Silage Fermentation and In Vitro Degradation Characteristics of Orchardgrass and Alfalfa Intercrop Mixtures as Influenced by Forage Ratios and Nitrogen Fertilizing Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Field Experimental Design
2.3. Silage Production and Chemical Analysis
2.4. Rumen Fluid Collection
2.5. In Vitro Batch Culture and Sample Collection
2.6. Calculations
2.7. Statistical Analysis
3. Results
3.1. Forage DM Yield of Orchardgrass and Alfalfa Intercrop Mixtures
3.2. Chemical Composition of Orchardgrass and Alfalfa Intercrop Mixtures Prior to Ensiling
3.3. Chemical Composition of Orchardgrass and Alfalfa Silage Mixtures
3.4. Ensiling Characteristics of Orchardgrass and Alfalfa Silage Mixtures
3.5. In Vitro Degradation Characteristics of Silage Mixtures
4. Discussion
4.1. Forage Yield of Orchardgrass and Alfalfa Intercrops
4.2. Chemical Composition of Silage Mixtures
4.3. Ensiling Characteristics of Silage Mixtures
4.4. In Vitro Degradation Characteristics
4.5. In Vitro Fermentation Characteristics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stewart, A.V.; Ellison, N.W. Dactylis. In Wild Crop Relatives: Genomic and Breeding Resources: Millets and Grasses; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 73–87. [Google Scholar]
- Majidi, M.M.; Hoseini, B.; Abtahi, M.; Mirlohi, A.; Araghi, B. Genetic analysis of seed related traits in Orchardgrass (Dactylis glomerata) under normal and drought stress conditions. Euphytica 2015, 203, 409–420. [Google Scholar] [CrossRef]
- Nguyen, H.V.; Kawai, M.; Takahashi, J.; Matsuoka, S. Change in nitrogen fractions and ruminal nitrogen degradability of orchardgrass and alfalfa during the ensiling process and the subsequent effects on nitrogen utilization by sheep. Asian Australas. J. Anim. Sci. 2004, 17, 1524–1528. [Google Scholar] [CrossRef]
- Tenikecier, H.S.; Ates, E. Research article chemical composition of six grass species (Poaceae sp.) From protected forest range in northern bulgaria. Asian J. Appl. Sci. 2018, 11, 71–75. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Nutrient Requirements of Dairy Cattle; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- McDonald, P.; Henderson, A.; Heron, S. The Biochemistry of Silage; Chalcombe Publications: Aberyswyth, UK, 1991. [Google Scholar]
- Winters, A.; Cockburn, J.; Dhanoa, M.; Merry, R. Effects of lactic acid bacteria in inoculants on changes in amino acid composition during ensilage of sterile and non-sterile ryegrass. J. Appl. Microbiol. 2000, 89, 442–452. [Google Scholar] [CrossRef]
- Chaudhry, A.S.; Khan, M.M.H. Impacts of different spices on in vitro rumen dry matter disappearance, fermentation and methane of wheat or ryegrass hay based substrates. Livest. Sci. 2012, 146, 84–90. [Google Scholar] [CrossRef]
- Cronje, P.B. Ruminant Physiology: Digestion, Metabolism, Growth, and Reproduction; CABI Publishing: Wallingford, UK, 2000. [Google Scholar]
- Adesogan, A.; Salawu, M.; Williams, S.; Fisher, W.; Dewhurst, R. Reducing concentrate supplementation in dairy cow diets while maintaining milk production with pea-wheat intercrops. J. Dairy Sci. 2004, 87, 3398–3406. [Google Scholar] [CrossRef] [Green Version]
- Maxin, G.; Andueza, D.; Le Morvan, A.; Baumont, R. Effect of intercropping vetch (Vicia sativa L.), field pea (Pisum sativum L.) and triticale (X Triticosecale) on dry-matter yield, nutritive and ensiling characteristics when harvested at two growth stages. Grass Forage Sci. 2017, 72, 777–784. [Google Scholar] [CrossRef]
- Kumar, A.; Patel, A. Effect of date of sowing and cutting intervals on yield attribute, yield, quality and soil fertility of Lucerne [Medicago sativa L.] under North Gujarat agroclimatic conditions. J. Pharmacogn. Phytochem. 2017, 6, 245–255. [Google Scholar]
