A Methodological Approach to Municipal Pluvial Flood Risk Assessment Based on a Small City Case Study
Abstract
:1. Introduction
2. Data and Methodology
2.1. The Risk Assessment Approach
2.1.1. Pluvial Flood Hazard Assessment
2.1.2. Vulnerability Assessment
Damage Potential
Population Sensitivity
2.1.3. Pluvial Flood Risk Assessment and Process of Validation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Environment Agency (EEA). Mapping the Impacts of Natural Hazards and Technological Accidents in Europe. An Overview of the Last Decade; EEA Technical Report 2010/13; Publications Office of the European Union: Luxembourg, 2011; ISSN 1725-2237. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2015; ISBN 978-92-9169-143-2. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Impacts, Adapation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; ISBN 978-1-107-05807-1. [Google Scholar]
- European Environment Agency (EEA) Home Page. EEA Signals 2015, Living in a Changing Climate. Available online: https://www.eea.europa.eu/signals/signals-2015/articles/living-in-a-changing-climate (accessed on 8 June 2020).
- Munich Reinsurance Company (Munich RE) Home Page. Risk from Floods, Storm Surges and Flash Floods. Underestimated Natural Hazards. Available online: https://www.munichre.com/en/risks/natural-disasters-losses-are-trending-upwards/floods-and-flash-floods-underestimated-natural-hazards.html (accessed on 8 June 2020).
- European Environment Agency (EEA) Home Page. Economic Losses from Climate-Related Extremes in Europe. Available online: https://www.eea.europa.eu/data-and-maps/indicators/direct-losses-from-weather-disasters-3/assessment-2 (accessed on 8 June 2020).
- Barredo, J.I. Normalised flood losses in Europe: 1970–2006. Nat. Hazards Earth Syst. Sci. 2009, 9, 97–104. [Google Scholar] [CrossRef]
- Paprotny, D.; Sebastian, A.; Morales-Nápoles, O.; Jonkman, S.N. Trends in flood losses in Europe over the past 150 years. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- United Nations (UN) World Urbanization Prospects: The 2018 Revision (Key Facts). Available online: https://population.un.org/wup/Publications/Files/WUP2018-KeyFacts.pdf (accessed on 8 June 2020).
- Berndtsson, R.; Becker, P.; Persson, A.; Aspegren, H.; Haghighatafshar, S.; Jönsson, K.; Larsson, R.; Mobini, S.; Mottaghi, M.; Nilsson, J.; et al. Drivers of changing urban flood risk: A framework for action. J. Environ. Manag. 2019, 240, 47–56. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency (EEA). Urban Adaptation to Climate Change in Europe 2016. Transforming Cities in a Changing Climate; EEA Report 12/2016; Publications Office of the European Union: Luxembourg, 2016; ISSN 1977-8449. [Google Scholar]
- Houston, D.; Werritty, A.; Bassett, D.; Geddes, A.; Hoolachan, A.; McMillan, M. Pluvial (Rain-Related) Flooding in Urban Areas: The Invisible Hazard; Joseph Rowntree Foundation: York, UK, 2011; ISBN 978-1-85935-868-9. Available online: https://www.jrf.org.uk/report/pluvial-rain-related-flooding-urban-areas-invisible-hazard (accessed on 8 June 2020).
