Power Demand Forecasting using Long Short-Term Memory (LSTM) Deep-Learning Model for Monitoring Energy Sustainability
Abstract
:1. Introduction
1.1. ARDL Approach Method
1.2. MIDAS Approach Method
2. Materials and Methods
2.1. Datasets
2.2. Data Preprocessing
2.3. LSTM-Based Power Demand Forecasting Model
2.4. Comparison of Evaluations for Each Model
2.5. Development Environment
3. Results
3.1. Hyperparameter Setting
3.2. Comparison of Experimental Results
3.3. Statistical Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jang, B.J.; Han, S.G. Energy-IT Fusion Technology Trends and Major Issues. JOK 2010, 28, 44–51. [Google Scholar]
- Yang, E.S.; Kim, A.R.; Kim, B.A.; Shin, B.R. World Energy Outlook (WEO-2017) and Changes in Energy Demand and Supply. 2017. Available online: http://www.keei.re.kr/keei/download/WEIS1703.pdf (accessed on 4 December 2019).
- Sung, M.J.; Shin, K.W. A Small-area Hardware Implementation of EGML-based Moving Object Detection Processor. JKIICE 2017, 21, 2213–2220. [Google Scholar]
- Eum, J.Y. A Study on the Development of Energy Supply and Demand Forecasting Models for Smart City Energy Management System (CEMS). Master’s Thesis, Sangmyung University, Seoul, Korea, 2015. [Google Scholar]
- Zhang, B.; Pu, Y.; Wang, Y.; Li, J. Forecasting hotel accommodation demand based on LSTM model incorporating internet search index. Sustainability 2019, 11, 4708. [Google Scholar] [CrossRef] [Green Version]
- Luo, T. Research on Decision-Making of Complex Venture Capital Based on Financial Big Data Platform. Complexity 2018, 2018, 5170281. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.H. Power Demand Forecasting Model Using Mixed Cycle Data. Research Report. 2014. Available online: http://www.keei.re.kr/web_keei/d_results.nsf/0/6632BB5F39AB536C49257E0D001A2348/$file/%EA%B8%B0%EB%B3%B8%202014-06%20%ED%98%BC%ED%95%A9%EC%A3%BC%EA%B8%B0%20%EC%9E%90%EB%A3%8C%EB%A5%BC%20%EC%9D%B4%EC%9A%A9%ED%95%9C%20%EC%A0%84%EB%A0%A5%EC%88%98%EC%9A%94%20%EC%98%88%EC%B8%A1%20%EB%AA%A8%ED%98%95%20%EA%B5%AC%EC%B6%95.pdf (accessed on 10 December 2019).
- Majd, M.; Safabakhsh, R. Correlational Convolutional LSTM for Human Action Recognition. Neurocomputing. In Press. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0925231219304436 (accessed on 10 December 2019).
- Bhadbhade, N.; Yilmaz, S.; Zuberi, S.J.; Eichhammer, W. The evolution of energy efficiency in Switzerland in the period 2000-2016. Energy 2020, 191, 116526. [Google Scholar] [CrossRef]
- IEA. Insights Brief: Energy Efficiency Targets. Available online: https://webstore.iea.org/insights-brief-energy-efficiency-targets (accessed on 28 January 2020).
- Jo, N.H. SVM Load Forecasting using Cross-Validation. Trans. Korean. Inst. Elect. Eng. 2006, 55A, 485–491. [Google Scholar]
- Ishikawa, S.; Iwabuchi, K.; Takano, J. Peak power demand leveling to stabilize and reduce the power demand of dairy barn. Eng. Agric. Environ. Food 2016, 9, 56–63. [Google Scholar] [CrossRef]
- Tang, R.; Li, H.; Wang, S. A game theory-based decentralized control strategy for power demand management of building cluster using thermal mass and energy storage. Appl. Energy 2019, 242, 809–820. [Google Scholar] [CrossRef]
- Rivera-González, L.; Bolonio, D.; Mazadiego, L.F.; Valencia-Chapi, R. Long-Term Electricity Supply and Demand Forecast (2018–2040): A LEAP Model Application towards a Sustainable Power Generation System in Ecuador. Sustainability 2019, 11, 5316. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Kolasani, L. Security Based Network for Health Care System. APJCRI 2015, 1, 1–6. [Google Scholar] [CrossRef]
- Law, R.; Li, G.; Fong, D.K.C.; Han, X. Tourism Demand Forecasting: A Deep Learning Approach. Ann. Tour. Res. 2019, 75, 410–423. [Google Scholar] [CrossRef]
- Xu, P.; Du, R.; Zhang, Z. Predicting Pipeline Leakage in Petrochemical System through GAN and LSTM. Knowl. Based Syst. 2019, 175, 50–61. [Google Scholar] [CrossRef]
- Petersen, N.C.; Rodrigues, F.; Pereira, F.C. Multi-output bus travel time forecasting with convolutional LSTM neural network. Expert Syst. Appl. 2019, 120, 426–435. [Google Scholar] [CrossRef] [Green Version]
