Optical Sensing Approach to the Recognition of Different Types of Particulate Matters for Sustainable Indoor Environment Management
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Color Detection
3.2. Light Spectrum Detection
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Biliaiev, M.M.; Kharytonov, M.M. Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. In Air Pollution Modeling and Its Application XXI; Springer: Berlin/Heidelberg, Germany, 2011; pp. 87–91. [Google Scholar]
- Chafe, Z.; Brauer, M.; Klimont, Z.; Dingenen, R.V.; Mehta, S.; Rao, S.; Riahi, K.; Dentener, F.; Smith, K.R. Household cooking with solid fuels contributes to ambient PM2.5 air pollution and the burden of disease. Environ. Health Perspect. 2014, 12, 1314–1320. [Google Scholar] [CrossRef] [Green Version]
- Afshari, A.; Matson, U.; Ekberg, L.E. Characterization of indoor sources of fine and ultrafine particles: A study conducted in a full-scale chamber. Indoor Air 2005, 15, 141–150. [Google Scholar] [CrossRef]
- Colome, S.; Kado, N.; Jaques, P.; Kleinman, M. Indoor-outdoor air pollution relations: Particulate matter less than 10 μm in aerodynamic diameter (PM10) in homes of asthmatics. Atmos. Environ. Part A Gen. Top. 1992, 26, 2173–2178. [Google Scholar] [CrossRef]
- Tasić, V.; Jovašević-Stojanović, M.; Vardoulakis, S.; Milošević, N.; Kovačević, R.; Petrović, J. Comparative assessment of a real-time particle monitor against the reference gravimetric method for PM10 and PM2.5 in indoor air. Atmos. Environ. 2012, 54, 358–364. [Google Scholar] [CrossRef]
- Kelly, K.E.; Whitaker, J.; Petty, A.; Widmer, C.; Dybwad, A.; Sleeth, D.; Martin, R.; Butterfield, A. Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environ. Pollut. 2017, 211, 491–500. [Google Scholar] [CrossRef]
- Vázquez, L.; Zorzano, M.; Jimenez, S. Spectral information retrieval from integrated broadband photodiode martian ultraviolet measurements. Opt. Lett. 2007, 32, 2596–2598. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Sang, X. LED array light source illuminance distribution and photoelectric detection performance analysis in dust concentration testing system. Sens. Actuators A Phys. 2018, 271, 111–117. [Google Scholar] [CrossRef]
- Vaca-Oyola, L.S.; Marín, E.; Rojas-Trigos, J.B.; Cifuentes, A.; Cabrera, H.; Alvarado, S.; Cedeño, E.; Calderón, A.; Delgado-Vasallo, O.A. Liquids refractive index spectrometer. Sens. Actuators B Chem. 2016, 229, 249–256. [Google Scholar] [CrossRef]
- Shin, S.; Jung, C.; Kim, Y. Analysis of the measurement difference for the PM10 concentrations between beta-ray absorption and gravimetric methods at gosan. Aerosol Air Qual. Res. 2011, 11, 846–853. [Google Scholar] [CrossRef] [Green Version]
- Sówka, I.; Chlebowska-Sty’s, A.; Pachurka, Ł.; Rogula-Kozłowska, W.; Mathews, B. Analysis of particulate matter concentration variability and origin in selected urban areas in Poland. Sustainability 2019, 11, 5735. [Google Scholar] [CrossRef] [Green Version]
