A Practical Case Report on the Node Point of a Butterfly Model Circular Economy: Synthesis of a New Hybrid Mineral–Hydrothermal Fertilizer for Rice Cropping
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample Preparation and Characterization
2.2. Rice Growth Experiments
3. Results and Discussion
4. Conclusions
Data Availability Statement
Author Contributions
Funding
Conflicts of Interest
References
- Ellen MacArthur Foundation. Towards the Circular Economy. Opportunities for the Consumer Goods Sector; Ellen MacArthur Foundation: Cowes, UK, 2013; Available online: https://www.ellenmacarthurfoundation.org/assets/downloads/publications/TCE_Report-2013.pdf (accessed on 7 February 2020).
- Council of Agriculture. 2015. Available online: http://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx (accessed on 21 March 2018).
- Chen, Q.; Xing, J.X.; Zheng, K.; Nan, J.S.; Wang, K. Hydrothermal Pretreatment of Lignocellulosic Materials for Improving Bioethanol Production. Pap. Biomater. 2017, 2, 51–60. [Google Scholar]
- Lei, H.W.; Cybulska, I.; Julson, J. Hydrothermal Pretreatment of Lignocellulosic Biomass and Kinetics. J. Sustain. Bioenergy Syst. 2013, 3, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Nguyena, Q.A.; Yang, J.M.; Baea, H.J. Bioethanol production from individual and mixed agricultural biomass residues. Ind. Crops Prod. 2017, 95, 718–725. [Google Scholar] [CrossRef]
- Wu, J.; Collins, R.A.; Elliston, A.; Wellner, N.; Dicks, J.; Roberts, I.N.; Waldro, K.W. Release of cell wall phenolic esters during hydrothermal pretreatment of rice husk and rice straw. Biotechnol. Biofuels 2018, 11, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.F.; Zhang, F.S. Progress on hydrothermal carbonization of waste biomass. Environ. Pollut. Control 2012, 34, 70–75. [Google Scholar]
- Chun, H.K.; Chaiprapat, S.; Lee, H.K.; Hadi, P.M.; Hsu, S.C.; Leu, S.Y. Carbon sequestration potential via energy harvesting from agricultural biomass residues in Mekong River basin, Southeast Asia. Renew. Sustain. Energy Rev. 2017, 68, 1051–1062. [Google Scholar]
- Wang, Z.W.; Zhu, M.Q.; Li, M.F.; Wang, J.Q.; Wei, Q.; Sun, R.C. Comprehensive evaluation of the liquid fraction during the hydrothermal treatment of rapeseed straw. Biotechnol. Biofuels 2016, 9, 142. [Google Scholar] [CrossRef] [Green Version]
- Capolupo, L.; Faraco, V. Green methods of lignocellulose pretreatment for biorefinery development Laura. Appl. Microbiol. Biotechnol. 2016, 100, 9451–9467. [Google Scholar] [CrossRef] [Green Version]
- Ren, M.; Yin, H.B.; Hang, Y.G.; Zhang, Y.S.; Wang, A.L.; Yu, L.B.; Jiang, T.S.; Wu, Z.N. Deposition of colored inorganiccoatinglayers on lamellar sericitesurface and the pigmentary performances. Powder Technol. 2011, 214, 31–37. [Google Scholar] [CrossRef]
- Ren, M.; Yin, H.B.; Lu, Z.; Wang, A.L.; Yu, L.B.; Jang, T.S. Evolution of rutile TiO2coatinglayers on lamellar sericite surface induced by Sn4+the pigmentary properties. Powder Technol. 2010, 204, 249–254. [Google Scholar] [CrossRef]
- Hsiao, Y.H.; Guo, T.C.; Ray, D.T.; Tsai, Y.L.; Yang, H.S. A Study on Metal Oxide Coating on Sericite. Min. Metall. China Metall. Eng. Soc. J. 2016, 233, 57–82. (In Chinese) [Google Scholar]
- Hu, B.; Hu, Q.; Xu, D.; Chen, C.G. Macroscopic and microscopic investigation on adsorption of Sr (II) on sericite. J. Mol. Liq. 2017, 225, 563–568. [Google Scholar] [CrossRef]
- Jeon, C. Removal of cesium ions from aqueous solutions using immobilized nickel hexacyan of errate-sericite beads in the batch and continuous processes. J. Ind. Eng. Chem. 2016, 40, 93–98. [Google Scholar] [CrossRef]
