The Reversible Lane Network Design Problem (RL-NDP) for Smart Cities with Automated Traffic
Abstract
:1. Introduction
2. Background
3. The Reversible Lane Network Design Problem (RL-NDP)
3.1. Mathematical Formulation
: | set of nodes in the network, where is the number of nodes. |
: | set of links of the road network where vehicles move. |
: | set of origin–destination pairs that represent the travel demand in the network, i.e., . |
: | set of time periods, where is the number of time periods (e.g., hours). |
: | demand trips from an origin node towards a destination node , of period to , . |
: | minimum driving travel time in free-flow speed at the link , expressed in hours. |
: | the current number of lanes at the link . |
: | lane capacity of the link , expressed in vehicles for the period of analysis. |
: | big number. |
: | integer variable equal to the number of lanes of each road link , of period to |
: | continuous variable that corresponds to the flow of AVs in each link and each OD pair , of period to |
3.2. Scenarios
Algorithm 1 Scenario O: traffic assignment problem without the reversible lane problem | ||
1: 2: 3: 4: 5: 6: 7: 8: 9: | While do function Objective Function end-function Clear all decision variables end-do |
|
Algorithm 2 Scenario A: the reversible lane problem without changing the traffic assignment | ||
1: 2: 3: 4: 5: 6: 7: 8: 9: | While do read variables from scenario O function Objective Function end-function Clear all decision variables end-do |
|
Algorithm 3 Scenarios B and C: both the reversible lane and traffic assignment problems (UE and SO) | ||
1: 2: 3: 4: 5: 6: 7: 8: | While do function Objective Function end-function Clear all decision variables end-do |
|
4. Application to the Case Study City of Delft
4.1. Setting up the Case Study
4.2. Experiments
4.3. Impacts at the Traffic Level
4.4. Impacts at the Spatial Level
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cao, Y.; Zuo, Z.; Xu, H. Analysis of Traffic Conflict Characteristic at Temporary Reversible Lane, Period. Polytech. Transp. Eng. 2014, 42, 73–76. [Google Scholar] [CrossRef]
- Kulmala, R.; Rämä, P.; Sihvola, N. Safety Impacts of Cooperative Systems; 21st ICTCT Workshop; ICTCT Proceedings: Riga, Latvia, 2008. [Google Scholar]
- Harper, C.D.; Hendrickson, C.T.; Mangones, S.; Samaras, C. Estimating potential increases in travel with autonomous vehicles for the non-driving, elderly and people with travel-restrictive medical conditions. Transp. Res. Part C Emerg. Technol. 2016, 72, 1–9. [Google Scholar] [CrossRef]
- Conway, M.; Salon, D.; King, D.; Coll, M.H.; Vandersmissen, M.H.; Thériault, M.; Chung, K.H.; Babar, Y.; Burtch, G.; Neuzil, P.; et al. Disruptive Transportation: The Adoption, Utilization, and Impacts of Ride-Hailing in the United States. SSRN 2017. [Google Scholar] [CrossRef]
- Sadowsky, N.; Nelson, E. The Impact of Ride-Hailing Services on Public Transportation Use: A Discontinuity Regression Analysis. Economics 2017, Department Working Paper Series. 13. [Google Scholar]
- Kelley, S.B.; Lane, B.W.; DeCicco, J.M. Pumping the brakes on robot cars: Current urban traveler willingness to consider driverless vehicles. Sustainability 2019, 11, 5042. [Google Scholar] [CrossRef] [Green Version]