- Mohsen, B.O.; Ferda, H.; Scott, W.H. Mexican Bilateral Trade and the J-curve: An Application of the Nonlinear ARDL Model. Econ. Anal. Policy 2016, 50, 23–40. [Google Scholar]
- Fousekis, P.; Katrakilidis, C.; Trachanas, E. Vertical Price Transmission in the US Beef Sector: Evidence from the Nonlinear ARDL Model. Econ. Model 2016, 52, 499–506. [Google Scholar] [CrossRef]
- Li, T. A (3,2) reduced degree-of-freedom unified zigzag laminated beam theory. Appl. Math. Model. 2020, 77, 1474–1496. [Google Scholar] [CrossRef]
- Won, H.N.; Choi, K.W.; Choi, B.J. Forecasting GDP with a Mixed Data Sampling Model. IEJ 2016, 22, 83–117. [Google Scholar]
- Mei, D.; Ma, F.; Liao, Y.; Wang, L. Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models. Energy Econ. 2020, 86, 104624. [Google Scholar] [CrossRef]
- Ghysels, E.; Qian, H. Estimating MIDAS Regressions via OLS with Polynomial Parameter Profiling. Econ. Stat. 2019, 9, 1–16. [Google Scholar] [CrossRef]
- Andreou, E. On the Use of High Frequency Measures of Volatility in MIDAS Regressions. J. Econ. 2016, 193, 367–389. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Fu, Z.; Jiang, Y.; Zeng, X.; Lin, L. Can Economic Policy Uncertainty Predict Exchange Rate Volatility? New Evidence from the GARCH-MIDAS Model. Finance Res. Lett. In press. Available online: https://www.sciencedirect.com/science/article/abs/pii/S1544612319304982 (accessed on 28 January 2020).
- He, Y.; Lin, B. Forecasting China’s total energy demand and its structure using ADL-MIDAS model. Energy 2018, 151, 420–429. [Google Scholar] [CrossRef]
- Seo, D.H.; Lyu, J.; Choi, E.J.; Cho, S.; Kim, D.K. Web based Customer Power Demand Variation Estimation System using LSTM. JKIICE 2018, 22, 587–594. [Google Scholar]
- Ghyselsa, E.; Clarab, P.S.; Valkanovb, R. Predicting volatility: Getting the most out of return data sampled at different frequencies. J. Econ. 2006, 131, 59–95. [Google Scholar] [CrossRef] [Green Version]
- Barndorff-Nielsen, O.E.; Corcuera, J.M.; Podolskij, M. Power variation for Gaussian processes with stationary increments. Stoch. Process. Their Appl. 2009, 119, 1845–1865. [Google Scholar] [CrossRef] [Green Version]
- Barndorff-Nielsen, O.E.; Shephard, N. Power and bipower variation with stochastic volatility and jumps (with discussion). J. Financ. Econ. 2004, 2, 1–48. [Google Scholar]
- Li, Y.; Han, C. Prediction for Tourism Flow based on LSTM Neural Network. Procedia Comput. Sci. 2018, 129, 277–283. [Google Scholar] [CrossRef]
- Sideratos, G.; Ikonomopoulos, A.; Hatziargyriou, D.N. A novel fuzzy-based ensemble model for load forecasting using hybrid deep neural networks. Electr. Pow Syst. Res. 2020, 178, 106025. [Google Scholar] [CrossRef]
- Eclipse Deeplearning4j. Available online: https://deeplearning4j.org/about (accessed on 11 December 2019).
- Peimankar, A.; Sadasivan, P. An Ensemble of Deep Recurrent Neural Networks for P-wave Detection in Electrocardiogram. In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; IEEE: Piscataway, NJ, USA, 2019. Available online: https://ieeexplore.ieee.org/document/8682307 (accessed on 4 February 2020).
- Goki, S. Deep Learning from Scratch, 1st ed.; Hanbit Media: Seoul, Korea, 2017; pp. 111–112. [Google Scholar]
- Goki, S. Deep Learning from Scratch 2, 1st ed.; Hanbit Media: Seoul, Korea, 2019; pp. 40–41. [Google Scholar]
- Peimankar, A.; Weddell, S.J.; Jalal, T.; Lapthorn, A.C. Multi-objective ensemble forecasting with an application to power transformers. Appl. Soft Comput. 2018, 68, 233–248. [Google Scholar] [CrossRef]
- Rohmel, J. The permutation distribution of the Friedman test. Comput. Stat. Data Anal. 1997, 26, 83–99. [Google Scholar] [CrossRef]
- Demsar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
- Cheng, Y.; Xu, C.; Mashima, D.; Thing, L.L.V.; Wu, Y. PowerLSTM: Power Demand Forecasting Using Long Short-Term Memory Neural Network. In Advanced Data Mining and Applications: 13th International Conference, Singapore, 5–6 November 2017; Springer: Berlin, Germany, 2017; Available online: https://link.springer.com/chapter/10.1007/978-3-319-69179-4_51 (accessed on 4 February 2020).