- Ungaro, F.; Calzolari, C.; Pistocchi, A.; Malucelli, F. Modelling the impact of increasing soil sealing on runoff coefficients at regional scale: A hydropedological approach. J. Hydrol. Hydromech. 2014, 62, 33–42. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency (EEA). Climate Change Adaptation and Disaster Risk Reduction in Europe. Enhancing Coherence of the Knowledge Base, Policies and Practices; EEA Report 15/2017; Publications Office of the European Union: Luxembourg, 2017; ISSN 1977-844. [Google Scholar]
- Karagiorgos, K.; Thaler, T.; Heiser, M.; Hübl, J.; Fuchs, S. Integrated flash flood vulnerability assessment: Insights from East Attica, Greece. J. Hydrol. 2016, 541, 553–562. [Google Scholar] [CrossRef]
- Barredo, J.I. (2007): Major flood disasters in Europe: 1950–2005. Nat. Hazards 2017, 42, 125–148. [Google Scholar] [CrossRef]
- Sperotto, A.; Torresan, S.; Gallina, V.; Coppola, E.; Critto, A.; Marcomini, A. A multi-disciplinary approach to evaluate pluvial floods risk under changing climate: The case study of the municipality of Venice (Italy). Sci. Total Environ. 2016, 562, 1031–1043. [Google Scholar] [CrossRef]
- Grahn, T.; Nyberg, L. Assessment of pluvial flood exposure and vulnerability of residential areas. Int. J. Disaster Risk Reduct. 2017, 21, 367–375. [Google Scholar] [CrossRef]
- Gesamtverband der Deutschen Versicherungswirtschaft e.V. (German Insurance Association, GDV). Home Page. Sturzfluten in Simbach und Braunsbach: Versicherte Schäden Liegen bei 70 Millionen Euro (Flash Floods in Simbach and Braunsbach: Insured Losses Amount to 70 Million Euros). Available online: https://www.gdv.de/de/medien/aktuell/sturzfluten-in-simbach-und-braunsbach--versicherte-schaeden-liegen-bei-70-millionen-euro-32962 (accessed on 8 June 2020).
- Rumbach, A. Disaster Governance in Small Urban Places: Issues, Trends, and Concerns. In Disaster Governance in Urbanising Asia; Miller, M.A., Douglass, M., Eds.; Springer Science+Business Media: Singapore, 2016; pp. 109–125. [Google Scholar] [CrossRef]
- Birkmann, J.; Welle, T.; Solecki, W.; Lwasa, S.; Garschagen, M. Boost resilience of small and mid-sized cities. Nature 2016, 537, 605–608. [Google Scholar] [CrossRef]
- Aroca-Jiménez, E.; Bodoque, J.M.; García, J.A.; Díez-Herrero, A. A quantitative methodology for the assessment of the regional economic vulnerability to flash floods. J. Hydrol. 2018, 565, 386–399. [Google Scholar] [CrossRef]
- Costabile, P.; Costanzo, C.; de Lorenzo, G.; Macchione, F. Is local flood hazard assessment in urban areas significantly influenced by the physical complexity of the hydrodynamic inundation model? J. Hydrol. 2020, 580, 124231. [Google Scholar] [CrossRef]
- Johnson, J.E.; Welch, D.J.; Maynard, J.A.; Bell, J.D.; Pecl, G.; Robins, J.; Saunders, T. Assessing and reducing vulnerability to climate change: Moving from theory to practical decision-support. Mar. Policy 2016, 74, 220–229. [Google Scholar] [CrossRef]
- Bodoque, J.M.; Amérigo, M.; Díez-Herrero, A.; García, J.A.; Cortés, B.; Ballesteros-Cánovas, J.A.; Olcina, J. Improvement of resilience of urban areas by integrating social perception in flash-flood risk management. J. Hydrol. 2016, 541, 665–676. [Google Scholar] [CrossRef] [Green Version]
- Di Salvo, C.; Pennica, F.; Ciotoli, G.; Cavinato, G.P. A GIS-based procedure for preliminary mapping of pluvial flood risk at metropolitan scale. Environ. Model Softw. 2018, 107, 64–84. [Google Scholar] [CrossRef]
- Fedeski, M.; Gwilliam, J. Urban sustainability in the presence of flood and geological hazards: The development of a GIS-based vulnerability and risk assessment methodology. Landsc. Urban Plan 2007, 83, 50–61. [Google Scholar] [CrossRef]
- Löwe, R.; Arnbjerg-Nielsen, K. Urban pluvial flood risk assessment-data resolution and spatial scale when developing screening approaches on the micro scale. Nat. Hazards Earth Syst. Sci. 2019, 20, 981–997. [Google Scholar] [CrossRef] [Green Version]
