Novel Magnetic Nano Silica Synthesis Using Barley Husk Waste for Removing Petroleum from Polluted Water for Environmental Sustainability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Nanoparticles
2.2. Characterization
Magnetic Properties
2.3. Adsorption Study of Oil Removal by Magnetic Nano-Silica
2.3.1. Adsorption Experiment
2.3.2. Optimization of Contact Time
2.3.3. Optimization of pH
2.4. Desorption
3. Results and Discussion
3.1. Characterization Results of Magnetic Silica Nanoparticles
3.2. Sorption Results
3.2.1. Effect of Contact Time
3.2.2. Effect of pH
3.2.3. Effect of Sorbent Weight
3.3. Adsorption Kinetics
3.4. Adsorption Isotherm
3.5. Mechanism of Sorption
3.6. Reusability Assessment
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Novotny, R.; Sal, J.; Ctibor, M. Environmental use of waste materials as admixtures in concrete. Iop Conf. Ser. Mater. Sci. Eng. 2019, 603, 052101. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef] [Green Version]
- Šeremet, D.; Durgo, K.; Jokić, S.; Huđek, A.; Vojvodić Cebin, A.; Mandura, A.; Jurasović, J.; Komes, D. Valorization of Banana and Red Beetroot Peels: Determination of Basic Macrocomponent Composition, Application of Novel Extraction Methodology and Assessment of Biological Activity In Vitro. Sustainability 2020, 12, 4539. [Google Scholar] [CrossRef]
- Rico, D.; Peñas, E.; García, M.C.; Martínez-Villaluenga, C.; Rai, D.K.; Birsan, R.I.; Frias, J.; Martín-Diana, A.B. Sprouted Barley Flour as a Nutritious and Functional Ingredient. Foods 2020, 9, 296. [Google Scholar] [CrossRef] [Green Version]
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide Research Trends on Wheat and Barley: A Bibliometric Comparative Analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef] [Green Version]
- Brennan, M.; Hedley, P.E.; Topp, C.F.E.; Morris, J.; Ramsay, L.; Mitchell, S.; Shepherd, T.; Thomas, W.T.B.; Hoad, S.P. Development and Quality of Barley Husk Adhesion Correlates with Changes in Caryopsis Cuticle Biosynthesis and Composition. Front. Plant Sci. 2019, 10, 672. [Google Scholar] [CrossRef] [Green Version]
- Anastasia, S.; Steven, B. Water Scarcity in Cyprus: A Review and Call for Integrated Policy. Water 2014, 6, 2898–2928. [Google Scholar]
- Pourkheirandish, M.; Komatsuda, T. The importance of barley genetics and domestication in a global perspective. Ann. Bot. 2007, 100, 999–1008. [Google Scholar] [CrossRef] [Green Version]
- Akhayere, E.; Kavaz, D.; Vaseashta, A. Synthesizing Nano Silica Nanoparticles from Barley Grain Waste: Effect of Temperature on Mechanical Properties. Pol. J. Environ. Stud. 2019, 28, 2513–2521. [Google Scholar] [CrossRef]
- Azizi, S.N.; Dehnavi, A.R.; Joorabdoozha, A. Synthesis and characterization of LTA nanozeolite using barley husk silica: Mercury removal from standard and real solutions. Mater. Resr. Bull. 2013, 48, 1753–1759. [Google Scholar] [CrossRef]
- El-Naggar, M.E.; Abdelsalam, N.R.; Fouda, M.M.; Mackled, M.I.; Al-Jaddadi, M.A.; Ali, H.M.; Siddiqui, M.H.; Kandil, E.E. Soil Application of Nano Silica on Maize Yield and Its Insecticidal Activity Against Some Stored Insects After the Post-Harvest. Nanomaterials 2020, 10, 739. [Google Scholar] [CrossRef] [PubMed]
- Aphane, M.E.; Doucet, F.J.; Kruger, R.A.; Petrik, L.; van der Merwe, E.M. Preparation of Sodium Silicate Solutions and Silica Nanoparticles from South African Coal Fly Ash. Waste Biomass Valor 2020, 11, 4403–4417. [Google Scholar] [CrossRef]