Data Component | Short-Term Data | Long-Term Data | Seasonal Data | |
---|---|---|---|---|
Input | Train data | 2 days 288 data | 8 days 288 data | 6 days 288 data |
Test data | 1 day 288 data | 4 days 288 data | 3 days 288 data | |
Output | Forecasting data | 1 day 288 data | 4 days 288 data | 3 days 288 data |
Hyperparameter | Setting1 | Setting2 | Setting3 |
---|---|---|---|
Hidden layer | 2 | 3 | 3 |
The number of nodes | 10 | 8 | 10 |
Learning rate | 0.001 | 0.01 | 0.01 |
The number of iterations | 180 | 180 | 180 |
Activation function | Softmax | Hyperbolic tangent | Hyperbolic tangent |
Optimization algorithm | Stochastic gradient descent | Stochastic gradient descent | Stochastic gradient descent |
Loss function | MSE | MSE | MSE |
Model | Index | Residential | City Hall | Factory | Hospital |
---|---|---|---|---|---|
MIDAS | MAPE (%) | 21.040 | 15.600 | 7.210 | 7.100 |
RMSE | 7.940 | 20.070 | 46.890 | 30.930 | |
R2 | 0.302 | 0.750 | 0.370 | 0.926 | |
LSTM | MAPE (%) | 19.401 | 4.714 | 4.060 | 2.892 |
RMSE | 3.365 | 7.623 | 23.302 | 15.246 | |
R2 | 0.712 | 0.959 | 0.830 | 0.977 | |
LSTM+MIDAS | MAPE (%) | 10.440 | 2.730 | 1.630 | 1.960 |
RMSE | 1.720 | 7.190 | 12.510 | 15.570 | |
R2 | 0.917 | 0.962 | 0.893 | 0.981 |
Model | Index | Residential | City Hall | Factory | Hospital |
---|---|---|---|---|---|
MIDAS | MAPE (%) | 34.610 | 11.500 | 7.380 | 4.040 |
RMSE | 7.950 | 17.560 | 59.700 | 37.070 | |
R2 | 0.416 | 0.700 | 0.231 | 0.891 | |
LSTM | MAPE (%) | 32.594 | 9.830 | 7.710 | 4.080 |
RMSE | 8.020 | 17.040 | 62.130 | 38.100 | |
R2 | 0.439 | 0.766 | 0.235 | 0.880 | |
LSTM+MIDAS | MAPE (%) | 32.500 | 8.700 | 7.700 | 4.050 |
RMSE | 7.330 | 14.490 | 53.610 | 36.800 | |
R2 | 0.585 | 0.752 | 0.248 | 0.895 |
Model | MAPE (%) | RMSE | R2 | |||
---|---|---|---|---|---|---|
Winter | Summer | Winter | Summer | Winter | Summer | |
MIDAS | 16.050 | 10.221 | 4.632 | 4.358 | 0.815 | 0.729 |
LSTM | 16.200 | 6.520 | 12.628 | 2.830 | 0.094 | 0.886 |
LSTM+MIDAS | 12.279 | 5.400 | 4.400 | 2.740 | 0.857 | 0.896 |
Friedman Test | |
---|---|
N | 10 |
Chi-squared | 8.6 |
Degree of freedom (DF) | 2 |
p-value | 0.018 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, E.; Cho, S.; Kim, D.K. Power Demand Forecasting using Long Short-Term Memory (LSTM) Deep-Learning Model for Monitoring Energy Sustainability. Sustainability 2020, 12, 1109. https://doi.org/10.3390/su12031109
Choi E, Cho S, Kim DK. Power Demand Forecasting using Long Short-Term Memory (LSTM) Deep-Learning Model for Monitoring Energy Sustainability. Sustainability. 2020; 12(3):1109. https://doi.org/10.3390/su12031109
Chicago/Turabian StyleChoi, Eunjeong, Soohwan Cho, and Dong Keun Kim. 2020. "Power Demand Forecasting using Long Short-Term Memory (LSTM) Deep-Learning Model for Monitoring Energy Sustainability" Sustainability 12, no. 3: 1109. https://doi.org/10.3390/su12031109
APA StyleChoi, E., Cho, S., & Kim, D. K. (2020). Power Demand Forecasting using Long Short-Term Memory (LSTM) Deep-Learning Model for Monitoring Energy Sustainability. Sustainability, 12(3), 1109. https://doi.org/10.3390/su12031109