Decision-Making in the Transport Sector: A Sustainable Evaluation Method for Road Infrastructure
Abstract
:1. Introduction
2. Application Case Study
3. The Evaluation Analysis Methodology Proposed
- (i)
- different project alternatives (scenarios); for this case study the positive impacts (benefits) produced by the revamping of the road, was estimated as the variation between the project scenario (redevelopment of the Extra Urban Road) and the Not Project (NP) scenario;
- (ii)
- the analysis time period is the number of years for which the costs and benefits were taken into account. The definition of the time period significantly influences the results of the Cost Benefit Analysis. In accordance with the national “Guidelines for Assessment of Investment Projects”; in this case study, a time period of 30 years was considered.
- Costs: investment; management and maintenance; the residual value of the investment;
- Benefits for the users: the consumers’ surplus (as a variation of travel time); operational costs (e.g., usage and maintenance of the vehicle);
- Benefits for non-users: greenhouse gasses emission variation; pollutant emission variation; noise variation; accidents variation; traffic congestions variation; impacts on other sectors’ variation (e.g., energy market).
- (i)
- A mobility demand estimate:
- has neglected the induced demand by the revamping of the road. This means considering only the demand diverted from other paths;
- some parameters of direct demand estimation have been deliberately underestimated (even by 50%) compared to those quantified by mobility survey (e.g., the percentage of users who would change the route downstream of the revamping of the Italian road).
- (ii)
- An estimate of benefits:
- underestimation of the consumer surplus i.e. the benefits for the transport users residing outside the area directly affected by the improvement of the Italian local road have not been considered;
- travel time saved is an underestimation i.e. it has not been considered that, with changes in the choice of path, the intervention could lead to a reduction of road congestion and therefore a reduction of travel times (additional benefits attributable to the new infrastructure) also on other routes.
- underestimation of the reduction in accidents, i.e. reduction in the phenomena of accidents resulting from the estimated increase in the demand for the study area was not considered.
4. Result and Discussion of the Cost Benefit Analysis
4.1. The Traffic Demand Estimation
4.2. The Cost Estimations
4.3. The Users Benefits Estimation
4.4. The Non-Users Benefits Estimation (External Cost Saved)
4.5. Measure of Effectiveness
- r is the rate of return equal to 3.0%;
- Tm is the analysis period (30 years);
- BJ is all the benefits (both for users and for non-users) that the Regional Road revamping will produce;
- CJ are all supporting costs (Table 2)
4.6. The Sensitivity Analysis
5. Result and Discussion of the Sustainability Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Commissione Europea. Un Futuro Sostenibile per i Trasporti: Verso un Sistema Integrato, Basato Sulla Tecnologia e di Agevole Uso; COM(2009), 279; Ufficio Delle Pubblicazioni Dell’Unione Europea: Lussemburgo, 2009.
