A Framework for Stormwater Quality Modelling under the Effects of Climate Change to Enhance Reuse
Abstract
:1. Introduction
2. Current Practice in Stormwater Quality Modelling and Its Deficiencies
3. Role of Climate Modelling Outputs in Stormwater Quality Modelling
4. Future Research Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mignot, E.; Li, X.; Dewals, B. Experimental modelling of urban flooding: A review. J. Hydrol. 2019, 568, 334–342. [Google Scholar] [CrossRef] [Green Version]
- Petit-Boix, A.; Sevigné-Itoiz, E.; Rojas-Gutierrez, L.A.; Barbassa, A.P.; Josa, A.; Rieradevall, J.; Gabarrell, X. Floods and consequential life cycle assessment: Integrating flood damage into the environmental assessment of stormwater Best Management Practices. J. Clean. Prod. 2017, 162, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Burns, M.J.; Schubert, J.E.; Fletcher, T.D.; Sanders, B.F. Testing the impact of at-source stormwater management on urban flooding through a coupling of network and overland flow models. Wires Water 2015, 2, 291–300. [Google Scholar] [CrossRef]
- Beaudry, M. From Nuisance to Resource: Understanding Microbial Sources of Contamination in Urban Stormwater-Impacted Bodies of Water Intended for Water Reuse Activities; University of Alberta: Edmonton, AB, Canada, 2019. [Google Scholar]
- ECRC. Stormwater Management in Australia; Commonwealth of Australia: Canberra, Australia, 2015.
- BoM. Water in Australia 2017–2018; Commonwealth of Australia, Bureau of Meteorology: Melbourne, Australia, 2019.
- Walsh, C.J.; Fletcher, T.D.; Bos, D.G.; Imberger, S.J. Restoring a stream through retention of urban stormwater runoff: A catchment-scale experiment in a social–ecological system. Freshw. Sci. 2015, 34, 1161–1168. [Google Scholar] [CrossRef]
- Goonetilleke, A.; Liu, A.; Gardner, T. Briefs for GSDR-Urban Stormwater Reuse: An Agenda for Sustainable Development; UN Global Sustainable Development Report; UN Department of Economic and Social Affairs: New York, NY, USA, 2016. [Google Scholar]
- Goonetilleke, A.; Liu, A.; Managi, S.; Wilson, C.; Gardner, T.; Bandala, E.R.; Walker, L.; Holden, J.; Wibowo, M.A.; Suripin, S. Stormwater reuse, a viable option: Fact or fiction? Econ. Anal. Policy 2017, 56, 14–17. [Google Scholar] [CrossRef] [Green Version]
- Hamel, P.; Daly, E.; Fletcher, T.D. Source-control stormwater management for mitigating the impacts of urbanisation on baseflow: A review. J. Hydrol. 2013, 485, 201–211. [Google Scholar] [CrossRef]
- Wei, T.; Wijesiri, B.; Jia, Z.; Li, Y.; Goonetilleke, A. Re-thinking classical mechanistic model for pollutant build-up on urban impervious surfaces. Sci. Total Environ. 2019, 651, 114–121. [Google Scholar] [CrossRef]
- Wijesiri, B.; Liu, A.; Gunawardana, C.; Hong, N.; Zhu, P.; Guan, Y.; Goonetilleke, A. Influence of urbanisation characteristics on the variability of particle-bound heavy metals build-up: A comparative study between China and Australia. Environ. Pollut. 2018, 242, 1067–1077. [Google Scholar] [CrossRef]
- Wijesiri, B.; Liu, A.; Goonetilleke, A. Impact of global warming on urban stormwater quality: From the perspective of an alternative water resource. J. Clean. Prod. 2020, 121330. [Google Scholar] [CrossRef]
- King, A.D.; Karoly, D.J.; Henley, B.J. Australian climate extremes at 1.5 C and 2 C of global warming. Nat. Clim. Chang. 2017, 7, 412. [Google Scholar] [CrossRef]