- Cherney, D.J.R.; Cherney, J.H.; SicilianoJones, J. Alfalfa composition and in sacco fiber and protein disappearance as influenced by nitrogen application. J. Appl. Anim. Res. 1995, 8, 105–120. [Google Scholar] [CrossRef]
- Miller, D.A. Forage Crops; McGraw-Hill Book Company: New York, NY, USA, 1984. [Google Scholar]
- Lee, M.R.; Olmos Colmenero, J.D.J.; Winters, A.L.; Scollan, N.D.; Minchin, F.R. Polyphenol oxidase activity in grass and its effect on plant-mediated lipolysis and proteolysis of Dactylis glomerata (cocksfoot) in a simulated rumen environment. J. Sci. Food Agric. 2006, 86, 1503–1511. [Google Scholar] [CrossRef]
- Merry, R.J.; Lee, M.R.; Davies, D.R.; Dewhurst, R.J.; Moorby, J.M.; Scollan, N.D.; Theodorou, M.K. Effects of high-sugar ryegrass silage and mixtures with red clover silage on ruminant digestion. 1. In vitro and in vivo studies of nitrogen utilization. J. Anim. Sci. 2006, 84, 3049–3060. [Google Scholar] [CrossRef]
- Li, Y.; Meng, Q. Effect of different types of fibre supplemented with sunflower oil on ruminal fermentation and production of conjugated linoleic acids in vitro. Arch. Anim. Nutr. 2006, 60, 402–411. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Cui, J.; Yang, H.; Yu, C.; Bai, S.; Wu, T.; Song, S.; Sun, W.; Shao, X.; Jiang, L. Effect of urea fertilization on biomass yield, chemical composition, in vitro rumen digestibility and fermentation characteristics of straw of highland barley planted in Tibet. J. Agric. Sci. 2016, 154, 151–164. [Google Scholar] [CrossRef]
- CSIRO. Nutrient Requirements of Domesticated Ruminants; CSIRO Publishing: Collingwood, Australia, 2007. [Google Scholar]
- INRA. INRA Feeding System for Ruminants; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018; pp. 44–59. [Google Scholar]
- Wolin, M.J. A theoretical rumen fermentation balance. J. Dairy Sci. 1960, 43, 1452–1459. [Google Scholar] [CrossRef]
- Groot, J.C.; Williams, B.A.; Oostdam, A.J.; Boer, H.; Tamminga, S. The use of cumulative gas and volatile fatty acid production to predict in vitro fermentation kinetics of Italian ryegrass leaf cell walls and contents at various time intervals. Br. J. Nutr. 1998, 79, 519–525. [Google Scholar] [CrossRef] [Green Version]
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 2000, 49, 231–253. [Google Scholar] [CrossRef] [Green Version]
- Dijkstra, J.; Forbes, J.M.; France, J. Quantitative Aspects of Ruminant Digestion and Metabolism; CABI International: Wallingford, UK, 2005. [Google Scholar]
- Lithourgidis, A.S.; Vasilakoglou, I.B.; Dhima, K.V.; Dordas, C.A.; Yiakoulaki, M.D. Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crop. Res. 2006, 99, 106–113. [Google Scholar] [CrossRef]
- Duchene, O.; Vian, J.F.; Celette, F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric. Ecosyst. Environ. 2017, 240, 148–161. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Lachouani, P.; Knudsen, M.T.; Ambus, P.; Boelt, B.; Gislum, R. Productivity and carbon footprint of perennial grass–forage legume intercropping strategies with high or low nitrogen fertilizer input. Sci. Total Environ. 2016, 541, 1339–1347. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, M.; Prabhu, G.; Palsaniya, D.R. Response of guinea grass (Megathyrsus maximus) genotypes to intercropping with forage legumes under varying nitrogen management options. Grass Forage Sci. 2018, 73, 888–896. [Google Scholar] [CrossRef]
- Johnson, C.R.; Reiling, B.A.; Mislevy, P.; Hall, M.B. Effects of nitrogen fertilization and harvest date on yield, digestibility, fiber, and protein fractions of tropical grasses. J. Anim. Sci. 2001, 79, 2439–2448. [Google Scholar] [CrossRef]
- Kermah, M.; Franke, A.C.; Adjei-Nsiah, S.; Ahiabor, B.D.K.; Abaidoo, R.C.; Giller, K.E. N2-fixation and N contribution by grain legumes under different soil fertility status and cropping systems in the Guinea savanna of northern Ghana. Agric. Ecosyst. Environ. 2018, 261, 201–210. [Google Scholar] [CrossRef]