- Kaźmierczak, A.; Cavan, G. Surface water flooding risk to urban communities: Analysis of vulnerability, hazard and exposure. Landsc. Urban Plan 2011, 103, 185–197. [Google Scholar] [CrossRef]
- Kaspersen, P.S.; Halsnæs, K. Integrated climate change risk assessment: A practical application for urban flooding during extreme precipitation. Clim. Serv. 2017, 6, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Löwe, R.; Urich, C.S.; Domingo, N.; Mark, O.; Deletic, A.; Arnbjerg-Nielsen, K. Assessment of urban pluvial flood risk and efficiency of adaptation options through simulations—A new generation of urban planning tools. J. Hydrol. 2017, 550, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Van Ootegem, L.; Verhofstadt, E.; van Herck, K.; Creten, T. Multivariate pluvial flood damage models. Environ. Impact Assess Rev. 2015, 54, 91–100. [Google Scholar] [CrossRef]
- Sörensen, J.; Mobini, S. Pluvial, urban flood mechanisms and characteristics–Assessment based on insurance claims. J. Hydrol. 2017, 555, 51–67. [Google Scholar] [CrossRef]
- Rosenzweig, B.R.; McPhillips, L.; Chang, H.; Cheng, C.; Welty, C.; Matsler, M.; Iwaniec, D.; Davidson, C.I. Pluvial flood risk and opportunities for resilience. WIREs Water 2018, 5, 1–18. [Google Scholar] [CrossRef]
- Schmitt, T.G.; Scheid, C. Evaluation and communication of pluvial flood risks in urban areas. WIREs Water 2020, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Koks, E.E.; Jongman, B.; Husby, T.G.; Botzen, W.J.W. Combining hazard, exposure and social vulnerability to provide lessons for flood risk management. Environ. Sci. Policy 2015, 47, 42–52. [Google Scholar] [CrossRef]
- Fernandez, P.; Mourato, S.; Moreira, M.; Pereira, L. A new approach for computing a flood vulnerability index using cluster analysis. Phys. Chem. Earth 2016, 94, 47–55. [Google Scholar] [CrossRef]
- Ritter, J.; Berenguer, M.; Corral, C.; Park, S.; Sempere-Torres, D. ReAFFIRM: Real-time Assessment of Flash Flood Impacts—A Regional high-resolution Method. Environ. Int. 2020, 136, 105375. [Google Scholar] [CrossRef]
- Tapia, C.; Abajo, B.; Feliu, E.; Mendizabal, M.; Martinez, J.A.; Fernández, J.G.; Laburu, T.; Lejarazu, A. Profiling urban vulnerabilities to climate change: An indicator-based vulnerability assessment for European cities. Ecol. Indic. 2017, 78, 142–155. [Google Scholar] [CrossRef]
- Apreda, C.; D’Ambrosio, V.; Di Martino, F. A climate vulnerability and impact assessment model for complex urban systems. Environ. Sci. Policy 2019, 93, 11–26. [Google Scholar] [CrossRef]
- Foudi, S.; Osés-Eraso, N.; Tamayo, I. Integrated spatial flood risk assessment: The case of Zaragoza. Land Use Policy 2015, 42, 278–292. [Google Scholar] [CrossRef]
- Albano, R.; Mancusi, L.; Abbate, A. Improving flood risk analysis for effectively supporting the implementation of flood risk management plans: The case study of “Serio” Valley. Environ. Sci. Policy 2017, 75, 158–172. [Google Scholar] [CrossRef]
- Zhou, Q.; Mikkelsen, P.S.; Halsnæs, K.; Arnbjerg-Nielsen, K. Framework for economic pluvial flood risk assessment considering climate change effects and adaptation benefits. J. Hydrol. 2012, 414–415, 539–549. [Google Scholar] [CrossRef]
- Ouma, Y.; Tateishi, R. Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water 2014, 6, 1515–1545. [Google Scholar] [CrossRef]
- Mustafa, A.; Bruwier, M.; Archambeau, P.; Erpicum, S.; Pirotton, M.; Dewals, B.; Teller, J. Effects of spatial planning on future flood risks in urban environments. J. Environ. Manag. 2018, 225, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Stadt Olfen (City of Olfen) Home Page. Unsere Stadt. Stadtportrait (Our City. Portrait of the City). Available online: https://www.olfen.de/unsere-stadt/stadtportrait.html (accessed on 8 June 2020).