- Nordhoff, S.; de Winter, J.; Kyriakidis, M.; van Arem, B.; Happee, R. Acceptance of Driverless Vehicles: Results from a Large Cross-National Questionnaire Study. J. Adv. Transp. 2018. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, D.; Schwanen, T. Automated mobility transitions: Governing processes in the UK. Sustainability 2018, 10, 956. [Google Scholar] [CrossRef] [Green Version]
- Bede, Z.; Torok, A. Theoretical investigation of traffic equilibrium on bridges. Transp. Telecommun. 2014. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Deng, W. Optimizing capacity of signalized road network with reversible lanes. Transport 2015, 33, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chu, K.F.; Lam, A.Y.S.; Li, V.O.K. Dynamic lane reversal routing and scheduling for connected autonomous vehicles. In Proceedings of the 2017 International Smart Cities Conference (ISC2), Wuxi, China, 14–17 September 2007. [Google Scholar] [CrossRef]
- Wolshon, B.; Lambert, L. Reversible Lane Systems: Synthesis of Practice. J. Transp. Eng. 2006, 132, 933–944. [Google Scholar] [CrossRef]
- Wolshon, B.; Lambert, L. Planning and operational practices for reversible roadways. ITE J. (Inst. Transp. Eng. 2006, 76, 38–43. [Google Scholar]
- Lambert, L.; Wolshon, B. Characterization and comparison of traffic flow on reversible roadways. J. Adv. Transp. 2010, 113–122. [Google Scholar] [CrossRef]
- Waleczek, H.; Geistefeldt, J.; Cindric-Middendorf, D.; Riegelhuth, G. Traffic Flow at a Freeway Work Zone with Reversible Median Lane. Transp. Res. Procedia 2016. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, J.; Wang, H. Study on Flow Direction Changing Method of Reversible Lanes on Urban Arterial Roadways in China. Procedia Soc. Behav. Sci. 2013. [Google Scholar] [CrossRef] [Green Version]
- Kotagi, P.B.; Asaithambi, G. Microsimulation approach for evaluation of reversible lane operation on urban undivided roads in mixed traffic. Transp. A Transp. Sci. 2019. [Google Scholar] [CrossRef]
- Xiao, G.; Zhang, H.; Sun, N.; Chen, Y.; Shi, J.; Zhang, Y. Cooperative Bargain for the Autonomous Separation of Traffic Flows in Smart Reversible Lanes. Complexity 2019. [Google Scholar] [CrossRef]
- Wolshon, B. “One-Way-Out”: Contraflow Freeway Operation for Hurricane Evacuation. Nat. Hazards Rev. 2002. [Google Scholar] [CrossRef]
- Magnanti, T.L.; Wong, R.T. Network Design and Transportation Planning: Models and Algorithms. Transp. Sci. 1984, 18, 1–55. [Google Scholar] [CrossRef] [Green Version]
- Ben-Ayed, O.; Boyce, D.E.; Blair, C.E., III. A general bilevel linear programming formulation of the network design problem. Transp. Res. Part B Methodol. 1988, 22, 311–318. [Google Scholar] [CrossRef]
- Geraldes, R. Reconfiguração topológica da rede rodoviária como instrumento de mitigação de problemas de congestionamento não recorrente; Universidade Técnica de Lisboa, Instituto Superior Técnico: Lisbon, Portugal, 2011. [Google Scholar]
- Zhao, J.; Ma, W.; Liu, Y.; Yang, X. Integrated design and operation of urban arterials with reversible lanes. Transp. B 2014. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Yang, X. Operation of signalized diamond interchanges with frontage roads using dynamic reversible lane control. Transp. Res. Part C Emerg. Technol. 2015, 51, 196–209. [Google Scholar] [CrossRef]
- Williams, B.M.; Tagliaferri, A.P.; Meinhold, S.S.; Hummer, J.E.; Rouphail, N.M. Simulation and Analysis of Freeway Lane Reversal for Coastal Hurricane Evacuation. J. Urban Plan. Dev. 2007. [Google Scholar] [CrossRef]