- Pagliara, F.; Biggiero, L.; Henke, I. The Environmental Impacts Connected with Travelling to events: The Case Study of the City of Naples in Italy. In Proceedings of the 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Genova, Italy, 11–14 June 2019. [Google Scholar]
- Bellasio, R.; Bianconi, R.; Corda, G.; Cucca, P. Emission inventory for the road transport sector in Sardinia (Italy). Atmos. Environ. 2007, 41, 677–691. [Google Scholar] [CrossRef]
- Basiago, A.D. Economic, social, and environmental sustainability in development theory and urban planning practice. Environmentalist 1998, 19, 145–161. [Google Scholar] [CrossRef]
- Dempsey, N.; Bramley, G.; Power, S.; Brown, C. The social dimension of sustainable development: Defining urban social sustainability. Sustain. Dev. 2011, 19, 289–300. [Google Scholar] [CrossRef]
- Shen, L.; Wu, Y.; Zhang, X. Key assessment indicators for the sustainability of infrastructure projects. J. Constr. Eng. Manag. 2010, 137, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Cartenì, A. Urban sustainable mobility. Part 1: Rationality in transport planning. Transp. Probl. 2014, 9, 39–48. [Google Scholar]
- Cartenì, A. Urban sustainable mobility. Part 2: Simulation models and impacts estimation. Transp. Probl. 2015, 10, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Cartenì, A. A cost-benefit analysis based on the carbon footprint derived from plug-in hybrid electric buses for urban public transport services. WSEAS Trans. Environ. Dev. 2018, 14, 125–135. [Google Scholar]
- Calise, F.; Cappiello, F.L.; Cartenì, A.; Dentice d’Accadia, M.; Vicidomini, M. A novel paradigm for a sustainable mobility based on electric vehicles, photovoltaic panels and electric energy storage systems: Case studies for Naples and Salerno (Italy). Renew. Sustain. Energy Rev. 2019, 111, 97–114. [Google Scholar] [CrossRef]
- Cools, M.; Brijs, K.; Tormans, H.; Moons, E.; Janssens, D.; Wets, G. The socio-cognitive links between road pricing acceptability and changes in travel behavior. Transp. Res. A 2011, 45, 779–788. [Google Scholar] [CrossRef] [Green Version]
- De Palma, A.; Kilanin, M.; Lindsey, R. Maintenance, service quality and congestion pricing with competing roads. Transp. Res. B 2007, 41, 573–591. [Google Scholar] [CrossRef]
- May, A.; Koh, A.; Blackledge, D.; Fioretto, M. Overcoming the barriers to implementing urban road user charging schemes. Eur. Transp. Res. Rev. 2010, 2, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Cascetta, E.; Cartenì, A.; Henke, I. Acceptance and equity in advanced path-related road pricing schemes. In Proceedings of the 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2017, Naples, Italy, 26–28 June 2017; pp. 492–496. [Google Scholar] [CrossRef]
- Elster, J. Rational Choice; Oxford Press: Oxford, UK, 1986. [Google Scholar]
- Cascetta, E.; Carteni, A.; Pagliara, F.; Montanino, M. A new look at planning and designing transportation systems: A decision-making model based on cognitive rationality, stakeholder engagement and quantitative methods. Transp. Policy 2015, 38, 27–39. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Prospect Theory: An Analysis of Decision under Risk. Econometrica 1979, 47, 263–292. [Google Scholar] [CrossRef] [Green Version]
- Flyvbjerg, B.; Holm, M.S.; Buhl, S. Underestimating Costs in Public Works Projects. Error or Lie? J. Am. Plan. Assoc. 2002, 68, 279–295. [Google Scholar] [CrossRef] [Green Version]
- Flyvbjerg, B.; Skamris Holm, M.K.; Buhl, S.L. How (In)accurate Are Demand Forecasts in Public Works Projects: The Case of Transportation. J. Am. Plan. Assoc. 2005, 71, 131–146. [Google Scholar] [CrossRef] [Green Version]
- Flyvbjerg, B.; Skamris Holm, M.K.; Buhl, S.L. Inaccuracy in Traffic Forecasts. Transp. Rev. 2006, 26, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Dei Ministri, P.D.C. Strumenti per il Ciclo Della Regolazione Allegato 2 Le Tecniche di Valutazione: Alternative Percorribili; Dipartimento per gli Affari Giuridici e Legislative, 2013. Available online: http://www.qualitanormazione.gov.it/uploads/download/file/270/Strumenti_per_il_ciclo_della_regolazione.pdf (accessed on 15 November 2019).