- Chevuturi, A.; Klingaman, N.P.; Turner, A.G.; Hannah, S. Projected Changes in the Asian-Australian Monsoon Region in 1.5 °C and 2.0 °C Global-Warming Scenarios. Earth’s Future 2018, 6, 339–358. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012. [Google Scholar]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R.Y., Sokona, E.F., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Donnelly, C.; Greuell, W.; Andersson, J.; Gerten, D.; Pisacane, G.; Roudier, P.; Ludwig, F.J.C.C. Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Clim. Chang. 2017, 143, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Zhai, R.; Tao, F.; Xu, Z. Spatial–temporal changes in runoff and terrestrial ecosystem water retention under 1.5 and 2 °C warming scenarios across China. Earth Syst. Dyn. 2018, 9, 717–738. [Google Scholar] [CrossRef] [Green Version]
- Semadeni-Davies, A.; Hernebring, C.; Svensson, G.; Gustafsson, L.-G. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Suburban stormwater. J. Hydrol. 2008, 350, 114–125. [Google Scholar] [CrossRef]
- Cook, L.M.; McGinnis, S.; Samaras, C. The effect of modeling choices on updating intensity-duration-frequency curves and stormwater infrastructure designs for climate change. Clim. Chang. 2020, 159, 289–308. [Google Scholar] [CrossRef] [Green Version]
- Brudler, S.; Arnbjerg-Nielsen, K.; Hauschild, M.Z.; Rygaard, M. Life cycle assessment of stormwater management in the context of climate change adaptation. Water Res. 2016, 106, 394–404. [Google Scholar] [CrossRef] [Green Version]
- Thakali, R.; Kalra, A.; Ahmad, S. Understanding the effects of climate change on urban stormwater infrastructures in the Las Vegas Valley. Hydrology 2016, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Zahmatkesh, Z.; Burian, S.J.; Karamouz, M.; Tavakol-Davani, H.; Goharian, E. Low-Impact Development Practices to Mitigate Climate Change Effects on Urban Stormwater Runoff: Case Study of New York City. J. Irrig. Drain. Eng. 2015, 141, 04014043. [Google Scholar] [CrossRef]
- Pyke, C.; Warren, M.P.; Johnson, T.; LaGro, J.; Scharfenberg, J.; Groth, P.; Freed, R.; Schroeer, W.; Main, E. Assessment of low impact development for managing stormwater with changing precipitation due to climate change. Landsc. Urban Plan. 2011, 103, 166–173. [Google Scholar] [CrossRef]
- Giese, E.; Rockler, A.; Shirmohammadi, A.; Pavao-Zuckerman, M.A. Assessing Watershed-Scale Stormwater Green Infrastructure Response to Climate Change in Clarksburg, Maryland. J. Water Resour. Plan. Manag. 2019, 145, 05019015. [Google Scholar] [CrossRef]
- Saraswat, C.; Kumar, P.; Mishra, B.K. Assessment of stormwater runoff management practices and governance under climate change and urbanization: An analysis of Bangkok, Hanoi and Tokyo. Environ. Sci. Policy 2016, 64, 101–117. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.; Adhityan, A.; Ng, W.J.; Dong, J.; Tan, S.K. Assessing cost-effectiveness of bioretention on stormwater in response to climate change and urbanization for future scenarios. J. Hydrol. 2016, 543, 423–432. [Google Scholar] [CrossRef]
- Bell, C.D.; McMillan, S.K.; Clinton, S.M.; Jefferson, A.J. Hydrologic response to stormwater control measures in urban watersheds. J. Hydrol. 2016, 541 Pt B, 1488–1500. [Google Scholar] [CrossRef] [Green Version]
- Wijesiri, B.; Egodawatta, P.; McGree, J.; Goonetilleke, A. Assessing Uncertainty in Pollutant Build-up and Wash-off Processes. Environ. Pollut. 2016, 212, 48–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WWAP. The United Nations World Water Development Report 4: Managing Water under Uncertainty and Risk (Volume 1); UNESCO: Paris, France, 2012. [Google Scholar]
- Liu, A.; Goonetilleke, A.; Egodawatta, P. Role of Rainfall and Catchment Characteristics on Urban Stormwater Quality; Springer: Singapore, 2015. [Google Scholar]
- Rossman, L.A. Storm Water Management Model User’s Manual Version 5.1; US EPA Office of Research and Development: Washington, DC, USA, 2015.
