The Economic Effects of Climate Change Adaptation Measures: Evidence from Miami-Dade County and New York City
Abstract
:1. Introduction
2. Literature Review
3. Data
3.1. Housing
3.2. Major Storms
3.3. Risk Perception Factors
3.4. Climate Change Adaptation
4. Method
4.1. Storm Impacts on Housing Markets
4.2. Valuing Climate Change Adaptation Measures
4.3. Robustness Check: DID Estimation
5. Results and Discussion
5.1. Structural and Locational Variables (Appendix A and Appendix B)
5.2. Storm Impact on Housing Market (Table 2, Model 1)
5.3. Storm Characteristics and Risk Perception Factors (Table 2, Model 2)
5.4. Effects of Adaptation Measures (Table 2 and Table 3)
5.5. Adaptation Efficacy and Market Trend (Figure 5)
6. Conclusions
Funding
Conflicts of Interest
Appendix A
Variables | MDC (n = 79,181) | NYC (n = 90,777) | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Structural variables | |||||
Bldgsf | Building square footage (thousands) | 2.33 | 1.19 | 1.63 | 0.666 |
Area | Lot square footage (thousands) | 10.3 | 8.53 | 3.28 | 2.32 |
Story | Number of stories | 1.12 | 0.328 | 2.47 | 0.627 |
Age | Building age (year) | 50.2 | 20.6 | 74.3 | 27.0 |
Occupancy | 1 if a property is owner-occupied; 0 otherwise | 0.814 | 0.389 | 0.801 | 0.399 |
Elevation | Ground elevation above sea level (feet) | 8.17 | 2.46 | 57.5 | 46.4 |
Locational variables | |||||
Metro | 1 if a home is within 400 m of metro stations; 0 otherwise | 0.003 | 0.055 | 0.024 | 0.153 |
Bus | 1 if a home is within 400 m of bus stops; 0 otherwise | 0.662 | 0.473 | 0.230 | 0.421 |
Commercial | 1 if a home is within 400 m of major malls; 0 otherwise | 0.003 | 0.052 | 0.802 | 0.399 |
School | 1 if a home is within 400 m of schools; 0 otherwise | 0.388 | 0.487 | 0.295 | 0.456 |
Brownfield | 1 if a home is within brownfield sites; 0 otherwise | 0.099 | 0.299 | 0.012 | 0.108 |
Greenview | 1 if a home has a green space view; 0 otherwise | 0.051 | 0.220 | 0.014 | 0.116 |
Bayview | 1 if a home has a bay-view; 0 otherwise | 0.074 | 0.261 | 0.011 | 0.103 |
Market variables | |||||
Unemploy | Annual unemployment rates by zip code (%) | 0.095 | 0.035 | 0.085 | 0.030 |
Vacancy | Annual vacancy rates by zip code (%) | 0.114 | 0.084 | 0.069 | 0.010 |
Income | Annual median household income (thousand dollar) by zip code | 51.6 | 19.3 | 65.1 | 15.5 |
Appendix B
Variables | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
MDC | NYC | MDC | NYC | MDC | NYC | |
(log)Bldgsf | 0.048 *** | 0.044 *** | 0.047 *** | 0.044 *** | 0.047 *** | 0.044 *** |
(log)Area | 0.026 *** | 0.015 *** | 0.026 *** | 0.015 *** | 0.026 *** | 0.015 *** |
(log)Story | 0.027 *** | 0.006 *** | 0.026 *** | 0.006 *** | 0.026 *** | 0.006 *** |
(log)Age | −0.072 *** | −0.025 *** | −0.069 *** | −0.027 *** | −0.071 *** | −0.026 *** |
Occupancy | 0.084 *** | 0.006 | 0.084 *** | 0.006 | 0.084 *** | 0.006 |