- Fernandes, I.J.; Calheiro, D.; Sánchez, F.A.; Camacho, A.L.D.; Rocha, T.L.A.D.C.; Moraes, C.A.M.; Sousa, V.C. Characterization of Silica Produced from Rice Husk Ash: Comparison of Purification and Processing Methods. Mater. Res. 2017, 20 (Suppl. 2), 512–518. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, N.; Cao, Y.; Lin, X.; Xu, L.; Zhang, W.; Wei, Y.; Feng, L. Fabrication of Silica Nanospheres Coated Membranes: Towards the Effective Separation of Oil-in-Water Emulsion in Extremely Acidic and Concentrated Salty Environments. Sci. Rep. 2016, 6, 32540. [Google Scholar] [CrossRef] [PubMed]
- Sadegh, H.; Ali, G.A.M.; Gupta, V.K.; Makhlouf, A.S.H.; Shahryari-Ghoshekandi, R.; Nadagouda, M.N.; Sillanpää, M.; Megiel, E. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J. Nanostruct. Chem. 2017, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kavaz, D.; Odabas, S.; Denkbas, E.B.; Vaseashta, A. A Practical Methodology For Igg Purification via Chitosan Based Magnetic Nanoparticles. Dig. J. Nanomater. Biostruct. 2012, 7, 1165–1177. [Google Scholar]
- El-sayed, M.E.A. Nanoadsorbents for water and wastewater remediation. Sci. Total Environ. 2020, 739, 139903. [Google Scholar] [CrossRef]
- Akhayere, E.; Essien, E.A.; Kavaz, D. Effective and reusable nano-silica synthesized from barley and wheat grass for the removal of nickel from agricultural wastewater. Environ. Sci. Pollut. Res. 2019, 25, 25802–25813. [Google Scholar] [CrossRef]
- Singh, H.; Bhardwaj, N.; Arya, S.H.; Khatri, M. Environmental impacts of oil spills and their remediation by magnetic nanomaterials. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100305. [Google Scholar] [CrossRef]
- D’Andrea, M.A.F.; Reddy, G.K. MHA Crude Oil Spill Exposure and Human Health Risks. J. Occup. Environ. Med. 2014, 56, 1029–1041. [Google Scholar] [CrossRef] [Green Version]
- Syed, S. Approach of Cost-Effective Adsorbents for Oil Removal from Oily Water. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1916–1945. [Google Scholar]
- Annunciado, T.R.; Syden sticker, T.H.D.; Amico, S.C. Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Mar. Pollut. Bull. 2015, 50, 1340–1346. [Google Scholar] [CrossRef] [PubMed]
- Afzal, M.; Rehman, K.; Shabir, G. Large-scale remediation of oil-contaminated water using floating treatment wetlands. Clean Water 2019, 2, 3. [Google Scholar] [CrossRef]
- Rehman, K.; Imran, A.; Amin, I.; Afzal, M. Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. J. Hazard. Mater. 2018, 349, 242–251. [Google Scholar] [CrossRef]
- Wu, D.; Fang, L.; Qin, Y.; Wu, W.; Mao, C.; Zhu, H. Oil sorbents with high sorption capacity, oil/water selectivity and reusability for oil spill cleanup. Mar. Pollut. Bull. 2014, 84, 263–267. [Google Scholar] [CrossRef]
- Jan, K.; Riar, C.S.; Saxena, D.C. Characterization of agro-industrial byproducts and wastes for sustainable industrial application. Food Meas. 2017, 11, 1254–1265. [Google Scholar] [CrossRef]
- Jan, K.; Riar, C.S.; Saxena, D.C. Engineering and functional properties of biodegradable pellets developed from various agro-industrial wastes using extrusion technology. J. Food Sci. Technol. 2015, 52, 7625–7639. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, S. Optimizing Urban Material Flows and Waste Streams in Urban Development through Principles of Zero Waste and Sustainable Consumption. Sustainability 2011, 3, 155–183. [Google Scholar] [CrossRef] [Green Version]
- Zamani, A.; Marjani, A.P.; Mousavi, Z. Agricultural waste biomass-assisted nanostructures: Synthesis and application. Green Process Synth. 2019, 8, 421–429. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hager, R.A.; Mohamed, A.H. Applications of Bio-waste Materials as Green Synthesis of Nanoparticles and Water Purification. Adv. Mater. 2017, 6, 85–101. [Google Scholar]
- Ghosh, A.; Dutta, S.; Mukherjee, I.; Biswas, S.; Chatterjee, S.; Saha, R. Template-free synthesis of flower-shaped zero-valent iron nanoparticle: Role of hydroxyl group in controlling morphology and nitrate reduction. Adv. Powder Technol. 2017, 28, 2256–2264. [Google Scholar] [CrossRef]