- Huber, W.C.; Dickinson, R.E. Storm Water Management Model, Version 4: User’s Manual; US Enviornmental Protection Agency: Athens, GA, USA, 1988.
- Wong, T.H.; Fletcher, T.D.; Duncan, H.P.; Coleman, J.R.; Jenkins, G.A. A model for urban stormwater improvement: Conceptualization. In Global Solutions for Urban Drainage; Srecker, E.W., Huber, W.C., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2002; pp. 1–14. [Google Scholar]
- Wong, T.H.F.; Fletcher, T.D.; Duncan, H.P.; Jenkins, G.A. Modelling Urban Stormwater Treatment—A Unified Approach. Ecol. Eng. 2006, 27, 58–70. [Google Scholar] [CrossRef]
- Bicknell, B.R.; Imhoff, J.C.; Kittle, J.L., Jr.; Donigian, A.S., Jr.; Johanson, R.C. Hydrological Simulation Program-Fortran: User’s Manual Version 11; U.S. Environmental Protection Agency, National Exposure Research Laboratory: Athens, GA, USA, 1997.
- MikeUrban. Mouse Pollution Transport: Reference Manual—Surface Runoff Quality; Danish Hydraulic Institue: Hørsholm, Denmark, 2017. [Google Scholar]
- MikeUrban. Mike Urban Collection System—User Guide; Danish Hydraulic Institute: Hørsholm, Denmark, 2014. [Google Scholar]
- Wijesiri, B. Assessing Uncertainty in Relation to Urban Stormwater Pollutant Processes; Queensland University of Technology (QUT): Brisbane, Australia, 2016. [Google Scholar]
- HEC. Storage, Treatment, Overflow, Runoff Model, STORM, Generalized Computer Program 723-58-L7520; Hydrologic Engineering Center, U.S. Corps of Engineers: Davis, CA, USA, 1977.
- Alley, W.M.; Smith, P.E. Multi-Event Urban Runoff Quality Model; U.S. Geological Survey: Reston, VA, USA, 1982.
- Alley, W.M.; Smith, P.E. Distributed Routing Rainfall-Runoff Model: Version 2; U.S. Geological Survey: Denver, CO, USA, 1982.