(log)Elevation | 0.019 | −0.059 | 0.043 ** | −0.063 | 0.044 ** | −0.065 |
Metro | −0.046 | 0.017 *** | −0.043 | 0.017 *** | −0.047 | 0.017 *** |
Bus | −0.032 *** | 0.016 ** | −0.029 *** | 0.015 ** | −0.028 *** | 0.015 ** |
Commercial | 0.081 ** | 0.039 *** | 0.070 ** | 0.040 *** | 0.071 ** | 0.039 *** |
School | −0.021 *** | 0.032 *** | −0.020 *** | 0.031 *** | −0.020 *** | 0.032 *** |
Brownfield | −0.077 ** | −0.069 *** | −0.078 ** | −0.063 ** | −0.077 ** | −0.072 *** |
Greenview | −0.010 | 0.047 ** | −0.009 | 0.047 ** | −0.010 | 0.046 ** |
Bayview | 0.006 | 0.042 * | 0.000 | 0.055 ** | 0.003 | 0.059 *** |
(log)Unemploy | 0.060 | −0.046 *** | 0.052 | −0.046 *** | 0.054 | −0.046 *** |
(log)Vacancy | 0.033 | −0.012 *** | 0.028 | −0.011 *** | 0.031 | −0.011 *** |
(log)Income | −0.007 | 0.027 | 0.003 | 0.029 | −0.004 | 0.028 |
H30-150 | −0.022 *** | −0.015 ** | ||||
H150-300 | 0.022 ** | −0.036 *** | ||||
H300-450 | 0.014 | −0.017 ** | ||||
H450-600 | −0.026 | −0.034 *** | ||||
H600-750 | 0.027 ** | −0.008 | ||||
Wind | 0.010 | 0.008 *** | 0.010 | 0.008 ** | ||
Rainfall | −0.036 *** | −0.048 ** | −0.036 *** | −0.048 ** | ||
Surge | −0.015 ** | −0.032 ** | −0.015 ** | −0.031 ** | ||
(log)Frequency | 0.057 ** | 0.002 | 0.057 ** | 0.001 | ||
Intensity | −0.017 *** | −0.012 *** | −0.017 *** | −0.012 *** | ||
(log)Fadedness | 0.003 * | 0.005 * | 0.003 * | 0.005 * | ||
Insurance | 0.030 *** | −0.086 *** | 0.033 *** | −0.083 *** | ||
Information | 0.019 | 0.014 | 0.020 | 0.018 | ||
Infrastructure | 0.111 *** | 0.039 * | ||||
Pub_Reinforce | −0.059 | 0.006 | ||||
Drainage | 0.017 | −0.011 *** | ||||
Green | 0.077 ** | 0.020 *** | ||||
Facility | −0.091 | 0.007 | ||||
Equipment | 0.064 | 0.042 ** | ||||
Shelter | −0.002 | 0.019 | ||||
Bldg_Elev | 0.141 *** | 0.117 *** | ||||
Land_Elev | −0.077 | −0.136** | ||||
Pri_Reinforce | 0.017 | 0.172 *** | ||||
Adp_Wind | −0.033 | 0.014 | ||||
Adp_Flood | 0.040 * | 0.017 *** | ||||
Adp_Surge | 0.062 * | 0.021 *** | ||||
Constant | 6.811 *** | 9.905 *** | 6.639 *** | 9.885 *** | 6.716 *** | 9.897 *** |
Observations | 79,181 | 90,777 | 79,181 | 90,777 | 79,181 | 90,777 |
Adjusted R2 | 0.793 | 0.569 | 0.793 | 0.572 | 0.793 | 0.571 |
References
- Rosenzweig, C.; Solecki, W.D.; Blake, R.; Bowman, M.; Faris, C.; Gornitz, V.; Horton, R.; Jacob, K.; LeBlanc, A.; Leichenko, R. Developing coastal adaptation to climate change in the New York City infrastructure-shed: Process, approach, tools, and strategies. Clim. Chang. 2011, 106, 93–127. [Google Scholar] [CrossRef] [Green Version]
- Smith, A. 2017 U.S. Billion-Dollar Weather and Climate Disasters: A Historic Year in Context. National Oceanic and Atmospheric Administration. 2018. Available online: https://www.climate.gov/news-features/blogs/beyond-data/2017-us-billion-dollar-weather-and-climate-disasters-historic-year (accessed on 26 October 2018).