- Ebrahiminezhad, A.; Taghizadeh, S.; Ghasemi, Y.; Berenjian, A. Green synthesized nanoclusters of ultra-small zero valent iron nanoparticles as a novel dye removing material. Sci. Total Environ. 2018, 621, 1527–1532. [Google Scholar] [CrossRef] [PubMed]
- Atta, A.M.; Moustafa, Y.M.; Ezzat, A.O.; Hashem, A.I. Novel Magnetic Silica-Ionic Liquid Nanocomposites for Wastewater Treatment. Nanomaterials 2020, 10, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuvakkumar, R.; Hong, S.I. Green synthesis of spinel magnetite iron oxide nanoparticles. Adv. Mater. Res. 2014, 1051, 39–42. [Google Scholar] [CrossRef]
- Sofia, S.; Gawande, M.B.; Alexandre, V.; João, P.V.; Nenad, B.; João, T.; Alexander, T.; Orlando, M.N.D.T.; Radek, Z.; Rajender, S.V.; et al. Magnetically recyclable magnetite-palladium (Nanocat-Fe-Pd) nanocatalyst for the Buchwald-Hartwig reaction. Green Chem. 2014, 16, 3494–3500. [Google Scholar]
- Munasir, A.; Terraningtyas, A. Synthesis and characterization of Fe3O4/SiO2 composite with in-situ method: TEOS as SiO2 NPs precursor. J. Phys. Conf. Ser. 2019, 1171, 012050. [Google Scholar] [CrossRef]
- Demir, A.; Topkaya, R.; Baykal, A. Green synthesis of superparamagnetic Fe3O4 nanoparticles with maltose: Its magnetic investigation. Polyhedron 2013, 65, 282–287. [Google Scholar] [CrossRef]
- Sadek, M.O.; Reda, M.S.; Al-Bilali, K.R. Preparation and Characterization of Silica and Clay-Silica Core Shell Nanoparticles Using Sol-Gel Method. Adv. Nanoparticles 2013, 2, 165. [Google Scholar] [CrossRef] [Green Version]
- Fan, Q.; Guan, Y.; Zhang, Z.; Xu, G.; Yang, Y.; Guo, C. A new method of synthesis well-dispersion and dense Fe3O4-SiO2 magnetic nanoparticles for DNA extraction. Chem. Phys. Lett. 2019, 715, 7–13. [Google Scholar] [CrossRef]
- El-Said, W.A.; Fouad, D.M.; Ali, M.H. Green synthesis of magnetic mesoporous silica nanocomposite and its adsorptive performance against organochlorine pesticides. Int. J. Environ. Sci. Technol. 2018, 15, 1731–1744. [Google Scholar] [CrossRef]
- Goshu, A.; Enyew, A.Z.; Teshome, A.S. Synthesis of Silica-Coated Fe3O4 Nanoparticles by Microemulsion Method: Characterization and Evaluation of Antimicrobial Activity. Int. J. Biomater. 2020, 4783612. [Google Scholar] [CrossRef] [Green Version]
- Yew, Y.P.; Kamyar, S.; Miyake, M.; Kuwano, N.; Khairudin, N.; Mohamad, S.; Lee, K.X. Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed (Kappaphycus alvarezii) Extract. Nanoscale Res. Lett. 2016, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stjerndahl, M.; Andersson, M.; Hall, H.E.; Pajerowski, D.M.; Meisel, M.W.; Duran, R.S. Superparamagnetic Fe3O4/SiO2 nanocomposites: Enabling the tuning of both the iron oxide load and the size of the nanoparticles. Langmuir 2008, 24, 3532–3536. [Google Scholar] [CrossRef]
- Onyebuchi, C.; Kavaz, D. Chitosan And N, N, N-Trimethyl Chitosan Nanoparticle Encapsulation of Ocimum Gratissimum Essential Oil: Optimised Synthesis, In Vitro Release And Bioactivity. Int. J. Nanomed. 2019, 14, 7707–7727. [Google Scholar] [CrossRef] [Green Version]
- Andrade, A.L.; Souza, D.M.; Pereira, M.C.; Fabris, J.D.; Domingues, R.Z. Synthesis and characterization of magnetic nanoparticles coated with silica through a sol-gel approach. Cerâmica 2009, 55, 420–424. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, S.I.; Komogortsev, S.V. Magnetization curves of randomly oriented ferromagnetic single-domain nanoparticles with combined symmetry of magnetic anisotropy. J. Magn. Magn. Mater. 2008, 320, 1123–1127. [Google Scholar] [CrossRef]
- Syed, S.; Alhazzaa, M.I.; Asif, M. Treatment of oily water using hydrophobic nano-silica. Chem. Eng. J. 2011, 167, 99–103. [Google Scholar] [CrossRef]