- Chen, J.; Adams, B.J. A Derived Probability Distribution Approach to Stormwater Quality Modeling. Adv. Water Resour. 2007, 30, 80–100. [Google Scholar] [CrossRef]
- Chen, J.; Adams, B.J. A Framework for Urban Storm Water Modeling and Control Analysis with Analytical Models. Water Resour. Res. 2006, 42, 1–13. [Google Scholar] [CrossRef]
- Kanso, A.; Gromaire, M.-C.; Gaume, E.; Tassin, B.; Chebbo, G. Bayesian Approach for the Calibration of Models: Application to an Urban Stormwater Pollution Model. Water Sci. Technol. 2003, 47, 77–84. [Google Scholar] [CrossRef]
- Wijesiri, B.; Egodawatta, P.; McGree, J.; Goonetilleke, A. Understanding the Uncertainty Associated with Particle-bound Pollutant Build-up and Wash-off: A Critical Review. Water Res. 2016, 101, 582–596. [Google Scholar] [CrossRef]
- Egodawatta, P.; Thomas, E.; Goonetilleke, A. Mathematical Interpretation of Pollutant Wash-off from Urban Road Surfaces Using Simulated Rainfall. Water Res. 2007, 41, 3025–3031. [Google Scholar] [CrossRef] [Green Version]
- Wijesiri, B.; Egodawatta, P.; McGree, J.; Goonetilleke, A. Influence of Pollutant Build-up on Variability in Wash-off from Urban Road Surfaces. Sci. Total Environ. 2015, 527–528, 344–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perera, T.; McGree, J.; Egodawatta, P.; Jinadasa, K.B.S.N.; Goonetilleke, A. Taxonomy of influential factors for predicting pollutant first flush in urban stormwater runoff. Water Res. 2019, 166, 115075. [Google Scholar] [CrossRef] [PubMed]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Bonhomme, C.; Petrucci, G. Should we trust build-up/wash-off water quality models at the scale of urban catchments? Water Res. 2017, 108, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Bonhomme, C.; Le, M.-H.; Chebbo, G. A new approach of monitoring and physically-based modelling to investigate urban wash-off process on a road catchment near Paris. Water Res. 2016, 102, 96–108. [Google Scholar] [CrossRef]
- Webb, M.J.; Andrews, T.; Bodas-Salcedo, A.; Bony, S.; Bretherton, C.S.; Chadwick, R.; Chepfer, H.; Douville, H.; Good, P.; Kay, J.E.J.G.M.D. The cloud feedback model intercomparison project (CFMIP) contribution to CMIP6. Geosci. Model Dev. 2017, 2017, 359–384. [Google Scholar] [CrossRef] [Green Version]
- Gerber, E.P.; Manzini, E.J.G.M.D. The Dynamics and Variability Model Intercomparison Project (DynVarMIP) for CMIP6: Assessing the stratosphere-troposphere system. Geosci. Model Dev. 2016, 9, 3413–3425. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Turner, A.G.; Kinter, J.L.; Wang, B.; Qian, Y.; Chen, X.; Wu, B.; Liu, B.; Zou, L.; Bian, H.J.G.M.D. GMMIP (v1. 0) contribution to CMIP6: Global monsoons model inter-comparison project. Geosci. Model Dev. 2016, 9, 3589–3604. [Google Scholar] [CrossRef] [Green Version]
- Haarsma, R.J.; Roberts, M.J.; Vidale, P.L.; Senior, C.A.; Bellucci, A.; Bao, Q.; Chang, P.; Corti, S.; Fučkar, N.S.; Guemas, V.J.G.M.D. High resolution model intercomparison project (HighResMIP v1. 0) for CMIP6. Geosci. Model Dev. 2016, 9, 4185–4208. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, D.M.; Hurtt, G.C.; Arneth, A.; Brovkin, V.; Calvin, K.V.; Jones, A.D.; Jones, C.D.; Lawrence, P.J.; de Noblet-Ducoudré, N.; Pongratz, J.J.G.M.D. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: Rationale and experimental design. Geosci. Model Dev. 2016, 9, 2973–2998. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Ruane, A.C.; Teichmann, C.; Arnell, N.W.; Carter, T.R.; Ebi, K.L.; Frieler, K.; Goodess, C.M.; Hewitson, B.; Horton, R.; Kovats, R.S. The vulnerability, impacts, adaptation and climate services advisory board (VIACS AB v1. 0) contribution to CMIP6. Geosci. Model Dev. 2016, 9, 3493–3515. [Google Scholar] [CrossRef] [Green Version]