- Bin, O.; Crawford, T.W.; Kruse, J.B.; Landry, C.E. Viewscapes and flood hazard: Coastal housing market response to amenities and risk. Land Econ. 2008, 84, 434–448. [Google Scholar] [CrossRef]
- Atreya, A.; Czajkowski, J. Is Flood Risk Universally Sufficient to Offset the Strong Desire to Live Near the Water; Risk Management and Decision Processes Center, The Wharton School of the University of Pennsylvania: Philadelphia, PA, USA, 2014. [Google Scholar]
- Barbier, E.B. A global strategy for protecting vulnerable coastal populations. Science 2014, 345, 1250–1251. [Google Scholar] [CrossRef] [PubMed]
- Hino, M.; Field, C.B.; Mach, K.J. Managed retreat as a response to natural hazard risk. Nat. Clim. Chang. 2017, 7, 364. [Google Scholar] [CrossRef]
- Bunten, D.; Kahn, M.E. Optimal real estate capital durability and localized climate change disaster risk. J. Hous. Econ. 2017, 36, 1–7. [Google Scholar] [CrossRef]
- Jin, D.; Hoagland, P.; Au, D.K.; Qiu, J. Shoreline change, seawalls, and coastal property values. Ocean Coast. Manag. 2015, 114, 185–193. [Google Scholar] [CrossRef]
- Mills-Knapp, S.; Bourdeau, E.; Falco, G.; Resler, C.; Tovar, H.; Zoegall, S. Climate Change Adaptation and Sustainable Design at the Port Authority of New York and New Jersey; Earth Institute, Columbia University: New York, NY, USA, 2011. [Google Scholar]
- Fresque-Baxter, J.A.; Armitage, D. Place identity and climate change adaptation: A synthesis and framework for understanding. Wiley Interdiscip. Rev. Clim. Chang. 2012, 3, 251–266. [Google Scholar] [CrossRef]
- Boulton, E. Climate change as a ‘hyperobject’: A critical review of Timothy Morton’s reframing narrative. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 772–785. [Google Scholar] [CrossRef]
- Mendelsohn, R. Efficient adaptation to climate change. Clim. Chang. 2000, 45, 583–600. [Google Scholar] [CrossRef]
- NOAA. U.S. Billion-Dollar Weather and Climate Disasters; National Centers for Environmental Information: Asheville, NC, USA, 2018.
- NOAA. Historical Hurricane Tracks; National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 2018.
- MDC. Local Mitigation Strategies (LMS) Project List; Miami-Dade County Open Data Hub: Miami-Dade County, FL, USA, 2017.
- GOSR. New York Rising Community Reconstruction Program Project Map; New York State Government’s Office of Storm Recovery (GOSR); New York Rising Community Reconstruction: Albany, NY, USA, 2019.