- Stadt Olfen (City of Olfen) Home Page. Unsere Stadt. Zahlen und Fakten (Our City. Numbers and Facts). Available online: https://www.olfen.de/unsere-stadt/zahlen-und-fakten.html (accessed on 8 June 2020).
- Stadt Olfen (City of Olfen). Home page. Unsere Stadt. Vinnum (Our City. District of Vinnum). Available online: https://www.olfen.de/unsere-stadt/ortsteil-vinnum.html (accessed on 8 June 2020).
- Landesbetrieb Information und Technik Nordrhein-Westfalen (State Office for Information and Technology North Rhine-Westphalia, IT.NRW). Kommunalprofil Olfen, Stadt (Municipal Profile City of Olfen). IT.NRW: Düsseldorf, Germany. Available online: https://www.it.nrw/sites/default/files/kommunalprofile/l05558036.pdf (accessed on 8 June 2020).
- Ministerium für Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen (Ministry for Environment, Agriculture, Conservation and Consumer Protection of the State of North Rhine-Westphalia, MULNV) Home Page. Flussgebiete NRW. Hochwassergefahrenkarten und Hochwasserrisikokarten (River Basins NRW. Flood Hazard Maps and Flood Risk Maps). Available online: https://www.flussgebiete.nrw.de/hochwassergefahrenkarten-und-hochwasserrisikokarten-8406 (accessed on 8 June 2020).
- United Nations Office for Disaster Risk Reduction (UNISDR). National Disaster Risk Assessment, Governance System, Methodologies and Use of Results; Words into Action Guidelines, Consultative Version; UNISDR: Geneva, Switzerland, 2017; Available online: https://www.unisdr.org/files/globalplatform/591f213cf2fbe52828_wordsintoactionguideline.nationaldi.pdf (accessed on 8 June 2020).
- Greiving, S.; Hurth, F.; Hartz, A.; Saad, S.; Fleischhauer, M. Development and Drawbacks in Critical Infrastructure and Regional Planning: A Case Study on Region of Cologne, Germany. J. Extrem. Events. 2016, 3, 1650014. [Google Scholar] [CrossRef]
- Schmitt, T.G.; Krüger, M.; Pfister, A.; Becker, M.; Mudersbach, C.; Fuchs, L.; Hoppe, H.; Lakes, I. Einheitliches Konzept zur Bewertung von Starkregenereignissen mittels Starkregenindex (Standardized concept for the evaluation of heavy rain events by using a heavy rain index). Korresp. Abwasser Abfall 2018, 2, 113–120. [Google Scholar] [CrossRef]
- DWA Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (German Association for Water, Wastewater and Waste, DWA). Starkregen und Urbane Sturzfluten. Praxisleitfaden zur Überflutungsvorsorge (Heavy Rain and Urban Flash Floods. Practical Guide to Flood Prevention); DWA: Hennef, Germany, 2013; ISBN 978-3-944328-14-0. [Google Scholar]
- Länderarbeitsgemeinschaft Wasser (LAWA, German Working Group on Water Issues of the Federal States and the Federal Government). LAWA-Strategie für ein Effektives Starkregenrisikomanagement (LAWA-Strategy for Effective Heavy Rain Risk Management); LAWA: Erfurt, Germany, 2018. Available online: https://www.lawa.de/documents/lawa-starkregen_2_1552299106.pdf (accessed on 8 June 2020).