- Jo, E.J.; Lee, W.S.; Jo, H.Y.; Kim, C.H.; Eom, J.S.; Mok, J.H.; Kim, M.H.; Lee, K.; Kim, K.U.; Lee, M.K.; et al. Effects of particulate matter on respiratory disease and the impact of meteorological factors in Busan, Korea. Respir. Med. 2017, 124, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Shang, X.; Herrmann, H.; Meng, F.; Mo, Z.; Chen, J.; Lv, W. Approaches for identifying PM2.5 source types and source areas at a remote background site of South China in spring. Sci. Total Environ. 2019, 691, 1320–1327. [Google Scholar] [CrossRef]
- Ahn, H.; Jung, B.K.; Joo, J.C.; Park, J.R. Spectral sensing of asbestos according to concentration in various asbestos containing materials. Appl. Mech. Mater. 2014, 627, 7–11. [Google Scholar] [CrossRef]
- Mortimer, R.J.; Varley, T.S. Quantification of colour stimuli through the calculation of CIE chromaticity coordinates and luminance data for application to in situ colorimetry studies of electrochromic materials. Displays 2011, 32, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Dang, R.Y.; Liu, Y.; Liu, G. Chromaticity changes of inorganic pigments in Chinese traditional paintings due to the illumination of frequently-used light sources in museum. Color Res. Appl. 2018, 43, 596–605. [Google Scholar] [CrossRef]
- Steuber, F.; Staudigel, J.; Stössel, M.; Simmerer, J.; Winnacker, A.; Spreitzer, H.; Weissörtel, F.; Salbeck, J. White light emission from organic LEDs utilizing spiro compounds with high-temperature stability. Adv. Mater. 2000, 12, 130–133. [Google Scholar] [CrossRef]
- Ferrer, E.; Alegría, A.; Farré, R.; Clemente, G.; Calvo, C. Fluorescence, browning index and color in infant formulas during storage. J. Agric. Food Chem. 2005, 53, 4911–4917. [Google Scholar] [CrossRef]
Chromaticity Values | Chromaticity Values | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample | Cellophane | Y | x | y | Sample | Cellophane | Y | x | y | ||
Household Dust | As prepared | - | 13.40 | 0.3229 | 0.3244 | Soil Powder | As prepared | - | 49.15 | 0.3576 | 0.3581 |
Red | 4.87 | 0.4216 | 0.3307 | Red | 7.63 | 0.4914 | 0.3031 | ||||
Orange | 8.01 | 0.4625 | 0.3576 | Orange | 18.21 | 0.5472 | 0.3697 | ||||
Yellow | 13.47 | 0.4230 | 0.4305 | Yellow | 34.44 | 0.4687 | 0.4546 | ||||
Green | 5.08 | 0.2923 | 0.3853 | Green | 8.84 | 0.2617 | 0.4733 | ||||
Blue | 3.16 | 0.2516 | 0.2058 | Blue | 4.71 | 0.2227 | 0.1778 | ||||
Pink | 9.91 | 0.4098 | 0.2624 | Pink | 16.94 | 0.4496 | 0.2458 | ||||
Violet | 4.40 | 0.2970 | 0.2686 | Violet | 3.46 | 0.3027 | 0.1933 | ||||
Water Added | - | 5.18 | 0.3190 | 0.3208 | Water Added | - | 6.25 | 0.3824 | 0.3670 | ||
Red | 4.43 | 0.3869 | 0.3357 | Red | 4.56 | 0.3970 | 0.3341 | ||||
Orange | 6.16 | 0.4197 | 0.3508 | Orange | 6.67 | 0.4332 | 0.3524 | ||||
Yellow | 9.02 | 0.3955 | 0.4066 | Yellow | 9.91 | 0.4103 | 0.4069 | ||||
Green | 4.41 | 0.3025 | 0.3586 | Green | 4.17 | 0.3002 | 0.3711 | ||||
Blue | 3.11 | 0.2692 | 0.2320 | Blue | 3.09 | 0.2732 | 0.2384 | ||||
Pink | 8.52 | 0.4081 | 0.2856 | Pink | 8.09 | 0.4349 | 0.2858 | ||||
Violet | 4.35 | 0.3008 | 0.2851 | Violet | 4.32 | 0.3054 | 0.2890 | ||||
Refractive Index Liquid Added | - | 3.48 | 0.3163 | 0.3177 | Refractive Index Liquid Added | - | 22.23 | 0.3818 | 0.3749 | ||
Red | 4.37 | 0.3768 | 0.3369 | Red | 5.57 | 0.4647 | 0.3254 | ||||
Orange | 5.87 | 0.3859 | 0.3305 | Orange | 11.02 | 0.5044 | 0.3627 | ||||