- Conroy, S.J.; Milosch, J.L. An estimation of the coastal premium for residential housing prices in San Diego County. J. Real Estate Financ. Econ. 2011, 42, 211–228. [Google Scholar] [CrossRef] [Green Version]
- Pompe, J.J. Establishing fees for beach protection: Paying for a public good. Coast. Manag. 1999, 27, 57–67. [Google Scholar] [CrossRef]
- Benson, E.D.; Hansen, J.L.; Schwartz, A.L.; Smersh, G.T. Pricing residential amenities: The value of a view. J. Real Estate Financ. Econ. 1998, 16, 55–73. [Google Scholar] [CrossRef]
- Landry, C.E.; Hindsley, P. Valuing beach quality with hedonic property models. Land Econ. 2011, 87, 92–108. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Smith, M.D.; Slott, J.M.; Murray, A.B. The value of disappearing beaches: A hedonic pricing model with endogenous beach width. J. Environ. Econ. Manag. 2011, 61, 297–310. [Google Scholar] [CrossRef] [Green Version]
- Bin, O.; Polasky, S. Effects of flood hazards on property values: Evidence before and after Hurricane Floyd. Land Econ. 2004, 80, 490–500. [Google Scholar] [CrossRef]
- Bin, O.; Kruse, J.B.; Landry, C.E. Flood hazards, insurance rates, and amenities: Evidence from the coastal housing market. J. Risk Insur. 2008, 75, 63–82. [Google Scholar] [CrossRef]
- Daniel, V.E.; Florax, R.J.; Rietveld, P. Flooding risk and housing values: An economic assessment of environmental hazard. Ecol. Econ. 2009, 69, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Hallstrom, D.G.; Smith, V.K. Market responses to hurricanes. J. Environ. Econ. Manag. 2005, 50, 541–561. [Google Scholar] [CrossRef]
- Troy, A.; Romm, J. Assessing the price effects of flood hazard disclosure under the California natural hazard disclosure law (AB 1195). J. Environ. Plan. Manag. 2004, 47, 137–162. [Google Scholar] [CrossRef]
- Kousky, C. Learning from extreme events: Risk perceptions after the flood. Land Econ. 2010, 86, 395–422. [Google Scholar] [CrossRef]
- Otto, P.; Mehta, A.; Liu, B. Mind the gap: Towards and beyond impact to enhance tropical cyclone risk communication. Trop. Cyclone Res. Rev. 2018, 7, 140–151. [Google Scholar]
- Meyer, R.J.; Baker, J.; Broad, K.; Czajkowski, J.; Orlove, B. The dynamics of hurricane risk perception: Real-time evidence from the 2012 Atlantic hurricane season. Bull. Am. Meteorol. Soc. 2014, 95, 1389–1404. [Google Scholar] [CrossRef]
- Pryce, G.; Chen, Y.; Galster, G. The impact of floods on house prices: An imperfect information approach with myopia and amnesia. Hous. Stud. 2011, 26, 259–279. [Google Scholar] [CrossRef]
- Ewing, B.T.; Kruse, J.B.; Wang, Y. Local housing price index analysis in wind-disaster-prone areas. Nat. Hazards 2007, 40, 463–483. [Google Scholar] [CrossRef] [Green Version]
- Murphy, A.; Strobl, E. The Impact of Hurricanes on Housing Prices: Evidence from US Coastal Cities; Federal Reserve Bank of Dallas: Dallas, TX, USA, 2010.
- Beracha, E.; Prati, R.S. How major hurricanes impact housing prices and transaction volume. Real Estate Issues-Am. Soc. Real Estate Couns. 2008, 33, 45. [Google Scholar]
- Below, S.; Beracha, E.; Skiba, H. The Impact of Hurricanes on the Selling Price of Coastal Residential Real Estate. J. Hous. Res. 2017, 26, 157–178. [Google Scholar]