- Saturno, D.F.; Cerezini, P.; Moreira da Silva, P.; Oliveira, A.B.D.; Oliveira, M.C.N.D.; Hungria, M.; Nogueira, M.A. Mineral nitrogen impairs the biological nitrogen fixation in soybean of determinate and indeterminate growth types. J. Plant Nutr. 2017, 40, 1690–1701. [Google Scholar] [CrossRef]
- Buxton, D.R.; Redfearn, D.D. Plant limitations to fiber digestion and utilization. J. Nutr. 1997, 127, 814S–818S. [Google Scholar] [CrossRef] [Green Version]
- Jahanzad, E.; Sadeghpour, A.; Hosseini, M.B.; Barker, A.V.; Hashemi, M.; Zandvakili, O.R. Silage yield and nutritive value of millet-soybean intercrops as influenced by nitrogen application. Agron. J. 2014, 106, 1993–2000. [Google Scholar] [CrossRef]
- Adesogan, A.T.; Salawu, M.B.; Deaville, E.R. The effect on voluntary feed intake, in vivo digestibility and nitrogen balance in sheep of feeding grass silage or pea-wheat intercrops differing in pea to wheat ratio and maturity. Anim. Feed Sci. Technol. 2002, 96, 161–173. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Adeli, A.; Yan, H. Effects of application methods and urea rates on ammonia volatilization, yields and fine root biomass of alfalfa. Field Crop. Res. 2018, 218, 115–125. [Google Scholar] [CrossRef]
- Eltelib, H.A.; Hamad, M.A.; Ali, E.E. The effect of nitrogen and phosphorus fertilization on growth, yield and quality of forage maize (Zea mays L.). J. Agron. 2006, 5, 515–518. [Google Scholar] [CrossRef] [Green Version]
- Coblentz, W.K.; Akins, M.S.; Cavadini, J.S.; Jokela, W.E. Net effects of nitrogen fertilization on the nutritive value and digestibility of oat forages. J. Dairy Sci. 2017, 100, 1739–1750. [Google Scholar] [CrossRef] [Green Version]
- Loaiza, P.A.; Balocchi, O.; Bertrand, A. Carbohydrate and crude protein fractions in perennial ryegrass as affected by defoliation frequency and nitrogen application rate. Grass Forage Sci. 2017, 72, 556–567. [Google Scholar] [CrossRef]
- Waramit, N.; Moore, K.J.; Heggenstaller, A.H. Composition of native warm-season grasses for bioenergy production in response to nitrogen fertilization rate and harvest date. Agron. J. 2011, 103, 655–662. [Google Scholar] [CrossRef]
- Sarmadi, B.; Rouzbehan, Y.; Rezaei, J. Influences of growth stage and nitrogen fertilizer on chemical composition, phenolics, in situ degradability and in vitro ruminal variables in amaranth forage. Anim. Feed Sci. Technol. 2016, 215, 73–84. [Google Scholar] [CrossRef]
- Contreras-Govea, F.; Marsalis, M.; Angadi, S.; Smith, G.; Lauriault, L.M.; VanLeeuwen, D. Fermentability and nutritive value of corn and forage sorghum silage when in mixture with lablab bean. Crop Sci. 2011, 51, 1307–1313. [Google Scholar] [CrossRef]
- Xue, Z.; Liu, N.; Wang, Y.; Yang, H.; Wei, Y.; Moriel, P.; Palmer, E.; Zhang, Y. Combining orchardgrass and alfalfa: Effects of forage ratios on in vitro rumen degradation and fermentation characteristics of silage compared with hay. Animals 2020, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Danner, H.; Holzer, M.; Mayrhuber, E.; Braun, R. Acetic acid increases stability of silage under aerobic conditions. Appl. Environ. Microbiol. 2003, 69, 562–567. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, J.S.; Santos, E.M.; dos Santos, A.P.M. Intake and digestibility of silages. In Advances in Silage Production and Utilization, 1st ed.; Da Silva, T., Santos, E.M., Eds.; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar]
- Namihira, T.; Shinzato, N.; Akamine, H.; Maekawa, H.; Matsui, T. Influence of nitrogen fertilization on tropical-grass silage assessed by ensiling process monitoring using chemical and microbial community analyses. J. Appl. Microbiol. 2010, 108, 1954–1965. [Google Scholar] [CrossRef]