- Dyr, T.; Misiurski, P.; Ziółkowska, K. Costs and benefits of using buses fuelled by natural gas in public transport. J. Clean. Prod. 2019, 225, 1134–1146. [Google Scholar] [CrossRef]
- Harford, J.D. Congestion, pollution, and benefit-to-cost ratios of US public transit systems. Transp. Res. D Transp. Environ. 2006, 11, 45–58. [Google Scholar] [CrossRef]
- Danon, G.; Tica, S.; Vasić, B. Cost benefit analysis of Belgrade tram rolling stock. J. Appl. Eng. Sci. 2006, 4, 57–68. [Google Scholar]
- Chi, S.; Bunker, J.; Teo, M. Measuring impacts and risks to the public of a privately operated toll road project by considering perspectives in cost-benefit analysis. J. Transp. Eng. A Syst. 2017, 143, 04017060. [Google Scholar] [CrossRef] [Green Version]
- Cartenì, A.; Henke, I. External costs estimation in a cost-benefit analysis: The new Formia-Gaeta tourist railway line in Italy. Proceeding of the 17th IEEE International Conference on Environment and Electrical Engineering, Milan, Italy, 6–9 June 2017. [Google Scholar]
- Cartenì, A.; Henke, I.; Molitierno, C. A cost-benefit analysis of the metro Line 1 in Naples, Italy. WSEAS Trans. Bus. Econ. 2018, 15, 529–538. [Google Scholar]
- Cartenì, A.; Henke, I.; Di Bartolomeo, M.I.; Regna, M. A Cost-Benefit Analysis of a Fully-Automated Driverless Metro Line in a High-Density Metropolitan Area in Italy. In Proceedings of the 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe, Genova, Italy, 11–14 June 2019. [Google Scholar]
- Cartenì, A.; Henke, I. The evaluation of public investments according to the cost-benefit analysis: An application to the formia-gaeta railway line [La valutazione degli investimentiin opere pubbliche attraverso l’analisi costi-benefici: Un’applicazione alla riqualificazione della linea ferroviaria formia-gaeta]. Ing. Ferrov. 2019, 74, 651–681. [Google Scholar]
- Hickman, R.; Saxena, S.; Banister, D.; Ashiru, O. Examining transport futures with scenario analysis and MCA. Transp. Res. A 2012, 46, 560–575. [Google Scholar] [CrossRef]
- Nogués, S.; González-González, E. Multi-criteria impact assessment for ranking highway projects in Northwest Spain. Transp. Res. A 2014, 65, 80–91. [Google Scholar] [CrossRef]
- Awasthi, A.; Omrani, H.; Gerber, P. Investigating ideal-solution based multicriteria decision making techniques for sustainability evaluation of urban mobility projects. Transp. Res. A 2018, 116, 247–259. [Google Scholar] [CrossRef]
- Policy, U. Guide to Cost-Benefit Analysis of Investment Projects; The EU: Brussels, Belgium, 2008. [Google Scholar]
- Henke, I.; Bazzichelli, T. The key role of cities in the urbanmobility policies: New laws and new investment (“Il ruolo chiave delle città metropolitane nella politica di sviluppo della mobilità pubblica: Nuove regole, Nuovi investimenti”). Ing. Ferrov. 2018, 12, 979. [Google Scholar]
- Decreto del Ministro Delle Infrastrutture e dei Trasporti n. 300. 2017. Available online: http://www.mit.gov.it/normativa/decreto-ministeriale-numero-300-del-16062017 (accessed on 15 November 2019).