- Hua, J.; Ren, G.; Cheng, Y.; Yu, C.; Ran, B. Large-scale evacuation network optimization: A bi-level control method with uncertain arterial demand. Transp. Plan. Technol. 2015, 38, 777–794. [Google Scholar] [CrossRef]
- Tuydes, H.; Ziliaskopoulos, A. Tabu-Based Heuristic Approach for Optimization of Network Evacuation Contraflow. Transp. Res. Rec. J. Transp. Res. Board 2007. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, Q.; Luo, Q. Evaluation of Transportation Network Reliability under Emergency Based on Reserve Capacity. J. Adv. Transp. 2019. [Google Scholar] [CrossRef]
- Wu, J.J.; Sun, H.J.; Gao, Z.Y.; Zhang, H.Z. Reversible lane-based traffic network optimization with an advanced traveller information system. Eng. Optim. 2009, 41, 87–97. [Google Scholar] [CrossRef]
- Karoonsoontawong, A.; Lin, D.-Y.Y. Time-varying lane-based capacity reversibility for traffic management. Comput. Civ. Infrastruct. Eng. 2011, 26, 632–646. [Google Scholar] [CrossRef]
- Lu, T.; Yang, Z.; Ma, D.; Jin, S. Bi-Level Programming Model for Dynamic Reversible Lane Assignment. IEEE Access 2018, 6, 71592–71601. [Google Scholar] [CrossRef]
- Mo, J.; Gao, M.; Liu, L. An Improved Critical-Edge Model for Finding Optimal Contraflow Links Considering the Influence of Intersections. Math. Probl. Eng. 2019. [Google Scholar] [CrossRef] [Green Version]
- You, R.; Chen, W.N.; Gong, Y.J.; Lin, Y.; Zhang, J. A Histogram Estimation of Distribution Algorithm for Reversible Lanes Optimization Problems. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019. [Google Scholar] [CrossRef]
- Sheffi, Y. Urban Transportation Network; Pretince Hall: Englewood Cliffs, NJ, USA, 1985. [Google Scholar]
- Newell, G.F. Traffic Flow on Transportation Networks; MIT Press: Cambridge, MA, USA, 1980. [Google Scholar]
- de Correia, G.H.; van Arem, B. Solving the User Optimum Privately Owned Automated Vehicles Assignment Problem (UO-POAVAP): A model to explore the impacts of self-driving vehicles on urban mobility. Transp. Res. Part B Methodol. 2016, 87, 64–88. [Google Scholar] [CrossRef]
- United States Bureau of Public Roads. Traffic Assignment Manual. Urban Planning Division; U.S. Department of Commerce: Washington, DC, USA, 1964. [Google Scholar]
- FICO. Getting Started with Xpress Release 8.1; Fair Isaac Corporation: San Jose, CA, USA, 2017. [Google Scholar]
- Fair Isaac Corporation. XPress Solver—Nonlinear Reference Manual. 2019. Available online: https://www.fico.com/fico-xpress-optimization/docs/latest/solver/nonlinear/HTML/GUID-4B40E940-6A38-342F-9531-A13E84FB1467.html (accessed on 7 July 2019).
- Kronqvist, J.; Bernal, D.E.; Lundell, A.; Grossmann, I.E. A review and comparison of solvers for convex MINLP. Optim. Eng. 2019, 20, 397–455. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, B. Verkehrliche Wirkung autonomer Fahrzeuge. In Autonomes Fahren; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef] [Green Version]
- Meyer, J.; Becker, H.; Bösch, P.M.; Axhausen, K.W. Autonomous vehicles: The next jump in accessibilities? Res. Transp. Econ. 2017, 62, 80–91. [Google Scholar] [CrossRef] [Green Version]
Traffic Assignment | Reversible Lanes | Mathematical Model | ||
---|---|---|---|---|
Scenario O | Current traffic situation without reversible lanes | UE | No | NLP |
Scenario A | First days after implementing reversible lanes, AVs follow previous paths (scenario O) | Not performed | Yes | MINLP |