- Tremblay, G.F.; Belanger, G.; Drapeau, R. Nitrogen fertilizer application and developmental stage affect silage quality of timothy (Phleum pratense L.). Grass Forage Sci. 2005, 60, 337–355. [Google Scholar] [CrossRef]
- Dal Pizzol, J.G.; Ribeiro-Filho, H.M.N.; Quereuil, A.; Le Morvan, A.; Niderkorn, V. Complementarities between grasses and forage legumes from temperate and subtropical areas on in vitro rumen fermentation characteristics. Anim. Feed Sci. Technol. 2017, 228, 178–185. [Google Scholar] [CrossRef]
- Kiran, D.; Krishnamoorthy, U. Rumen fermentation and microbial biomass synthesis indices of tropical feedstuffs determined by the in vitro gas production technique. Anim. Feed Sci. Technol. 2007, 134, 170–179. [Google Scholar] [CrossRef]
- Pandit, R.J.; Hinsu, A.T.; Patel, S.H.; Jakhesara, S.J.; Koringa, P.G.; Bruno, F.; Psifidi, A.; Shah, S.; Joshi, C.G. Microbiota composition, gene pool and its expression in Gir cattle (Bos indicus) rumen under different forage diets using metagenomic and metatranscriptomic approaches. Syst. Appl. Microbiol. 2018, 41, 374–385. [Google Scholar] [CrossRef] [Green Version]
- Hart, E.H.; Creevey, C.J.; Hitch, T.; Kingston-Smith, A.H. Meta-proteomics of rumen microbiota indicates niche compartmentalisation and functional dominance in a limited number of metabolic pathways between abundant bacteria. Sci. Rep. 2018, 8, 10504. [Google Scholar] [CrossRef] [Green Version]
- Diaz, A.; Dolores Carro, M.; Palacios, C.; Mateos, I.; Saro, C.; Luisa Tejido, M.; Jose Ranilla, M. Nutritive value for ruminants of winter oats-legume intercrops in organic cultivation. Anim. Prod. Sci. 2014, 54, 1791–1795. [Google Scholar] [CrossRef] [Green Version]
- Akin, D.E.; Morrison, W.H.; Himmelsbach, D.S. Characterization of digestion residues of alfalfa and orchardgrass leaves by microscopic, spectroscopic and chemical-analysis. J. Sci. Food Agric. 1993, 63, 339–347. [Google Scholar] [CrossRef]
- Chen, L.; Dong, Z.; Li, J.; Shao, T. Ensiling characteristics, in vitro rumen fermentation, microbial communities and aerobic stability of low-dry matter silages produced with sweet sorghum and alfalfa mixtures. J. Sci. Food Agric. 2019, 99, 2140–2151. [Google Scholar] [CrossRef]
- Peyraud, J.; Astigarraga, L. Review of the effect of nitrogen fertilization on the chemical composition, intake, digestion and nutritive value of fresh herbage: Consequences on animal nutrition and N balance. Anim. Feed Sci. Technol. 1998, 72, 235–259. [Google Scholar] [CrossRef]
- Getachew, G.; Blummel, M.; Makkar, H.P.S.; Becker, K. In vitro gas measuring techniques for assessment of nutritional quality of feeds: A review. Anim. Feed Sci. Technol. 1998, 72, 261–281. [Google Scholar] [CrossRef]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Chaves, A.; Thompson, L.; Iwaasa, A.; Scott, S.; Olson, M.; Benchaar, C.; Veira, D.; McAllister, T. Effect of pasture type (alfalfa vs. grass) on methane and carbon dioxide production by yearling beef heifers. Can. J. Anim. Sci. 2006, 86, 409–418. [Google Scholar] [CrossRef]
- Jayanegara, A.; Wina, E.; Soliva, C.; Marquardt, S.; Kreuzer, M.; Leiber, F. Dependence of forage quality and methanogenic potential of tropical plants on their phenolic fractions as determined by principal component analysis. Anim. Feed Sci. Technol. 2011, 163, 231–243. [Google Scholar] [CrossRef]
- Xu, M.; Rinker, M.; McLeod, K.R.; Harmon, D.L. Yucca schidigera extract decreases in vitro methane production in a variety of forages and diets. Anim. Feed Sci. Technol. 2010, 159, 18–26. [Google Scholar] [CrossRef]
- Danielsson, R.; Dicksved, J.; Sun, L.; Gonda, H.; Müller, B.; Schnürer, A.; Bertilsson, J. Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Front. Microbiol. 2017, 8, 226. [Google Scholar] [CrossRef]