- Moussavi, G.; Khosravi, R.; Farzadkia, M. Removal of petroleum hydrocarbons from contaminated groundwater using an electrocoagulation process: Batch and continuous experiments. Desalination 2011, 278, 1–3, 288–294. [Google Scholar] [CrossRef]
- Asgari, A.; Nabizadeh, R.; Mahvi, A.H. Biodegradation of total petroleum hydrocarbons from acidic sludge produced by re-refinery industries of waste oil using in-vessel composting. J. Environ. Health Sci. Eng. 2017, 15, 3. [Google Scholar] [CrossRef] [Green Version]
- Brandão, P.C.; Souza, T.C.; Ferreira, C.A.; Hori, C.E.; Romanielo, L.L. Removal of Petroleum Hydrocarbons from Aqueous Solution Using Sugarcane Bagasse as Adsorbent. J. Hazard. Mater. 2010, 175, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Camilo, A.F.; Maricelly, M.; Pedro, B.; Edgar, P.; Farid, B.C. Water Remediation Based on Oil Adsorption Using Nanosilicates Functionalized with a Petroleum Vacuum Residue. Adsorp. Sci. Technol. 2014, 32, 2–3, 197–207. [Google Scholar]
- Akhayere, E.; Kavaz, D. Nano-silica and nano-zeolite synthesized from barley grass straw for effective removal of gasoline from aqueous solution: A comparative study. Chem. Eng. Commun. 2020. [Google Scholar] [CrossRef]
- Kharisov, I.B.; Dias, R.H.V.; Kharissova, O.V. Nanotechnology-based remediation of petroleum impurities from water. J. Pet. Sci. Eng. 2014, 122, 705–718. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, M.; Sha, W.; Wang, Y.; Hao, H.; Dou, Y.; Li, Y. Sorption Behavior and Mechanisms of Organic Contaminants to Nano and Microplastics. Molecules 2020, 25, 1827. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhu, Z.; Yang, Y.; Sun, Y.; Yu, F.; Ma, J. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater. Environ. Pollut. 2019, 246, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Jeddi, M.K.; Liimatainen, O.; Liimatainen, H. Magnetic superabsorbents based on nanocellulose aero beads for selective removal of oils and organic solvents. Mater. Des. 2019, 183, 108115. [Google Scholar] [CrossRef]
- Hakimabadi, S.G.; Ahmadpour, A.; Mosavian, M.T.H.; Bastami, T.R. Functionalized Magnetite/Silica Nanocomposite for Oily Wastewater Treatment. Adv. Environ. Res. 2015, 4, 69–81. [Google Scholar] [CrossRef]
1st Order Kinetics | |||
Intercept | Slope | R2 | |
Magnetic nano silica (M-NS) | 1.98028 | −0.8363 | 0.9103 |
2nd Order Kinetics | |||
Intercept | Slope | R2 | |
Magnetic nano silica (M-NS) | 0.15816 | −0.08956 | 0.9116 |
Langmuir | |||
R2 | Qm | b | |
Magnetic nano silica | 0.9964 | 0.342 | −2.8 |
Freundlich | |||
R2 | n | Kf | |
Magnetic nano silica | 0.9568 | −12.02 | 2.135 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhayere, E.; Vaseashta, A.; Kavaz, D. Novel Magnetic Nano Silica Synthesis Using Barley Husk Waste for Removing Petroleum from Polluted Water for Environmental Sustainability. Sustainability 2020, 12, 10646. https://doi.org/10.3390/su122410646
Akhayere E, Vaseashta A, Kavaz D. Novel Magnetic Nano Silica Synthesis Using Barley Husk Waste for Removing Petroleum from Polluted Water for Environmental Sustainability. Sustainability. 2020; 12(24):10646. https://doi.org/10.3390/su122410646
Chicago/Turabian StyleAkhayere, Evidence, Ashok Vaseashta, and Doga Kavaz. 2020. "Novel Magnetic Nano Silica Synthesis Using Barley Husk Waste for Removing Petroleum from Polluted Water for Environmental Sustainability" Sustainability 12, no. 24: 10646. https://doi.org/10.3390/su122410646
APA StyleAkhayere, E., Vaseashta, A., & Kavaz, D. (2020). Novel Magnetic Nano Silica Synthesis Using Barley Husk Waste for Removing Petroleum from Polluted Water for Environmental Sustainability. Sustainability, 12(24), 10646. https://doi.org/10.3390/su122410646