- Korzhenevych, A.; Dehnen, N.; Brocker, J.; Holtkamp, M.; Meier, H.; Gibson, G.; Varma, A.; Cox, V. Update of the Handbook on External Costs of Transport; Final Report for the European Commission, DG MOVE; MOVE. DIW Econ, CAU; Ricardo-AEA: London, UK, 2014. [Google Scholar]
- Cartenì, A.; Henke, I.; Mallozzi, F.; Molitierno, C. A multi-criteria analysis as a rational evaluation process for building a new highway in Italy. WIT Trans. Ecol. Environ. 2018, 217, 713–723. [Google Scholar] [CrossRef] [Green Version]
- Cartenì, A.; De Guglielmo, M.L.; Pascale, N.; Calabrese, M. An adaptive rational decision-making process for developing sustainable urban mobility plans. Int. J. Civ. Eng. Technol. 2017, 8, 1147–1156. [Google Scholar]
- Tolón-Becerra, A.; Otero-Pastor, I.; Pérez, P.; Ezquerra-Canalejo, A.; Lastra-Bravo, X. Bases for Building a Sustainability Indicator System for Transport. In Highway and Urban Environment; Springer: Dordrecht, The Netherlands, 2009; pp. 49–57. [Google Scholar]
- Kumar, A.; Anbanandam, R. Development of social sustainability index for freight transportation system. J. Clean. Prod. 2019, 210, 77–92. [Google Scholar] [CrossRef]
- Baric, D.; Pilko, H.; Strujic, J. An analytic hierarchy process model to evaluate road section design. Transport 2016, 31, 312–321. [Google Scholar] [CrossRef] [Green Version]
- Inti, S.; Tandon, V. Application of Fuzzy Preference-Analytic Hierarchy Process Logic in Evaluating Sustainability of Transportation Infrastructure Requiring Multicriteria Decision Making. J. Infrastruct. Syst. 2017, 23. [Google Scholar] [CrossRef]
- Stojčić, M.; Zavadskas, E.K.; Pamučar, D.; Stević, Ž.; Mardani, A. Application of MCDM Methods in Sustainability Engineering: A Literature Review 2008–2018. Symmetry 2019, 11, 350. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, M.O. Methods of measuring the concentration of wealth. Publ. Am. Stat. Assoc. 1905, 9, 209–219. [Google Scholar] [CrossRef]
- Gini, C. Variabilità e Mutabilità. In Memorie di Metodologia Statistica; Pizetti, E., Salvemini, T., Eds.; Libreria Erendi Virgilio Veschi: Rome, Italy, 1912; Volume 1955, p. 156. [Google Scholar]
- Fridstrom, L.; Minken, H.; Vold, A. The income distribution effect of road pricing: A modelling case study. In Proceedings of the Aet European Transport Conference, Homerton College, Cambridge, UK, 10–12 September 2001. [Google Scholar]
- Delbosc, A.; Currie, G. Using Lorenz curves to assess public transport equity. J. Transp. Geogr. 2011, 19, 1252–1259. [Google Scholar] [CrossRef]
- Welch, T.F.; Mishra, S. A measure of equity for public transit connectivity. J. Transp. Geogr. 2013, 33, 29–41. [Google Scholar] [CrossRef]
- Thomopoulos, N.; Grant-Muller, S. Incorporating equity as part of the wider impacts in transport infrastructure assessment: An application of the SUMINI approach. Transportation 2013, 40, 315–345. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, S.; Popoks, D.; Prato, C.G.; Ceder, A.A. Using connectivity for measuring equity in transit provision. J. Transp. Geogr. 2014, 37, 82–92. [Google Scholar] [CrossRef]
- Ricciardi, A.M.; Xia, J.C.; Currie, G. Exploring public transport equity between separate disadvantaged cohorts: A case study in Perth, Australia. J. Transp. Geogr. 2015, 43, 111–122. [Google Scholar] [CrossRef]
- Xia, J.C.; Nesbitt, J.; Daley, R.; Najnin, A.; Litman, T.; Tiwari, S.P. Amulti-dimensional view of transport-related social exclusion: A comparative study of Greater Perth and Sydney. Transp. Res. A Policy Pract. 2016, 94, 205–221. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.; An, Y.; Yi, C.; Lee, S. Assessing the spatial equity of Seoul’s public transportation using the Gini coefficient based on its accessibility. Int. J. Urban Sci. 2017, 21, 91–107. [Google Scholar] [CrossRef]
- Guzman, L.A.; Oviedo, D.; Rivera, C. Assessing equity in transport accessibility to work and study: The Bogotá region. J. Transp. Geogr. 2017, 58, 236–246. [Google Scholar] [CrossRef]
- Falcocchio, J.C.; Malik, A.; Kontokosta, C.E. A data-driven methodology for equitable value-capture financing of public transit operations and maintenance. Transp. Policy 2018, 66, 107–115. [Google Scholar] [CrossRef]
- Ben-Elia, E.; Benenson, I. A spatially-explicit method for analyzing the equity of transit commuters’ accessibility. Transp. Res. A Policy Pract. 2019, 120, 31–42. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, Y.; Stuart, A.L.; Zhang, Y.; Li, X. Exploring the equity performance of bike-sharing systems with disaggregated data: A story of southern Tampa. Transp. Res. A Policy Pract. 2019, 130, 529–545. [Google Scholar] [CrossRef] [Green Version]
- Ahern, J. Greenways as a planning strategy. Landsc. Urban Plan 1995, 33, 131–155. [Google Scholar] [CrossRef]
- The European House-Ambrosetti. FS. Investire nel Trasporto Ferroviario Regionale—Un’opportunità per le Regioni Italiane e per il Paese; The European House-Ambrosetti, 2019; Available online: http://www.fsnews.it/_Investire_nel_trasporto_ferroviario_regionale.pdf (accessed on 15 November 2019).