Scenario B | Long-term scenario with reversible lanes and UE traffic conditions. AVs choose their paths (selfish behavior) | UE | Yes | MINLP |
Scenario C | Long-term scenario with reversible lanes and SO traffic conditions. The system chooses AV paths (unselfish behavior) | SO | Yes | MINLP |
Period (h-h) | Scenario O | Scenario A | Scenario B | Scenario C | |||||
---|---|---|---|---|---|---|---|---|---|
OF (1) (h veh) | Calculus (s) | OF (1) (h veh) | Calculus (s) | OF (1) (h veh) | Calculus (s) | OF (2) (h veh) | Calculus (s) | ||
6 | 7 | 105 | 0.1 | 105 | 0.3 | 105 | 0.4 | 105 | 0.4 |
7 | 8 | 729 | 0.2 | 721 | 0.4 | 721 | 0.9 | 907 | 2.1 |
8 | 9 | 1353 | 0.2 | 1338 | 0.4 | 1325 | 0.8 | 2001 | 4.0 |
9 | 10 | 2541 | 0.3 | 2528 | 1.4 | 2523 | 219.6 | 4404 | 1768.6 |
10 | 11 | 1733 | 0.2 | 1711 | 1.0 | 1673 | 21.6 | 1900 | 113.7 |
11 | 12 | 2220 | 0.2 | 2217 | 0.7 | 2193 | 14.7 | 2802 | 433.3 |
12 | 13 | 1831 | 0.2 | 1826 | 0.9 | 1825 | 395.6 | 2183 | 764.1 |
13 | 14 | 353 | 0.1 | 345 | 0.4 | 345 | 0.5 | 353 | 0.5 |
14 | 15 | 2046 | 0.2 | 2016 | 0.6 | 1934 | 8.8 | 4988 | 39.9 |
15 | 16 | 843 | 0.1 | 841 | 0.6 | 841 | 6.8 | 858 | 8.0 |
16 | 17 | 2194 | 0.2 | 2124 | 0.5 | 2078 | 5.8 | 3191 | 42.7 |
17 | 18 | 374 | 0.1 | 370 | 0.4 | 370 | 0.5 | 373 | 0.5 |
18 | 19 | 1120 | 0.2 | 1117 | 0.4 | 1117 | 6.5 | 1291 | 38.6 |
19 | 20 | 247 | 0.1 | 247 | 0.7 | 247 | 0.4 | 250 | 0.4 |
20 | 21 | 33 | 0.1 | 33 | 0.3 | 33 | 0.3 | 33 | 0.4 |
21 | 22 | 638 | 0.2 | 627 | 0.3 | 615 | 1.4 | 658 | 4.4 |
22 | 23 | 594 | 0.1 | 544 | 0.5 | 537 | 0.7 | 569 | 1.0 |
23 | 24 | 404 | 0.1 | 402 | 0.4 | 402 | 0.4 | 406 | 0.4 |
24 | 1 | 404 | 0.1 | 353 | 0.3 | 346 | 0.4 | 375 | 0.4 |
Total | 19,761 | 00:00:03 | 19,466 | 00:00:11 | 192,300 | 00:11:26 | 27,648 | 00:53:43 | |
(h veh) | (h:m:s) | (h veh) | (h:m:s) | (h veh) | (h:m:s) | (h veh) | (h:m:s) |
Period | Average Degree of Saturation (%) | Average Congestion (%) | Congested roads (Degree of Saturation≥100%) (km) | Total Travel Distance (km veh) | Total Travel Times (h veh) | Total Delay (h veh) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Scenario O | Scenario A | Scenario B | Scenario C | Scenario O | Scenario A | Scenario B | Scenario C | Scenario O | Scenario A | Scenario B | Scenario C | Scenario O | Scenario A | Scenario B | Scenario C | Scenario O | Scenario A | Scenario B | Scenario C | Scenario O | Scenario A | Scenario B | Scenario C | ||
6 | 7 | 39.3% | 24.1% | 24.1% | 24.1% | 1.8% | 1.2% | 1.2% | 1.2% | 0.00 | 0.00 | 0.00 | 0.00 | 5975 | 5975 | 5975 | 5975 | 106 | 105 | 105 | 105 | 1 | 0 | 0 | 0 |
7 | 8 | 73.6% | 51.2% | 51.3% | 48.6% | 11.1% | 6.0% | 6.0% | 5.7% | 3.68 | 0.87 | 0.87 | 0.87 | 40,752 | 40,752 | 40,694 | 40,355 | 945 | 908 | 908 | 907 | 271 | 233 | 234 | 229 |
8 | 9 | 71.6% | 45.5% | 57.4% | 47.0% | 20.4% | 14.5% | 13.9% | 15.0% | 15.06 | 8.77 | 8.77 | 7.88 | 66,066 | 66,066 | 65,826 | 68,944 | 2094 | 2021 | 2018 | 2001 | 927 | 854 | 867 | 784 |
9 | 10 | 94.8% | 81.4% | 82.3% | 70.1% | 35.3% | 30.4% | 29.7% | 30.4% | 29.60 | 27.19 | 25.94 | 21.21 | 102,330 | 102,330 | 102,699 | 109,752 | 4833 | 4764 | 4690 | 4404 | 2865 | 2796 | 2708 | 2271 |
10 | 11 | 85.1% | 67.9% | 65.8% | 58.8% | 27.6% | 21.2% | 19.7% | 19.9% | 17.90 | 15.06 | 8.82 | 8.98 | 86,097 | 86,097 | 86,171 | 86,407 | 2167 | 2059 | 1903 | 1900 | 543 | 435 | 287 | 272 |