- Tiwari, D.; Kim, H.U.; Lee, S.M. Removal behavior ofsericitefor Cu (II) and Pb (II) from aqueous solutions: Batch and column studies. Separ. Purif. Technol. 2007, 57, 11–16. [Google Scholar] [CrossRef]
- Tiwari, D.; Lee, S.M. Surface-functionalized activated sericite for the simultaneous removal of cadmium and phenol from aqueous solutions: Mechanistic insights. Chem. Eng. J. 2016, 283, 1414–1423. [Google Scholar]
- Pawar, R.R.; Hong, S.M.; Jin, K.J.; Lee, S.M. Iron-oxide modifiedsericitealginate beads: A sustainable adsorbent for the removal of As (V) and Pb (II) from aqueous solutions. J. Mol. Liq. 2017, 240, 497–503. [Google Scholar]
- Choi, H.J. Application of methyl-esterified sericite for harvesting microalgae species. J. Environ. Chem. Eng. 2016, 4, 3593–3600. [Google Scholar] [CrossRef]
- Cuong, T.X.; Ullah, H.; Datta, A.; Hanh, T.C. Effects of Silicon-Based Fertilizer on Growth, Yield and Nutrient Uptake of Rice in Tropical Zone of Vietnam. Rice Sci. 2017, 24, 283–290. [Google Scholar] [CrossRef]
- Islam, M.A.; Obour, A.K.; Saha, M.C.; Nachtman, J.J.; Cecil, W.K.; Baumgartner, R.E. Grain Yield, Forage Yield, and Nutritive Value of Dual-Purpose Small Grains in the Central High Plains of the USA. Crop Manag. 2014, 12, 1–8. [Google Scholar] [CrossRef]
- Pati, S.; Pal, B.; Badole, S.; Hazra, G.C.; Mandal, B. Effect of Silicon Fertilization on Growth, Yield and Nutrient Uptake of Rice. Commun. Soil Sci. Plant Anal. 2016, 47, 284–290. [Google Scholar] [CrossRef]
- Madić, M.; Knežević, D.; Paunović, A.; Đurović, D. Plant height and internode length as components of lodging resistance in barley. Acta Agric. Serbica 2016, 42, 99–106. [Google Scholar]
- Zhang, Y.; Yu, C.; Lin, J.; Liu, J.; Liu, B.; Wang, J.; Huang, A.; Li, H.; Zhao, T. OsMPH1 regulates plant height and improves grain yield in rice. PLoS ONE 2017, 12, e0180125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavinsky, A.O.; Detmann, K.C.; Reis, J.V.; Ávila, R.T.; Sanglard, M.L.; Pereira, L.F.; Sanglard, L.M.; Rodrigues, F.A.; Araújo, W.L.; DaMatta, F.M. Silicon improves rice grain yield and photosynthesis specifically when supplied during the reproductive growth stage. J. Plant Physiol. 2016, 206, 125–132. [Google Scholar] [CrossRef]
- Moe, K.; Htwe, A.Z.; Thu, T.T.P.; Kajihara, Y.; Yamakawa, T. Effects on NPK Status, Growth, Dry Matter and Yield of Rice (Oryza sativa) by Organic Fertilizers Applied in Field Condition. Agriculture 2019, 9, 109. [Google Scholar] [CrossRef] [Green Version]
- Meena, V.D.; Dotaniya, M.L.; Coumar, V.; Rajendiran, S.; Kundu, S.; Rao, A.S. A Case for Silicon Fertilization to Improve Crop Yields in Tropical Soils. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2014, 84, 505–518. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.K.; Yang, L.X.; Wang, Y.L.; Wang, Z.Q. Advances in the Study Uptake and Accumulation of Heavy Metal in Rice (Oryza sativa) and its Mechanisms. Chin. Bull. Bot. 2005, 22, 614–622. [Google Scholar]
- Chang, M.Y.; Huang, W.J. Production of Silicon Carbide Liquid Fertilizer by Hydrothermal Carbonization Processes from Silicon Containing Agricultural Waste Biomass. Eng. J. 2016, 20, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.Y.; Huang, W.J. Hydrothermal Biorefinery of Spent Agricultural Biomass into Value-added Bioneutrient Solution: Comparison between Greenhouse and Field Cropping Data. Ind. Crop. Prod. 2018, 126, 186–189. [Google Scholar] [CrossRef]