- Chivers, J.; Flores, N.E. Market failure in information: The national flood insurance program. Land Econ. 2002, 78, 515–521. [Google Scholar] [CrossRef]
- Ortega, F.; Taspinar, S. Rising Sea Levels and Sinking Property Values: The Effects of Hurricane Sandy on New York’s Housing Market. J. Urban Econ. 2018, 106, 81–100. [Google Scholar] [CrossRef]
- Atreya, A.; Ferreira, S.; Kriesel, W. Forgetting the flood? An analysis of the flood risk discount over time. Land Econ. 2013, 89, 577–596. [Google Scholar] [CrossRef]
- Bin, O.; Landry, C.E. Changes in implicit flood risk premiums: Empirical evidence from the housing market. J. Environ. Econ. Manag. 2013, 65, 361–376. [Google Scholar] [CrossRef]
- Komarek, T.M.; Filer, L. Waiting after the storm: The effect of flooding on time on the housing market in coastal Virginia. Appl. Econ. Lett. 2019, 298–301. [Google Scholar] [CrossRef]
- Botzen, W.; Kunreuther, H.; Michel-Kerjan, E. Divergence between individual perceptions and objective indicators of tail risks: Evidence from floodplain residents in new york city. Judgm. Decis. Mak. 2015, 10, 21. [Google Scholar]
- Fell, H.; Kousky, C. The value of levee protection to commercial properties. Ecol. Econ. 2015, 119, 181–188. [Google Scholar] [CrossRef]
- Watson, K.B.; Ricketts, T.; Galford, G.; Polasky, S.; O’Niel-Dunne, J. Quantifying flood mitigation services: The economic value of Otter Creek wetlands and floodplains to Middlebury, VT. Ecol. Econ. 2016, 130, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Green, T.L.; Kronenberg, J.; Andersson, E.; Elmqvist, T.; Gomez-Baggethun, E. Insurance value of green infrastructure in and around cities. Ecosystems 2016, 19, 1051–1063. [Google Scholar] [CrossRef] [Green Version]
- Bobbins, K.; Culwick, C. A Framework for a Green Infrastructure Planning Approach in the Gauteng City-Region; Gauteng City-Region Observatory: Johannesburg, South Africa, 2016. [Google Scholar]
- Costanza, R.; Pérez-Maqueo, O.; Martinez, M.L.; Sutton, P.; Anderson, S.J.; Mulder, K. The value of coastal wetlands for hurricane protection. AMBIO J. Hum. Environ. 2008, 37, 241–248. [Google Scholar] [CrossRef]
- McKenzie, R.; Levendis, J. Flood hazards and urban housing markets: The effects of Katrina on New Orleans. J. Real Estate Financ. Econ. 2010, 40, 62–76. [Google Scholar] [CrossRef]
- Dumm, R.; Sirmans, G.S.; Smersh, G. Building code, wind contours, and house prices. J. Real Estate Res. 2012, 34, 73–98. [Google Scholar]
- De Coninck, H.; Revi, A.; Babiker, M.; Bertoldi, P.; Buckeridge, M.; Cartwright, A.; Dong, W.; Ford, J.; Fuss, S.; Hourcade, J. Strengthening and Implementing the Global Response; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2018; pp. 313–443. Available online: https://www.ipcc.ch/sr15 (accessed on 12 November 2018).
- O’Brien, K.; Selboe, E. The Adaptive Challenge of Climate Change; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Lavell, A.; Oppenheimer, M.; Diop, C.; Hess, J.; Lempert, R.; Li, J.; Muir-Wood, R.; Myeong, S. Climate change: New dimensions in disaster risk, exposure, vulnerability, and resilience. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Adams, A.; Smith, A. Risk perception and communication: Recent developments and implications for anaesthesia. Anaesthesia 2001, 56, 745–755. [Google Scholar] [CrossRef]