- Hess, H.D.; Monsalve, L.M.; Lascano, C.E.; Carulla, J.E.; Díaz, T.E.; Kreuzer, M. Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: Effects on in vitro ruminal nitrogen turnover and methanogenesis. Aust. J. Agric. Res. 2003, 54, 703–713. [Google Scholar] [CrossRef]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Cho, A.S.; Ueda, K.; Kondo, S. Evaluation of associative effects on ruminal digestion kinetics between pasture and grains using in vitro gas production method. Anim. Sci. J. 2012, 83, 650–655. [Google Scholar] [CrossRef]
- Getachew, G.; Robinson, P.; DePeters, E.; Taylor, S. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol. 2004, 111, 57–71. [Google Scholar] [CrossRef]
N Level (kg/ha) | Intercropping Ratios of Orchardgrass to Alfalfa | Total Yield (g/m2) | Actual Orchardgrass (%) | Actual Alfalfa (%) | |||
---|---|---|---|---|---|---|---|
First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | ||
0 | 100:0 | 328cB | 329bB | 100a | 100a | 0e | 0e |
75:25 | 479bcB | 426aB | 54bB | 64b | 46dA | 36d | |
50:50 | 638ab | 487a | 32cB | 45c | 68cA | 55c | |
25:75 | 768a | 514a | 20d | 23d | 80b | 77b | |
0:100 | 573b | 392a | 0e | 0e | 100a | 100a | |
50 | 100:0 | 449cAB | 418bAB | 100a | 100a | 0e | 0d |
75:25 | 516cB | 631aA | 71bA | 56b | 29dB | 44c | |
50:50 | 600bc | 574a | 43cAB | 43c | 57cAB | 57b | |
25:75 | 720ab | 508a | 22d | 32c | 78b | 68b | |
0:100 | 647ab | 552a | 0e | 0d | 100a | 100a | |
100 | 100:0 | 576aA | 438aA | 100a | 100a | 0e | 0d |
75:25 | 713aA | 496aAB | 73bA | 72b | 27dB | 28c | |
50:50 | 683a | 565a | 50cA | 43c | 50cB | 57b | |
25:75 | 675a | 458a | 29d | 32c | 71b | 68b | |
0:100 | 598a | 467a | 0e | 0d | 100a | 100a | |
SEM 1 | 17.0 | 12.4 | 4.6 | 4.4 | 4.6 | 4.4 | |
ANOVA-Intercropping ratios | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
ANOVA-N levels | 0.001 | <0.001 | <0.001 | 0.091 | <0.001 | 0.091 | |
Contrast-Intercropping ratios 2 | |||||||
Linear | <0.001 | 0.150 | <0.001 | <0.001 | <0.001 | <0.001 | |
Quadratic | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Contrast-N level 3 | |||||||
Linear | 0.027 | 0.068 | 0.427 | 0.802 | 0.427 | 0.802 | |
Quadratic | 0.078 | 0.001 | 0.724 | 0.950 | 0. 724 | 0.950 | |
Interaction 4 | <0.001 | 0.049 | <0.001 | 0.009 | <0.001 | 0.009 |
N Level (kg/ha) | Actual Alfalfa Proportion (%) | DM 1 | CP | NDF | ADF | ADL | Ash | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | |
0 | 0 | 0 | 255 | 267 | 120 | 114 | 550 | 573 | 299 | 321 | 34.8 | 39.7 | 97.0 | 119.9 |
46 | 36 | 265 | 248 | 146 | 142 | 491 | 564 | 307 | 329 | 43.7 | 49.0 | 105.7 | 115.1 | |
68 | 55 | 275 | 247 | 153 | 176 | 441 | 509 | 285 | 323 | 44.8 | 61.7 | 103.4 | 91.2 | |
80 | 77 | 263 | 250 | 181 | 200 | 429 | 471 | 286 | 302 | 58.4 | 73.0 | 101.8 | 86.6 | |
100 | 100 | 255 | 264 | 191 | 204 | 392 | 430 | 256 | 296 | 61.0 | 76.9 | 95.9 | 83.0 | |
50 | 0 | 0 | 245 | 245 | 119 | 120 | 569 | 585 | 314 | 335 | 41.8 | 48.2 | 93.3 | 112.7 |
29 | 44 | 267 | 254 | 142 | 154 | 478 | 558 | 294 | 339 | 42.8 | 62.6 | 95.5 | 108.6 | |
57 | 57 | 261 | 278 | 156 | 183 | 474 | 515 | 305 | 324 | 55.3 | 66.9 | 99.7 | 102.7 | |
78 | 68 | 261 | 266 | 182 | 197 | 455 | 504 | 288 | 318 | 66.6 | 71.0 | 96.8 | 90.9 | |
100 | 100 | 253 | 263 | 207 | 199 | 392 | 449 | 281 | 315 | 63.9 | 86.7 | 97.2 | 84.6 | |
100 | 0 | 0 | 252 | 257 | 137 | 125 | 560 | 598 | 323 | 341 | 45.7 | 55.6 | 102.4 | 109.0 |
27 | 28 | 260 | 256 | 144 | 144 | 499 | 562 | 308 | 339 | 58.5 | 56.4 | 99.3 | 103.5 | |
50 | 57 | 261 | 252 | 155 | 175 | 469 | 548 | 300 | 326 | 62.1 | 64.7 | 97.4 | 92.4 | |
71 | 68 | 273 | 262 | 175 | 186 | 447 | 512 | 295 | 328 | 65.3 | 73.8 | 89.1 | 87.9 | |
100 | 100 | 244 | 246 | 182 | 201 | 411 | 404 | 296 | 294 | 77.4 | 89.6 | 88.7 | 81.2 | |