- Organisation for Economic Co-operation and Development (OECD). Handbook on Constructing Composite Indicators. Methodology and User Guide; OECD Publishing: Paris, France, 2008; ISBN 978-92-64-04345-9. [Google Scholar]
- DWA Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (German Association for Water, Wastewater and Waste, DWA). Risikomanagement in der Kommunalen Überflutungsvorsorge für Entwässerungssysteme bei Starkregen (Risk Management in Municipal Pluvial Flood Prevention for Drainage Systems during Heavy Rainfall); DWA-Regelwerk, Merkblatt DWA-M 119; DWA: Hennef, Germany, 2016; ISBN 978-3-88721-392-3. [Google Scholar]
- Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (State Office for the Environment, Measurements and Nature Conservation of the Federal State of Baden-Wuerttemberg, LUBW). Leitfaden Kommunales Starkregenrisikomanagement in Baden-Württemberg (Guideline for Municipal Heavy Rain Risk Management in Baden-Wuerttemberg); LUBW: Karlsruhe, Germany, 2016; ISBN 978-3-88251-391-2. [Google Scholar]
- Ministerium für Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen (Ministry for Environment, Agriculture, Conservation and Consumer Protection of the State of North Rhine-Westphalia, MULNV). Arbeitshilfe Kommunales Starkregenrisikomanagement-Hochwasserrisikomanagementplanung in NRW (Guideline for Municipal Heavy Rain Risk Management-Flood Risk Management Planning in North Rhine-Westphalia); MULNV: Düsseldorf, Germany, 2018. Available online: https://www.flussgebiete.nrw.de/system/files/atoms/files/arbeitshilfe_kommunales_starkregenrisikomanagement_2018.pdf (accessed on 8 June 2020).
- Greiving, S.; Arens, S.; Becker, D.; Fleischhauer, M.; Hurth, F. Improving the assessment of potential and actual impacts of climate change and extreme events through a parallel modelling of climatic and societal changes at different scales. J. Extrem. Events 2017, 4, 1–24. [Google Scholar] [CrossRef]
Dimension | Variable | Source |
---|---|---|
physical | number of floors | [22,37] |
construction period/year | [22,36] | |
building structure/resistance/condition | [15,22,37] | |
social | population density | [18,25,29,36,37,38,39,40] |
people with illness/disabled people | [15,25,29,41] | |
lone parent households (with dependent children) | [29,36,39] | |
ethnicity/ethnic minorities | [29,36,39] | |
age | [15,25,29,36,37,39,41] | |
(single) pensioner households | [29,39] | |
economic | income | [15,22,29,36,39] |
unemployment | [15,22,29,36,39] | |
(level of) education/qualification | [15,29,37,39] | |
damages to infrastructures, structures and contents/loss | [15,38,42,43] | |
environmental | land use | [16,17,26,29,30,38,41,42,44] |
land use change | [37,45] |
Damage Potential Levels | What Has Been Damaged? | |||
---|---|---|---|---|
1. low damage potential | building fabric | - | - | - |
2. medium damage potential | building fabric | building services | - | - |
3. high damage potential | building fabric | building services | high asset furniture | - |
4. very high damage potential | Building fabric | building services | high asset furniture | basement level |
Population Sensitivity Levels | Peer Groups |
---|---|
1. low population sensitivity | 19–25; 26–40; 41–60 |
2. medium population sensitivity | 10–18; 61–70 |
3. high population sensitivity | 3–9; 71–80 |
4. very high population sensitivity | 0–2; ≥80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Othmer, F.J.; Becker, D.; Schulte, L.M.; Greiving, S. A Methodological Approach to Municipal Pluvial Flood Risk Assessment Based on a Small City Case Study. Sustainability 2020, 12, 10487. https://doi.org/10.3390/su122410487
Othmer FJ, Becker D, Schulte LM, Greiving S. A Methodological Approach to Municipal Pluvial Flood Risk Assessment Based on a Small City Case Study. Sustainability. 2020; 12(24):10487. https://doi.org/10.3390/su122410487
Chicago/Turabian StyleOthmer, Felix Julian, Dennis Becker, Laura Miriam Schulte, and Stefan Greiving. 2020. "A Methodological Approach to Municipal Pluvial Flood Risk Assessment Based on a Small City Case Study" Sustainability 12, no. 24: 10487. https://doi.org/10.3390/su122410487
APA StyleOthmer, F. J., Becker, D., Schulte, L. M., & Greiving, S. (2020). A Methodological Approach to Municipal Pluvial Flood Risk Assessment Based on a Small City Case Study. Sustainability, 12(24), 10487. https://doi.org/10.3390/su122410487