Yellow | 8.17 | 0.3756 | 0.3864 | Yellow | 19.05 | 0.4484 | 0.4310 | ||||
Green | 3.92 | 0.3021 | 0.3635 | Green | 5.67 | 0.2814 | 0.4245 | ||||
Blue | 4.29 | 0.2800 | 0.2699 | Blue | 3.24 | 0.2475 | 0.2012 | ||||
Pink | 7.38 | 0.4170 | 0.2834 | Pink | 12.04 | 0.4501 | 0.2742 | ||||
Violet | 3.39 | 0.3080 | 0.2797 | Violet | 3.34 | 0.3145 | 0.2454 |
Chromaticity Values | Chromaticity Values | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample | Cellophane | Y | x | y | Sample | Cellophane | Y | x | y | ||
Talc Powder | As prepared | - | 74.79 | 0.3127 | 0.3191 | Gypsum Powder | As prepared | - | 79.97 | 0.3157 | 0.3213 |
Red | 7.53 | 0.4932 | 0.3040 | Red | 8.52 | 0.5498 | 0.3143 | ||||
Orange | 22.17 | 0.5568 | 0.3732 | Orange | 24.57 | 0.5630 | 0.3738 | ||||
Yellow | 50.31 | 0.4682 | 0.4770 | Yellow | 53.23 | 0.4719 | 0.4763 | ||||
Green | 12.40 | 0.2337 | 0.5337 | Green | 12.90 | 0.2382 | 0.5213 | ||||
Blue | 3.84 | 0.1888 | 0.1134 | Blue | 3.99 | 0.1816 | 0.1021 | ||||
Pink | 20.73 | 0.4025 | 0.2020 | Pink | 20.89 | 0.4078 | 0.1989 | ||||
Violet | 4.57 | 0.2687 | 0.1634 | Violet | 3.74 | 0.2681 | 0.1400 | ||||
Water Added | - | 47.39 | 0.3136 | 0.3205 | Water Added | - | 19.09 | 0.3065 | 0.3134 | ||
Red | 6.69 | 0.4999 | 0.3211 | Red | 5.07 | 0.4332 | 0.3300 | ||||
Orange | 15.50 | 0.5189 | 0.3610 | Orange | 9.48 | 0.4626 | 0.3495 | ||||
Yellow | 32.18 | 0.4565 | 0.4669 | Yellow | 16.81 | 0.4224 | 0.4363 | ||||
Green | 8.73 | 0.2529 | 0.4859 | Green | 6.00 | 0.2818 | 0.4111 | ||||
Blue | 3.61 | 0.2012 | 0.1323 | Blue | 4.44 | 0.2431 | 0.2094 | ||||
Pink | 14.18 | 0.4069 | 0.2127 | Pink | 10.71 | 0.4011 | 0.2453 | ||||
Violet | 3.57 | 0.2783 | 0.1835 | Violet | 4.35 | 0.2906 | 0.2543 | ||||
Refractive Index Liquid Added | - | 15.30 | 0.3225 | 0.3297 | Refractive Index Liquid Added | - | 56.70 | 0.3159 | 0.3217 | ||
Red | 4.91 | 0.4221 | 0.3310 | Red | 7.34 | 0.5239 | 0.3181 | ||||
Orange | 8.70 | 0.4525 | 0.3457 | Orange | 18.51 | 0.5450 | 0.3724 | ||||
Yellow | 14.58 | 0.4276 | 0.4370 | Yellow | 37.61 | 0.4629 | 0.4703 | ||||
Green | 5.23 | 0.2828 | 0.4115 | Green | 9.90 | 0.2457 | 0.5043 | ||||
Blue | 3.21 | 0.2443 | 0.1962 | Blue | 4.91 | 0.2043 | 0.1460 | ||||
Pink | 7.38 | 0.4170 | 0.2834 | Pink | 17.27 | 0.4064 | 0.2135 | ||||
Violet | 3.39 | 0.3080 | 0.2797 | Violet | 3.54 | 0.2757 | 0.1664 |
Chromaticity Values | Chromaticity Values | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample | Cellophane | Y | x | y | Sample | Cellophane | Y | x | y | ||
Pine tree Pollen | As prepared | - | 32.77 | 0.3938 | 0.3796 | Pine tree Pollen | Water Added | - | 28.76 | 0.3926 | 0.3846 |
Red | 6.79 | 0.4714 | 0.3017 | Red | 6.28 | 0.4887 | 0.3205 | ||||
Orange | 14.02 | 0.5200 | 0.3524 | Orange | 12.88 | 0.5247 | 0.3614 | ||||
Yellow | 24.74 | 0.4745 | 0.4402 | Yellow | 23.08 | 0.4626 | 0.4336 | ||||
Green | 6.84 | 0.2764 | 0.433 | Green | 6.30 | 0.2746 | 0.4422 | ||||
Blue | 4.52 | 0.2479 | 0.2204 | Blue | 3.25 | 0.2432 | 0.1983 | ||||
Pink | 13.51 | 0.4823 | 0.2669 | Pink | 13.54 | 0.4722 | 0.2769 | ||||
Violet | 3.40 | 0.3286 | 0.2329 | Violet | 4.42 | 0.3174 | 0.2579 | ||||