- Rohrmann, B.; Renn, O. Risk perception research. In Cross-Cultural Risk Perception; Springer: Boston, MA, USA, 2000; pp. 11–53. [Google Scholar]
- Bogardus, S.T., Jr.; Holmboe, E.; Jekel, J.F. Perils, pitfalls, and possibilities in talking about medical risk. JAMA 1999, 281, 1037–1041. [Google Scholar] [CrossRef]
- Blau, B.M.; Van Ness, R.A.; Wade, C. Capitalizing on catastrophe: Short selling insurance stocks around hurricanes Katrina and Rita. J. Risk Insur. 2008, 75, 967–996. [Google Scholar] [CrossRef]
- Votsis, A.; Perrels, A. Housing prices and the public disclosure of flood risk: A difference-in-differences analysis in Finland. J. Real Estate Financ. Econ. 2016, 53, 450–471. [Google Scholar] [CrossRef] [Green Version]
- Panduro, T.E.; Veie, K.L. Classification and valuation of urban green spaces—A hedonic house price valuation. Landsc. Urban Plan. 2013, 120, 119–128. [Google Scholar] [CrossRef]
- Kuminoff, N.V.; Parmeter, C.F.; Pope, J.C. Which hedonic models can we trust to recover the marginal willingness to pay for environmental amenities? J. Environ. Econ. Manag. 2010, 60, 145–160. [Google Scholar] [CrossRef] [Green Version]
- Charles, S. Housing Economics; Macmillan International Higher Education: London, UK, 2016. [Google Scholar]
- Aye, G.C.; Balcilar, M.; Gupta, R. The Effectiveness Of Monetary Policy In South Africa Under Inflation Targeting: Evidence from a Time-Varying Factor-Augmented Vector Autoregressive Model. J. Dev. Areas 2020, 54. [Google Scholar] [CrossRef]
- Ker, I.; Ginn, S. Myths and realities in walkable catchments: The case of walking and transit. Road Transp. Res. 2003, 12, 69. [Google Scholar]
- Martínez, L.M.; Viegas, J.M. Effects of transportation accessibility on residential property values: Hedonic Price Model in the Lisbon, Portugal, metropolitan area. Transp. Res. Rec. 2009, 2115, 127–137. [Google Scholar] [CrossRef]
- Chin, H.C.; Foong, K.W. Influence of school accessibility on housing values. J. Urban Plan. Dev. 2006, 132, 120–129. [Google Scholar] [CrossRef]
- Owusu-Edusei, K.; Espey, M.; Lin, H. Does close count? School proximity, school quality, and residential property values. J. Agric. Appl. Econ. 2007, 39, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Belasen, A.R.; Polachek, S.W. How hurricanes affect wages and employment in local labor markets. Am. Econ. Rev. 2008, 98, 49–53. [Google Scholar] [CrossRef]
- FEMA. Homeowner’s Guide to Retrofitting; FEMA: Washington, DC, USA, 2009.
- Rosenzweig, C.; Solecki, W.D.; Romero-Lankao, P.; Mehrotra, S.; Dhakal, S.; Ibrahim, S.A. Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Rosenthal, J.K.; Kinney, P.L.; Metzger, K.B. Intra-urban vulnerability to heat-related mortality in New York City, 1997–2006. Health Place 2014, 30, 45–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambwera, M.A.; Heal, G.; Dubeux, C.; Hallegatte, S.; Leclerc, L.; Markandya, A.; McCarl, B.; Mechler, R.; Neumann, J. Economics of Adaptation. In Climate Change 2014; Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK, 2014; pp. 945–977. [Google Scholar]
Variables | MDC (n = 79,181) | NYC (n = 90,777) | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Price | Sales price of single-family home ($100,000) | 4.10 | 5.45 | 6.03 | 5.22 |