- Cascetta, E. Transportation System Analysis: Models and Applications; Springer: New York, NY, USA, 2009. [Google Scholar]
- Cantarella, G.E.; De Luca, S.; Cartenì, A. Stochastic equilibrium assignment with variable demand: Theoretical and implementation issues. Eur. J. Oper. Res. 2015, 241, 330–347. [Google Scholar] [CrossRef]
- De Luca, S.; Cartenì, A. A multi-scale modelling architecture for estimating of transport mode choiceinduced by a new railway connection: The Salerno-University of Salerno-Mercato San Severino Route (Un’architettura modellistica multi-scala per la stima delle ripartizioni modali indotte da un nuovo collegamento ferroviario: Il caso studio della tratta Salerno-Università di Salerno-Mercato San Severino). Ing. Ferrov. 2013, 68, 447–473. [Google Scholar]
- Cartenì, A.; De Guglielmo, M.L.; Pascale, N. Congested urban areas with high interactions between vehicular and pedestrian flows: A cost-benefit analysis for a sustainable transport policy in Naples, Italy. Open Transp. J. 2018, 12, 273–288. [Google Scholar] [CrossRef]
- Gori, G.; Lattarulo, P.; Maiolo, S.; Petrina, F.; Rosignoli, S.; Rubino, P. Lo studio di fattibilità nei progetti locali realizzati in forma partenariale: Una guida e uno strumento. Materiali UVAL 2014, 30, 47–62. [Google Scholar]
- Cartenì, A. Accessibility indicators for freight transport terminals. Arab. J. Sci. Eng. 2014, 39, 7647–7660. [Google Scholar] [CrossRef] [Green Version]
- Cartenì, A.; Cascetta, E.; de Luca, S. A random utility model for park & carsharing services and the pure preference for electric vehicles. Transp. Policy 2016, 48, 49–59. [Google Scholar] [CrossRef]
- Bierlaire, M. BIOGEME: A free package for the estimation of discrete choice models. In Proceedings of the 3rd Swiss Transportation Research Conference, Ascona, The Switzerland, 19–21 March 2003. [Google Scholar]
- Cartenì, A.; Pariota, L.; Henke, I. Hedonic value of high-speed rail services: Quantitative analysis of the students’ domestic tourist attractiveness of the main Italian cities. Transp. Res. A Policy Pract. 2017, 100, 348–365. [Google Scholar] [CrossRef]
- Cascetta, E.; Cartenì, A.; Montanino, M. A behavioral model of accessibility based on the number of available opportunities. J. Transp. Geogr. 2016, 51, 45–58. [Google Scholar] [CrossRef]
- Lucas, K.; Marsden, G.; Brooks, M.; Kimble, M. Assessment of Capabilities for Examining Long-Term Social Sustainability of Transport and Land Use Strategies. Transp. Res. Rec. J. Transp. Res. Board 2007, 2013, 30–37. [Google Scholar] [CrossRef]
- Cuthill, N.; Cao, M.; Liu, Y.; Gao, X.; Zhang, Y. The association between Urban Public Transport infrastructure and social equity and spatial accessibility within the urban environment: An investigation of Tramlink in London. Sustainability 2019, 11, 1229. [Google Scholar] [CrossRef] [Green Version]