Refractive Index Liquid Added | - | 22.62 | 0.3892 | 0.3804 | Refractive Index Liquid Added | Green | 5.88 | 0.2844 | 0.4117 | ||
Red | 6.06 | 0.4374 | 0.3039 | Blue | 4.39 | 0.2589 | 0.2374 | ||||
Orange | 11.17 | 0.5106 | 0.3595 | Pink | 11.28 | 0.4708 | 0.2735 | ||||
Yellow | 19.14 | 0.4601 | 0.4351 | Violet | 3.35 | 0.3240 | 0.2506 |
Sample Conditions | As Prepared | Water | Refractive Index Liquid | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Filter | Measurement | Materials | |||||||||
No filter | Peak Intensity | Low | High | Other | Low | High | Other | Low | High | Other | |
Peak Positions (nm) | Pine tree pollen | 421 | 681 | 601 | 421 | 681 | 591 | 421 | 676 | 721 | |
Soil | 421 | 681 | 597 | 421 | 677 | 721 | 421 | 681 | - | ||
Household Dust | 420 | 678 | - | 420 | 677 | 720 | 420 | 677 | - | ||
Talc | 420 | 677 | 720 | 420 | 680 | 720 | 420 | 677 | 720 | ||
Gypsum | 420 | 679 | - | 433 | 691 | - | 433 | 690 | - | ||
Pink filter | Peak Intensity | Low | High | Other | Low | High | Other | Low | High | Other | |
Peak Positions (nm) | Household Dust | 440 | - | - | 440 | - | - | 440 | - | - | |
Talc | 430 | - | - | 430 | 490 | - | 430 | - | - | ||
Gypsum | 439 | 820 | - | 453 | - | - | 453 | - | - |
Sample Conditions | As Prepared | Water | Refractive Index Liquid | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Filter | Measurement | Materials | |||||||||
No filter | Peak Intensity | Low | High | Other | Low | High | Other | Low | High | Other | |
Peak Intensity Ratio | Pine tree pollen | 1 | 10.46 | 0.98 | 1 | 8.75 | 0.14 | 1 | 5.86 | 0.81 | |
Soil | 1 | 8.51 | 0.14 | 1 | 4.61 | 0.41 | 1 | 8.12 | - | ||
Household Dust | 1 | 9.31 | - | 1 | 6.31 | 0.44 | 1 | 9.56 | - | ||
Talc | 1 | 6.32 | 0.45 | 1 | 4.51 | 1.41 | 1 | 6.21 | 0.68 | ||
Gypsum | 1 | 9.63 | - | 1 | 9.65 | - | 1 | 9.71 | - | ||
Pink filter | Peak in Intensity | Low | High | Other | Low | High | Other | Low | High | Other | |
Peak Intensity Ratio | Household Dust | 0.48 | - | - | 0.30 | - | - | 0.39 | - | - | |
Talc | 0.21 | - | - | 0.08 | 0.06 | - | 0.21 | - | - | ||
Gypsum | 0.36 | 0.13 | - | 0.40 | - | - | 0.44 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, H.; Kang, J.S.; Choi, G.-S.; Choi, H.-J. Optical Sensing Approach to the Recognition of Different Types of Particulate Matters for Sustainable Indoor Environment Management. Sustainability 2020, 12, 10568. https://doi.org/10.3390/su122410568
Ahn H, Kang JS, Choi G-S, Choi H-J. Optical Sensing Approach to the Recognition of Different Types of Particulate Matters for Sustainable Indoor Environment Management. Sustainability. 2020; 12(24):10568. https://doi.org/10.3390/su122410568
Chicago/Turabian StyleAhn, Hosang, Jae Sik Kang, Gyeong-Seok Choi, and Hyun-Jung Choi. 2020. "Optical Sensing Approach to the Recognition of Different Types of Particulate Matters for Sustainable Indoor Environment Management" Sustainability 12, no. 24: 10568. https://doi.org/10.3390/su122410568
APA StyleAhn, H., Kang, J. S., Choi, G. -S., & Choi, H. -J. (2020). Optical Sensing Approach to the Recognition of Different Types of Particulate Matters for Sustainable Indoor Environment Management. Sustainability, 12(24), 10568. https://doi.org/10.3390/su122410568