SEM 2 | 0.4 | 0.4 | 0.4 | 0.4 | 0.8 | 0.8 | 0.3 | 0.3 | 0.17 | 0.20 | 0.07 | 0.18 | ||
Contrast-actual alfalfa proportion 3 | ||||||||||||||
Linear | 0.794 | 0.448 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.143 | <0.001 | ||
Quadratic | 0.273 | 0.713 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.015 | <0.001 | ||
Contrast-N level 4 | ||||||||||||||
Linear | 0.663 | 0.625 | 0.984 | 0.936 | 0.358 | 0.430 | <0.001 | 0.104 | <0.001 | 0.114 | <0.001 | 0.340 | ||
Quadratic | 0.875 | 0.745 | 0.925 | 0.902 | 0.629 | 0.703 | 0.004 | 0.153 | 0.004 | 0.227 | 0.002 | 0.484 |
N Level (kg/ha) | Actual Alfalfa Proportion (%) | Crude Protein | Ash | Hemicellulose | Cellulose | Dry Matter | Acid Detergent Lignin | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | |
0 | 0 | 0 | 121 | 113 | 126 | 121 | 168 | 154 | 278 | 275 | 380 | 379 | 37.5 | 41.6 |
46 | 36 | 149 | 147 | 116 | 117 | 162 | 149 | 237 | 261 | 381 | 380 | 53.8 | 49.6 | |
68 | 55 | 166 | 173 | 109 | 112 | 122 | 124 | 234 | 244 | 386 | 380 | 55.3 | 59.3 | |
80 | 77 | 184 | 174 | 110 | 111 | 70.6 | 111 | 227 | 241 | 379 | 381 | 56.3 | 65.1 | |
100 | 100 | 190 | 186 | 106 | 111 | 78.5 | 92.2 | 213 | 235 | 382 | 384 | 66.1 | 61.9 | |
50 | 0 | 0 | 120 | 121 | 116 | 121 | 192 | 184 | 274 | 271 | 376 | 375 | 40.6 | 49.2 |
29 | 44 | 151 | 139 | 113 | 104 | 124 | 135 | 249 | 256 | 387 | 382 | 51.1 | 56.9 | |
57 | 57 | 174 | 168 | 107 | 108 | 86.6 | 90.9 | 243 | 250 | 383 | 378 | 55.3 | 57.6 | |
78 | 68 | 187 | 174 | 104 | 108 | 97.8 | 80.6 | 227 | 237 | 377 | 382 | 63.9 | 63.2 | |
100 | 100 | 200 | 183 | 103 | 102 | 85.3 | 81.3 | 215 | 236 | 380 | 377 | 69.0 | 72.1 | |
100 | 0 | 0 | 140 | 113 | 110 | 112 | 193 | 183 | 284 | 291 | 383 | 386 | 44.3 | 49.0 |
27 | 28 | 158 | 130 | 105 | 104 | 159 | 148 | 256 | 264 | 381 | 382 | 57.9 | 59.6 | |
50 | 57 | 181 | 164 | 106 | 104 | 111 | 93.7 | 264 | 254 | 374 | 383 | 58.1 | 61.4 | |
71 | 68 | 189 | 164 | 104 | 100 | 124 | 93.8 | 243 | 242 | 378 | 381 | 69.6 | 67.6 | |
100 | 100 | 195 | 188 | 98.3 | 98.4 | 90.9 | 99.5 | 230 | 222 | 376 | 383 | 74.7 | 80.2 | |
SEM 1 | 3.6 | 3.4 | 0.85 | 1.05 | 5.47 | 5.28 | 2.99 | 2.96 | 2.8 | 1.8 | 1.44 | 1.35 | ||
Contrast-actual alfalfa proportion 2 | ||||||||||||||
Linear | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.808 | 0.855 | <0.001 | <0.001 | ||
Quadratic | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.922 | 0.983 | <0.001 | <0.001 | ||
Contrast-N level 3 | ||||||||||||||
Linear | 0.245 | 0.424 | <0.001 | <0.001 | 0.259 | 0.856 | 0.015 | 0.648 | 0.617 | 0.630 | 0.043 | 0.014 | ||
Quadratic | 0.510 | 0.700 | 0.004 | <0.001 | 0.350 | 0.643 | 0.038 | 0.813 | 0.878 | 0.658 | 0.118 | 0.049 |
N Level (kg/ha) | Actual Alfalfa Proportion (%) | pH | Ammonia N (mmol/L) | Lactic Acid (mmol/L) | Acetic Acid (mmol/L) | Propionic Acid (mmol/L) | Butyric Acid (mmol/L) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | |
0 | 0 | 0 | 4.47 | 4.42 | 4.69 | 3.68 | 1025 | 1136 | 1.82 | 2.78 | 0.84 | 1.15 | 0.08 | 0.07 |
46 | 36 | 4.63 | 4.48 | 5.04 | 6.89 | 910 | 997 | 1.99 | 6.50 | 0.56 | 1.60 | 0.10 | 0.08 | |
68 | 55 | 4.68 | 4.82 | 6.51 | 7.18 | 859 | 874 | 4.79 | 6.89 | 0.39 | 0.65 | 0.06 | 0.06 | |
80 | 77 | 4.54 | 5.05 | 6.28 | 8.67 | 754 | 718 | 5.20 | 9.89 | 0.41 | 1.60 | 0.08 | 0.05 | |
100 | 100 | 5.11 | 5.18 | 7.46 | 9.06 | 533 | 598 | 7.06 | 9.99 | 0.67 | 0.56 | 0.23 | 0.02 | |
50 | 0 | 0 | 4.52 | 4.56 | 5.12 | 5.93 | 724 | 1068 | 2.08 | 2.90 | 0.41 | 1.38 | 0.13 | 0.06 |
29 | 44 | 4.54 | 4.79 | 6.58 | 7.98 | 588 | 983 | 2.92 | 7.25 | 0.25 | 1.32 | 0.09 | 0.10 | |
57 | 57 | 4.53 | 4.65 | 8.04 | 8.99 | 574 | 977 | 7.54 | 7.87 | 0.51 | 0.70 | 0.15 | 0.10 | |
78 | 68 | 4.76 | 5.05 | 8.06 | 10.4 | 538 | 794 | 7.88 | 8.77 | 0.83 | 0.46 | 0.13 | 0.06 | |
100 | 100 | 5.22 | 5.23 | 10.3 | 11.6 | 515 | 546 | 8.63 | 8.68 | 0.14 | 0.29 | 0.22 | 0.04 | |