11 | 12 | 82.6% | 71.8% | 70.7% | 63.4% | 36.7% | 31.9% | 30.0% | 31.1% | 28.96 | 26.66 | 23.62 | 25.93 | 108,008 | 108,008 | 107,118 | 108,298 | 2973 | 2957 | 2880 | 2802 | 941 | 925 | 858 | 728 |
12 | 13 | 82.9% | 68.3% | 67.7% | 62.3% | 29.1% | 23.5% | 23.3% | 21.7% | 20.11 | 16.44 | 16.44 | 12.91 | 98,178 | 98,178 | 98,190 | 99,949 | 2279 | 2256 | 2266 | 2183 | 560 | 538 | 551 | 415 |
13 | 14 | 57.3% | 36.9% | 36.9% | 36.9% | 5.9% | 3.7% | 3.7% | 3.7% | 2.41 | 0.15 | 0.15 | 0.15 | 19,777 | 19,777 | 19,777 | 19,777 | 391 | 353 | 353 | 353 | 48 | 9 | 9 | 9 |
14 | 15 | 89.2% | 77.3% | 70.8% | 67.0% | 21.3% | 17.9% | 14.2% | 17.0% | 13.53 | 10.64 | 5.28 | 10.09 | 60,916 | 60,916 | 59,198 | 64,241 | 5581 | 5432 | 5161 | 4988 | 4419 | 4270 | 4034 | 3755 |
15 | 16 | 56.4% | 44.5% | 44.5% | 38.4% | 15.4% | 12.5% | 12.5% | 12.6% | 0.15 | 0.15 | 0.15 | 0.15 | 44,758 | 44,758 | 44,758 | 45,063 | 870 | 860 | 860 | 858 | 34 | 24 | 24 | 20 |
16 | 17 | 100.4% | 69.7% | 68.5% | 63.0% | 32.3% | 23.2% | 21.0% | 20.1% | 26.68 | 15.43 | 11.89 | 10.84 | 101,387 | 101,387 | 100,481 | 101,527 | 3690 | 3344 | 3203 | 3191 | 1871 | 1524 | 1406 | 1383 |
17 | 18 | 63.6% | 42.3% | 42.3% | 42.3% | 6.9% | 4.3% | 4.3% | 4.3% | 0.00 | 0.00 | 0.00 | 0.00 | 19,388 | 19,388 | 19,388 | 19,388 | 391 | 373 | 373 | 373 | 22 | 4 | 4 | 4 |
18 | 19 | 72.5% | 52.8% | 52.7% | 46.8% | 18.1% | 12.9% | 12.9% | 13.2% | 1.92 | 1.15 | 1.15 | 1.15 | 63,122 | 63,122 | 63,118 | 62,779 | 1310 | 1294 | 1294 | 1291 | 238 | 222 | 222 | 213 |
19 | 20 | 42.7% | 27.2% | 27.2% | 27.2% | 4.5% | 3.6% | 3.6% | 3.6% | 0.00 | 0.00 | 0.00 | 0.00 | 13,500 | 13,500 | 13,500 | 13,500 | 250 | 250 | 250 | 250 | 4 | 3 | 3 | 3 |
20 | 21 | 36.1% | 27.1% | 27.1% | 27.1% | 0.6% | 0.5% | 0.5% | 0.5% | 0.00 | 0.00 | 0.00 | 0.00 | 1670 | 1670 | 1670 | 1670 | 33 | 33 | 33 | 33 | 0 | 0 | 0 | 0 |
21 | 22 | 63.6% | 38.5% | 40.2% | 35.4% | 10.2% | 5.7% | 5.0% | 5.3% | 4.02 | 0.57 | 0.57 | 0.57 | 37,254 | 37,254 | 36,966 | 37,056 | 719 | 662 | 659 | 658 | 101 | 44 | 56 | 50 |
22 | 23 | 83.4% | 47.6% | 55.6% | 55.6% | 9.2% | 5.7% | 5.6% | 5.6% | 3.31 | 0.17 | 0.17 | 0.17 | 31,169 | 31,169 | 30,822 | 30,822 | 826 | 574 | 569 | 569 | 289 | 37 | 41 | 41 |
23 | 24 | 53.8% | 28.1% | 28.1% | 28.1% | 6.8% | 3.4% | 3.4% | 3.4% | 0.00 | 0.00 | 0.00 | 0.00 | 23,520 | 23,520 | 23,520 | 23,520 | 417 | 406 | 406 | 406 | 16 | 5 | 5 | 5 |
24 | 1 | 108.1% | 52.5% | 67.4% | 67.4% | 5.8% | 2.4% | 2.4% | 2.4% | 3.31 | 0.17 | 0.17 | 0.17 | 20,495 | 20,495 | 20,148 | 20,148 | 633 | 379 | 375 | 375 | 287 | 33 | 36 | 36 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conceição, L.; Correia, G.H.d.A.; Tavares, J.P. The Reversible Lane Network Design Problem (RL-NDP) for Smart Cities with Automated Traffic. Sustainability 2020, 12, 1226. https://doi.org/10.3390/su12031226
Conceição L, Correia GHdA, Tavares JP. The Reversible Lane Network Design Problem (RL-NDP) for Smart Cities with Automated Traffic. Sustainability. 2020; 12(3):1226. https://doi.org/10.3390/su12031226
Chicago/Turabian StyleConceição, Lígia, Gonçalo Homem de Almeida Correia, and José Pedro Tavares. 2020. "The Reversible Lane Network Design Problem (RL-NDP) for Smart Cities with Automated Traffic" Sustainability 12, no. 3: 1226. https://doi.org/10.3390/su12031226
APA StyleConceição, L., Correia, G. H. d. A., & Tavares, J. P. (2020). The Reversible Lane Network Design Problem (RL-NDP) for Smart Cities with Automated Traffic. Sustainability, 12(3), 1226. https://doi.org/10.3390/su12031226