lithium Mine. Sustainability, 12(24), 10377. https://doi.org/10.3390/su122410377