Storm impact periods | |||||
H30-150 | 1 if a home sold between 30 and 150 days post-hurricanes | 0.127 | 0.332 | 0.099 | 0.299 |
H150-300 | 1 if a home sold between 150 and 300 days post-hurricanes | 0.145 | 0.352 | 0.124 | 0.330 |
H300-450 | 1 if a home sold between 300 and 450 days post-hurricanes | 0.110 | 0.313 | 0.133 | 0.340 |
H450-600 | 1 if a home sold between 450 and 600 days post-hurricanes | 0.101 | 0.301 | 0.128 | 0.334 |
H600-750 | 1 if a home sold between 600 and 750 days post-hurricanes | 0.072 | 0.259 | 0.143 | 0.350 |
Storm characteristics | |||||
Wind | Sustained wind speed (knots) | 12.3 | 30.1 | 12.4 | 23.4 |
Rainfall | Total amount of rainfall (inch) | 1.10 | 2.36 | 1.00 | 2.10 |
Surge | Storm surge heights of affected homes (feet) | 0.079 | 0.463 | 0.217 | 0.467 |
Risk-perception factors | |||||
Frequency | Number of hurricanes between buying and selling home | 0.515 | 1.17 | 0.758 | 1.17 |
Intensity | Strongest hurricane category that homeowners experienced | 0.647 | 1.59 | 0.318 | 0.613 |
Fadedness | Elapsed period of time from hurricane to housing transactions | 37.1 | 89.0 | 29.7 | 83.1 |
Insurance | 1 if an insurance purchase is required * | 0.364 | 0.481 | 0.040 | 0.197 |
Information | 1 if a home sold between project announcement and completion dates * | 0.011 | 0.106 | 0.012 | 0.107 |
Adaptation projects | |||||
Infrastructure | 1 if a home is located within ped-shed ** of new infrastructures* | 0.005 | 0.067 | 0.021 | 0.143 |
Pub_Reinforce | 1 if a home is located within ped-shed ** of public building reinforcement projects* | 0.001 | 0.032 | 0.013 | 0.113 |
Drainage | 1 if a home is located within ped-shed ** of drainage projects* | 0.027 | 0.162 | 0.010 | 0.097 |
Green | 1 if a home is located within ped-shed ** of green infrastructures* | 0.166 | 0.372 | 0.007 | 0.081 |
Facility | 1 if a home is located within ped-shed ** of new public facilities* | 0.001 | 0.023 | 0.001 | 0.024 |
Equipment | 1 if a home is located within ped-shed ** of equipment retrofitting/installation projects* | 0.001 | 0.037 | 0.001 | 0.035 |
Shelter | 1 if a home is located within ped-shed ** of hurricane shelters* | 0.025 | 0.158 | 0.004 | 0.199 |
Bldg_Elev | 1 if structure of home is elevated * | 0.001 | 0.094 | 0.001 | 0.094 |
Land_Elev | 1 if land of home is elevated * | 0.005 | 0.069 | 0.003 | 0.166 |
Pri_Reinforce | 1 if a home is reinforced by individual homeowners * | 0.008 | 0.091 | 0.010 | 0.099 |
Adaptation goals | |||||
Adp_Wind | 1 if a home is located within ped-shed ** of wind adaptation * | 0.002 | 0.045 | 0.015 | 0.122 |
Adp_Flood | 1 if a home is located within ped-shed ** of flood prevention * | 0.182 | 0.386 | 0.002 | 0.039 |
Adp_Surge | 1 if a home is located within ped-shed ** of storm surge projects * | 0.020 | 0.139 | 0.007 | 0.081 |
Independent Variables | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
MDC | NYC | MDC | NYC | MDC | NYC | |
Storm impact periods | ||||||
H30-150 | −0.022 *** | −0.015 ** | ||||
H150-300 | 0.022 ** | −0.036 *** | ||||
H300-450 | 0.014 | −0.017 ** | ||||
H450-600 | −0.026 | −0.034 *** | ||||
H600-750 | 0.027** | −0.008 | ||||
Storm characteristics | ||||||