Vehicle Types | Trip Purpose | Value Of Time (VOT) (€/hour) |
---|---|---|
(β1/β2) Passenger cars | commuters | 15 |
other purposes (e.g., tourism and leisure) | 10 | |
(β1/β2) Freight vehicles | all | 25 |
Costs (2017 Prices with Fiscal Corrections) | Optimistic Scenario (M€) | Prudential Scenario (M€) | Median Scenario (M€) |
---|---|---|---|
Investment costs | 157.86 | 211.72 | 184.79 |
Operation and maintenance costs | 19.50 | 19.50 | 19.50 |
Residual value of the investment | 20.32 | 27.25 | 23.78 |
Total costs | 157.04 | 203.97 | 180.51 |
Users Benefits (2017 Prices) | Optimistic Scenario (M€) | Prudential Scenario (M€) | Median Scenario (M€) |
---|---|---|---|
The consumers’ surplus | 208.96 | 199.01 | 203.99 |
Operational costs | 3.74 | 3.56 | 3.65 |
Total Users benefits | 212.71 | 202.58 | 207.64 |
Non-Users Benefits (2017 Prices) | Optimistic Scenario (M€) | Prudential Scenario (M€) | Median Scenario (M€) |
---|---|---|---|
Greenhouse gasses emission | 0.59 | 0.56 | 0.57 |
Pollutant emission | 0.17 | 0.16 | 0.17 |
Noise pollution | 0.05 | 0.04 | 0.04 |
Accidents | 30.83 | 28.02 | 29.42 |
Traffic congestions | 40.04 | 17.13 | 28.59 |
Impacts in other sectors | 0.28 | 0.26 | 0.27 |
Total Non-Users benefits | 71.95 | 46.18 | 59.07 |
The MOE Indicators Estimated | Optimistic Scenario | Prudential Scenario | Median Scenario |
---|---|---|---|
Rate of return r | 3% | 3% | 3.% |
NPV (M€) | 127.6 | 44.8 | 86.2 |
IRR | 8% | 5% | 6% |
B/C | 1.8 | 1.2 | 1.5 |
PBP | 16 | 27 | 21 |
Sustainability | Indicators | Result |
---|---|---|
Social | Accidents variation reduction (M€) | 29.4 |
Active accessibility variation increase (%) | 19% | |
Environment | Greenhouse gasses emission reduction (M€) | 0.57 |
Pollutant emission reduction (M€) | 0.17 | |
Noise pollution reduction (M€) | 0.04 | |
Economic | Rate of return r (%) | 3% |
NPV (M€) | 86.2 | |
IRR (%) | 6% | |
B/C | 1.5 | |
PBP (years) | 21 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henke, I.; Cartenì, A.; Molitierno, C.; Errico, A. Decision-Making in the Transport Sector: A Sustainable Evaluation Method for Road Infrastructure. Sustainability 2020, 12, 764. https://doi.org/10.3390/su12030764
Henke I, Cartenì A, Molitierno C, Errico A. Decision-Making in the Transport Sector: A Sustainable Evaluation Method for Road Infrastructure. Sustainability. 2020; 12(3):764. https://doi.org/10.3390/su12030764
Chicago/Turabian StyleHenke, Ilaria, Armando Cartenì, Clorinda Molitierno, and Assunta Errico. 2020. "Decision-Making in the Transport Sector: A Sustainable Evaluation Method for Road Infrastructure" Sustainability 12, no. 3: 764. https://doi.org/10.3390/su12030764
APA StyleHenke, I., Cartenì, A., Molitierno, C., & Errico, A. (2020). Decision-Making in the Transport Sector: A Sustainable Evaluation Method for Road Infrastructure. Sustainability, 12(3), 764. https://doi.org/10.3390/su12030764