100 | 0 | 0 | 4.67 | 4.64 | 4.34 | 7.40 | 795 | 913 | 3.38 | 4.76 | 0.97 | 2.22 | 0.44 | 0.06 |
27 | 28 | 4.81 | 5.13 | 5.98 | 9.04 | 722 | 806 | 3.37 | 5.92 | 0.78 | 1.80 | 0.37 | 0.12 | |
50 | 57 | 4.77 | 5.12 | 7.16 | 11.5 | 740 | 773 | 7.57 | 7.90 | 0.20 | 1.87 | 0.34 | 0.16 | |
71 | 68 | 4.84 | 5.18 | 9.77 | 12.7 | 511 | 665 | 7.73 | 7.95 | 0.22 | 0.34 | 0.38 | 0.05 | |
100 | 100 | 5.23 | 5.33 | 13.2 | 13.4 | 409 | 441 | 10.2 | 6.23 | 0.19 | 0.21 | 0.41 | 0.14 | |
SEM 1 | 0.035 | 0.043 | 0.420 | 0.356 | 30.5 | 29.8 | 0.415 | 0.328 | 0.045 | 0.094 | 0.021 | 0.009 | ||
Contrast-actual alfalfa proportion 2 | ||||||||||||||
Linear | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.008 | <0.001 | 0.754 | 0.648 | ||
Quadratic | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.022 | <0.001 | 0.426 | 0.458 | ||
Contrast-N level 3 | ||||||||||||||
Linear | 0.037 | 0.005 | 0.040 | <0.001 | 0.014 | 0.046 | 0.024 | 0.418 | 0.357 | 0.455 | <0.001 | 0.024 | ||
Quadratic | 0.080 | 0.014 | 0.101 | <0.001 | 0.004 | 0.058 | 0.067 | 0.691 | 0.397 | 0.064 | <0.001 | 0.057 |
N Level (kg/ha) | Actual Alfalfa Proportion (%) | ME (MJ/kg DM) | Ammonia N (mmol/L) | tVFAs 1 (mmol/L) | Acetate (mmol/L) | Propionate (mmol/L) | Butyrate (mmol/L) | Isobutyrate (mmol/L) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | |
0 | 0 | 0 | 10.2 | 10.0 | 61.9 | 26.2 | 90.2 | 72.3 | 51.6 | 42.6 | 20.9 | 18.4 | 11.0 | 7.53 | 2.37 | 0.83 |
46 | 36 | 10.5 | 10.2 | 65.8 | 27.5 | 94.9 | 78.6 | 52.1 | 46.2 | 23.3 | 18.8 | 10.2 | 8.73 | 2.53 | 1.06 | |
68 | 55 | 10.7 | 10.5 | 62.7 | 31.6 | 95.5 | 75.1 | 54.2 | 45.1 | 22.5 | 17.1 | 11.0 | 8.38 | 2.54 | 0.96 | |
80 | 77 | 10.9 | 10.6 | 74.8 | 34.1 | 95.3 | 80.8 | 54.8 | 49.1 | 21.5 | 18.3 | 10.6 | 8.42 | 2.53 | 1.03 | |
100 | 100 | 10.9 | 10.7 | 69.7 | 33.1 | 96.7 | 78.0 | 55.4 | 49.2 | 22.2 | 16.5 | 10.5 | 7.41 | 2.66 | 0.96 | |
50 | 0 | 0 | 10.2 | 9.99 | 61.7 | 30.1 | 92.7 | 72.3 | 53.8 | 42.3 | 22.3 | 18.5 | 10.8 | 6.55 | 2.34 | 0.75 |
29 | 44 | 10.3 | 10.2 | 70.8 | 31.7 | 94.7 | 71.2 | 51.7 | 42.8 | 24.8 | 17.0 | 9.90 | 6.46 | 2.44 | 0.89 | |
57 | 57 | 10.8 | 10.5 | 67.1 | 33.4 | 94.5 | 82.6 | 52.9 | 43.3 | 22.7 | 20.4 | 10.3 | 8.79 | 2.40 | 1.05 | |
78 | 68 | 10.9 | 10.5 | 69.3 | 33.4 | 95.1 | 77.7 | 54.2 | 46.0 | 20.9 | 18.9 | 10.3 | 7.93 | 2.38 | 0.96 | |
100 | 100 | 10.9 | 10.7 | 74.9 | 36.4 | 96.2 | 78.1 | 54.1 | 47.7 | 22.7 | 16.8 | 10.4 | 8.41 | 2.54 | 1.05 | |
100 | 0 | 0 | 10.3 | 9.88 | 64.0 | 27.8 | 93.1 | 72.8 | 53.9 | 42.2 | 22.2 | 18.4 | 11.0 | 7.46 | 2.37 | 0.86 |
27 | 28 | 10.5 | 10.1 | 70.3 | 30.3 | 94.5 | 75.6 | 54.6 | 44.6 | 24.4 | 18.6 | 11.4 | 8.09 | 2.61 | 1.00 | |
50 | 57 | 10.8 | 10.4 | 65.7 | 31.4 | 94.7 | 70.8 | 54.2 | 43.3 | 20.8 | 15.7 | 9.79 | 7.64 | 2.36 | 0.84 | |
71 | 68 | 10.8 | 10.5 | 68.8 | 34.3 | 96.9 | 73.8 | 56.9 | 46.5 | 22.9 | 14.7 | 11.1 | 6.92 | 2.59 | 0.82 | |
100 | 100 | 10.8 | 10.6 | 73.5 | 33.3 | 96.9 | 74.8 | 55.9 | 45.9 | 22.7 | 15.7 | 10.7 | 8.72 | 2.60 | 0.91 | |
SEM 2 | 0.04 | 0.041 | 0.75 | 0.97 | 0.36 | 0.75 | 0.33 | 0.46 | 0.21 | 0.33 | 0.085 | 0.151 | 0.023 | 0.020 | ||
Contrast-actual alfalfa proportion 3 | ||||||||||||||||
Linear | <0.001 | <0.001 | <0.001 | <0.001 | 0.017 | 0.010 | 0.008 | <0.001 | 0.622 | 0.017 | 0.191 | 0.023 | 0.005 | 0.130 | ||
Quadratic | <0.001 | <0.001 | <0.001 | <0.001 | 0.059 | 0.024 | 0.023 | <0.001 | 0.245 | 0.020 | 0.428 | 0.048 | 0.020 | 0.016 | ||
Contrast-N level 4 | ||||||||||||||||
Linear | 0.905 | 0.333 | 0.431 | 0.539 | 0.056 | 0.002 | 0.068 | 0.006 | 0.312 | 0.083 | 0.455 | 0.218 | 0.726 | 0.009 | ||
Quadratic | 0.980 | 0.603 | 0.600 | 0.228 | 0.083 | 0.008 | 0.063 | 0.025 | 0.470 | 0.021 | 0.420 | 0.264 | 0.147 | 0.025 |