Wind | 0.010 | 0.008 *** | 0.010 | 0.008 ** | ||
Rainfall | −0.036 *** | −0.048 ** | −0.036 *** | −0.048 ** | ||
Surge | −0.015 ** | −0.032 ** | −0.015 ** | −0.031 ** | ||
Risk-perception factors | ||||||
(Log)Frequency | 0.057 ** | 0.002 | 0.057 ** | 0.001 | ||
Intensity | −0.017 *** | −0.012 *** | −0.017 *** | −0.012 *** | ||
(Log)Fadedness | 0.003 * | 0.005 * | 0.003 * | 0.005 * | ||
Insurance | 0.030 *** | −0.086 *** | 0.033 *** | −0.083 *** | ||
Information | 0.019 | 0.014 | 0.020 | 0.018 | ||
Adaptation projects | ||||||
Infrastructure | 0.111 *** | 0.039 * | ||||
Pub_Reinforce | −0.059 | 0.006 | ||||
Drainage | 0.017 | −0.011 *** | ||||
Green | 0.077 ** | 0.020 *** | ||||
Facility | −0.091 | 0.007 | ||||
Equipment | 0.064 | 0.042 ** | ||||
Shelter | −0.002 | 0.019 | ||||
Bldg_Elev | 0.141 *** | 0.117 *** | ||||
Land_Elev | −0.077 | −0.136 ** | ||||
Pri_Reinforce | 0.017 | 0.172 *** | ||||
Adaptation goals | ||||||
Adp_Wind | −0.033 | 0.014 | ||||
Adp_Flood | 0.040 * | 0.017 *** | ||||
Adp_Surge | 0.062 * | 0.021 *** | ||||
Other variables | Yes | Yes | Yes | Yes | Yes | Yes |
Year dummies | Yes | Yes | Yes | Yes | Yes | Yes |
Census tract fixed effects | Yes | Yes | Yes | Yes | Yes | Yes |
Constant | 6.811 *** | 9.905 *** | 6.639 *** | 9.885 *** | 6.716 *** | 9.897 *** |
N | 79,181 | 90,777 | 79,181 | 90,777 | 79,181 | 90,777 |
Adjusted R2 | 0.793 | 0.569 | 0.793 | 0.572 | 0.793 | 0.571 |
Variables | Model 1 MDC | Model 2 NYC | ||
---|---|---|---|---|
Coefficient | SE | Coefficient | SE | |
Infrastructure × Open | 0.029 ** | 0.090 | 0.024 * | 0.013 |
Pub_Reinforce × Open | −0.042 | 0.251 | 0.002 | 0.008 |
Drainage × Open | 0.062 ** | 0.032 | −0.058 *** | 0.011 |
Green × Open | 0.118 *** | 0.029 | 0.046 *** | 0.013 |
Facility × Open | 0.216 | 0.295 | 0.020 | 0.025 |
Equipment × Open | −0.025 | 0.110 | −0.011 | 0.021 |
Shelter × Open | −0.059 | 0.078 | 0.006 | 0.030 |
Bldg_Elev × Open | 0.150 *** | 0.018 | 0.167 * | 0.118 |
Land_Elev × Open | 0.042 * | 0.024 | −0.074 ** | 0.029 |
Pri_Reinforce × Open | 0.028 | 0.056 | 0.035 *** | 0.072 |
Adp_Wind × Open | 0.233 | 0.167 | −0.003 | 0.008 |
Adp_Flood × Open | 0.103 *** | 0.024 | 024 * | 016 |
Adp_Surge × Open | 0.181 *** | 0.042 | 046 *** | 013 |
All other variables | Yes | Yes | ||
Time dummies | Yes | Yes | ||
Census tract fixed effects | Yes | Yes | ||
N | 40,571 | 32,618 | ||
Adjusted R2 | 0.780 | 0.576 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.K. The Economic Effects of Climate Change Adaptation Measures: Evidence from Miami-Dade County and New York City. Sustainability 2020, 12, 1097. https://doi.org/10.3390/su12031097
Kim SK. The Economic Effects of Climate Change Adaptation Measures: Evidence from Miami-Dade County and New York City. Sustainability. 2020; 12(3):1097. https://doi.org/10.3390/su12031097
Chicago/Turabian StyleKim, Seung Kyum. 2020. "The Economic Effects of Climate Change Adaptation Measures: Evidence from Miami-Dade County and New York City" Sustainability 12, no. 3: 1097. https://doi.org/10.3390/su12031097
APA StyleKim, S. K. (2020). The Economic Effects of Climate Change Adaptation Measures: Evidence from Miami-Dade County and New York City. Sustainability, 12(3), 1097. https://doi.org/10.3390/su12031097