- Ma, J.F.; Yamaji, N. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 2006, 11, 392–397. [Google Scholar] [CrossRef]
- Akhmad, A.; Dewi, W.S.; Sagiman, S.; Suntoro, S. The effect of mixed liming and NPK fertilizer to yield of some rice varieties on new openings of acid sulfate tidal swamp land. IOP Conf. Ser. Earth Environ. Sci. 2018, 142, 012078. [Google Scholar] [CrossRef]
- Budiono, R.; Adinurani, P.G.; Soni, P. Effect of new NPK fertilizer on lowland rice (Oryza sativa L.) growth. IOP Conf. Ser. Earth Environ. Sci. 2019, 293, 012034. [Google Scholar] [CrossRef]
- Thavanesan, S.; Seran, T.H. Effect of Rice Straw and Husk Biochar on Vegetative Growth and Yield Attributes of Oryza sativa L. Int. J. Crop Sci. Technol. 2018, 4, 49–56. [Google Scholar]
Element | C | O | Si | N | K | Ca | Al | Ni | Cl | Mg | |
---|---|---|---|---|---|---|---|---|---|---|---|
Item | |||||||||||
Sugarcane exocarp, raw | 52.64 | 46.56 | 0.80 | ND | ND | ND | ND | ND | ND | ND | |
Peanut shells, raw | 43.78 | 44.69 | 1.91 | 0.92 | 2.75 | 1.82 | 0.56 | ND | 1.66 | 1.91 | |
Rice husks, raw | 32.41 | 46.84 | 19.71 | 0.06 | 0.66 | 0.66 | ND | ND | ND | 0.06 | |
Sugarcane (BNS) | 57.00 | 41.70 | 2.00 | 0.25 | ND | 0.05 | ND | ND | ND | ND | |
Peanut shells (BNS) | 62.04 | 33.58 | 2.17 | 0.23 | 0.18 | 0.57 | 1.02 | ND | ND | 0.21 | |
Rice husks (BNS) | 50.79 | 43.51 | 4.09 | ND | ND | 0.03 | ND | 1.58 | ND | ND | |
Equally mixed BNS | 56.60 | 39.60 | 2.75 | 0.16 | 0.06 | 0.22 | 0.34 | 0.53 | ND | 0.07 |
Element | O | Na | Mg | Al | Si | K | Ca | F | |
---|---|---|---|---|---|---|---|---|---|
Item | |||||||||
#1 | 49.46 | 0.9 | 0.52 | 17.81 | 23.43 | 6.52 | 0 | 1.36 | |
#2 | 49.84 | 0.6 | 0.44 | 17.52 | 23.04 | 6.61 | 0.4 | 1.55 | |
Averaged | 49.65 | 0.75 | 0.48 | 17.67 | 23.24 | 6.57 | 0.20 | 1.46 |
Element | C | O | N | K | Si | Al | Ca | Mg | Na | Ni | F | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | ||||||||||||
40% BNS + 30% sericite | 22.64 | 30.74 | 0.06 | 0.02 | 8.07 | 5.44 | 0.15 | 0.03 | 0.23 | 0.21 | 0.44 |
Element | Plant Height (cm) | Spike Height (cm) | Empty Envelope of Grain (grain/spike) | Saturation of Spike (%) | Seed Setting Rate (%) | Panicle Weight of Grain (g/spike) | |
---|---|---|---|---|---|---|---|
Item | |||||||
1. (Ck) (30% Water) | 68.6 | 11.5 | 3 | 62 | 95.4 | 3.6 | |
2. (EX1) 30% Sericite | 97.6 | 12.5 | 3 | 122 | 97.6 | 4.3 | |
3. (EX2) 40% BNS | 82.0 | 13.5 | 4 | 112 | 96.6 | 3.8 | |
4. (EX3) 40% BNS + 30% Sericite | 121.0 | 17.5 | 1 | 135 | 99.3 | 5.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, M.-Y.; Huang, W.-J. A Practical Case Report on the Node Point of a Butterfly Model Circular Economy: Synthesis of a New Hybrid Mineral–Hydrothermal Fertilizer for Rice Cropping. Sustainability 2020, 12, 1245. https://doi.org/10.3390/su12031245
Chang M-Y, Huang W-J. A Practical Case Report on the Node Point of a Butterfly Model Circular Economy: Synthesis of a New Hybrid Mineral–Hydrothermal Fertilizer for Rice Cropping. Sustainability. 2020; 12(3):1245. https://doi.org/10.3390/su12031245
Chicago/Turabian StyleChang, Mei-Yun, and Wu-Jang Huang. 2020. "A Practical Case Report on the Node Point of a Butterfly Model Circular Economy: Synthesis of a New Hybrid Mineral–Hydrothermal Fertilizer for Rice Cropping" Sustainability 12, no. 3: 1245. https://doi.org/10.3390/su12031245
APA StyleChang, M. -Y., & Huang, W. -J. (2020). A Practical Case Report on the Node Point of a Butterfly Model Circular Economy: Synthesis of a New Hybrid Mineral–Hydrothermal Fertilizer for Rice Cropping. Sustainability, 12(3), 1245. https://doi.org/10.3390/su12031245