N Level (kg/ha) | Actual Alfalfa Proportion (%) | Valerate (mmol/L) | Isovalerate (mmol/L) | Acetate/Propionate | pH | Carbon Dioxide (mmol/L) | Methane (mmol/L) | Recovery Hydrogen (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | First Cut | Second Cut | |
0 | 0 | 0 | 1.98 | 1.53 | 2.98 | 1.45 | 2.48 | 2.34 | 6.62 | 6.73 | 46.6 | 37.2 | 21.6 | 17.1 | 86.0 | 87.3 |
46 | 36 | 2.29 | 1.78 | 2.98 | 2.02 | 2.24 | 2.46 | 6.61 | 6.73 | 47.7 | 40.9 | 21.2 | 19.1 | 86.0 | 86.7 | |
68 | 55 | 2.25 | 1.83 | 2.98 | 1.81 | 2.41 | 2.79 | 6.61 | 6.76 | 49.3 | 39.4 | 22.6 | 19.0 | 86.1 | 86.8 | |
80 | 77 | 2.29 | 1.94 | 3.05 | 2.02 | 2.56 | 2.75 | 6.64 | 6.76 | 48.2 | 41.8 | 22.9 | 20.4 | 86.0 | 86.8 | |
100 | 100 | 2.31 | 1.94 | 3.15 | 2.02 | 2.51 | 3.01 | 6.67 | 6.75 | 49.7 | 39.9 | 23.2 | 20.6 | 86.0 | 86.6 | |
50 | 0 | 0 | 1.77 | 1.37 | 2.58 | 1.41 | 2.42 | 2.29 | 6.59 | 6.70 | 47.3 | 35.6 | 22.0 | 16.6 | 86.6 | 87.3 |
29 | 44 | 2.39 | 1.61 | 3.08 | 1.70 | 2.09 | 2.53 | 6.62 | 6.70 | 49.4 | 35.3 | 21.1 | 17.2 | 86.0 | 86.8 | |
57 | 57 | 2.09 | 1.96 | 2.84 | 2.03 | 2.34 | 2.37 | 6.62 | 6.73 | 47.5 | 42.4 | 21.7 | 19.6 | 86.2 | 86.7 | |
78 | 68 | 2.10 | 2.02 | 2.86 | 1.97 | 2.60 | 2.44 | 6.66 | 6.75 | 47.2 | 39.6 | 22.6 | 18.7 | 86.2 | 86.6 | |
100 | 100 | 2.49 | 2.07 | 3.47 | 2.07 | 2.40 | 2.85 | 6.70 | 6.76 | 49.2 | 40.7 | 22.5 | 20.2 | 85.6 | 86.5 | |
100 | 0 | 0 | 2.27 | 1.51 | 2.89 | 1.50 | 2.44 | 2.30 | 6.65 | 6.71 | 48.5 | 36.9 | 22.4 | 16.9 | 86.2 | 87.2 |
27 | 28 | 2.49 | 1.62 | 3.18 | 1.82 | 2.26 | 2.40 | 6.62 | 6.74 | 50.1 | 39.1 | 22.3 | 18.2 | 85.9 | 86.9 | |
50 | 57 | 1.96 | 1.70 | 2.71 | 1.57 | 2.60 | 2.76 | 6.70 | 6.73 | 47.0 | 37.0 | 22.6 | 18.2 | 86.4 | 87.0 | |
71 | 68 | 2.46 | 1.70 | 3.15 | 1.68 | 2.50 | 3.18 | 6.63 | 6.76 | 51.3 | 37.3 | 23.9 | 19.7 | 86.1 | 86.9 | |
100 | 100 | 2.58 | 1.61 | 3.14 | 1.93 | 2.47 | 3.13 | 6.67 | 6.80 | 50.2 | 39.9 | 23.3 | 19.8 | 85.9 | 86.8 | |
SEM 1 | 0.040 | 0.038 | 0.045 | 0.040 | 0.027 | 0.057 | 0.027 | 0.008 | 0.007 | 0.428 | 0.159 | 0.231 | 0.050 | 0.048 | ||
Contrast-actual alfalfa proportion 2 | ||||||||||||||||
Linear | 0.007 | <0.001 | 0.022 | <0.001 | 0.081 | <0.001 | 0.012 | 0.003 | 0.019 | <0.001 | 0.003 | <0.001 | 0.063 | <0.001 | ||
Quadratic | 0.028 | <0.001 | 0.051 | <0.001 | 0.101 | <0.001 | 0.026 | 0.012 | 0.063 | 0.002 | 0.007 | <0.001 | 0.149 | <0.001 | ||
Contrast-N level 3 | ||||||||||||||||
Linear | 0.177 | 0.016 | 0.924 | 0.002 | 0.834 | 0.611 | 0.186 | 0.893 | 0.068 | 0.009 | 0.140 | 0.053 | 0.690 | 0.015 | ||
Quadratic | 0.146 | 0.030 | 0.857 | 0.008 | 0.376 | 0.056 | 0.407 | 0.349 | 0.069 | 0.034 | 0.058 | 0.058 | 0.847 | 0.036 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Z.; Wang, Y.; Yang, H.; Li, S.; Zhang, Y. Silage Fermentation and In Vitro Degradation Characteristics of Orchardgrass and Alfalfa Intercrop Mixtures as Influenced by Forage Ratios and Nitrogen Fertilizing Levels. Sustainability 2020, 12, 871. https://doi.org/10.3390/su12030871
Xue Z, Wang Y, Yang H, Li S, Zhang Y. Silage Fermentation and In Vitro Degradation Characteristics of Orchardgrass and Alfalfa Intercrop Mixtures as Influenced by Forage Ratios and Nitrogen Fertilizing Levels. Sustainability. 2020; 12(3):871. https://doi.org/10.3390/su12030871
Chicago/Turabian StyleXue, Zhulin, Yanlu Wang, Hongjian Yang, Shoujiao Li, and Yingjun Zhang. 2020. "Silage Fermentation and In Vitro Degradation Characteristics of Orchardgrass and Alfalfa Intercrop Mixtures as Influenced by Forage Ratios and Nitrogen Fertilizing Levels" Sustainability 12, no. 3: 871. https://doi.org/10.3390/su12030871
APA StyleXue, Z., Wang, Y., Yang, H., Li, S., & Zhang, Y. (2020). Silage Fermentation and In Vitro Degradation Characteristics of Orchardgrass and Alfalfa Intercrop Mixtures as Influenced by Forage Ratios and Nitrogen Fertilizing Levels. Sustainability, 12(3), 871. https://doi.org/10.3390/su12030871