- Gutowski, W.J., Jr.; Giorgi, F.; Timbal, B.; Frigon, A.; Jacob, D.; Kang, H.S.; Raghavan, K.; Lee, B.; Lennard, C.; Nikulin, G.; et al. WCRP COordinated Regional Downscaling EXperiment (CORDEX): A diagnostic MIP for CMIP6. Geosci. Model Dev. 2016, 9, 4087–4095. [Google Scholar] [CrossRef] [Green Version]
- Gunawardena, J.M.; Liu, A.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Influence of Traffic and Land Use on Urban Stormwater Quality: Implications for Urban Stormwater Treatment Design; Springer: Singapore, 2017. [Google Scholar]
- Greve, P.; Orlowsky, B.; Mueller, B.; Sheffield, J.; Reichstein, M.; Seneviratne, S.I.J.N.g. Global assessment of trends in wetting and drying over land. Nat. Geosci. 2014, 7, 716–721. [Google Scholar] [CrossRef]
- WEF. The Global Risks Report 2019, 14th ed.; World Economic Forum: Geneva, Switzerland, 2019. [Google Scholar]
- Pasquier, U.; Few, R.; Goulden, M.C.; Hooton, S.; He, Y.; Hiscock, K.M. “We can’t do it on our own!”—Integrating stakeholder and scientific knowledge of future flood risk to inform climate change adaptation planning in a coastal region. Environ. Sci. Policy 2020, 103, 50–57. [Google Scholar] [CrossRef]
- Cloke, H.L.; Wetterhall, F.; He, Y.; Freer, J.E.; Pappenberger, F. Modelling climate impact on floods with ensemble climate projections. Q. J. R. Meteorol. Soc. 2013, 139, 282–297. [Google Scholar] [CrossRef] [Green Version]
- Västilä, K.; Kummu, M.; Sangmanee, C.; Chinvanno, S. Modelling climate change impacts on the flood pulse in the Lower Mekong floodplains. J. Water Clim. Chang. 2010, 1, 67–86. [Google Scholar] [CrossRef]
- Zhang, K.; Manuelpillai, D.; Raut, B.; Deletic, A.; Bach, P.M. Evaluating the reliability of stormwater treatment systems under various future climate conditions. J. Hydrol. 2019, 568, 57–66. [Google Scholar] [CrossRef]
Type | Modelling Tool | Capabilities | Limitations |
---|---|---|---|
Physically-Based | Stormwater Management Model (SWMM) developed by the US Environmental Protection Agency [34,35] |
|
|
Mike URBAN developed by the Danish Hydraulics Institute [39,40] |
|
| |
Storage, Treatment, Overflow and Runoff Model (STORM) developed by the US Corps of Engineers [42] |
|
| |
Hydrologic Simulation Program-Fortran (HSPF) developed by the US Environmental Protection Agency [38] |
|
| |
Distributed Routing Rainfall Runoff Model-Quality (DR3M-QUAL) developed by the US Geological Survey [43,44] |
|
| |
Model for Urban Stormwater Improvement Conceptualisation (MUSIC) developed by Cooperative Research Centre for Catchment Hydrology (CRCCH), Australia [36,37] |
|
| |
Statistical | Derived probability distribution approach [45,46] |
| |
Bayesian approach with Metropolis algorithm [47] |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijesiri, B.; Bandala, E.; Liu, A.; Goonetilleke, A. A Framework for Stormwater Quality Modelling under the Effects of Climate Change to Enhance Reuse. Sustainability 2020, 12, 10463. https://doi.org/10.3390/su122410463
Wijesiri B, Bandala E, Liu A, Goonetilleke A. A Framework for Stormwater Quality Modelling under the Effects of Climate Change to Enhance Reuse. Sustainability. 2020; 12(24):10463. https://doi.org/10.3390/su122410463
Chicago/Turabian StyleWijesiri, Buddhi, Erick Bandala, An Liu, and Ashantha Goonetilleke. 2020. "A Framework for Stormwater Quality Modelling under the Effects of Climate Change to Enhance Reuse" Sustainability 12, no. 24: 10463. https://doi.org/10.3390/su122410463
APA StyleWijesiri, B., Bandala, E., Liu, A., & Goonetilleke, A. (2020). A Framework for Stormwater Quality Modelling under the Effects of Climate Change to Enhance Reuse. Sustainability, 12(24), 10463. https://doi.org/10.3390/su122410463