Analysis of Dissolved Oxygen and Nutrients in Zhanjiang Bay and the Adjacent Sea Area in Spring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Field Sampling
2.2. Sample Processing
3. Results
3.1. The Spatial Distribution of Salinity, Temperature, pH, Chlorophyll-A and Dissolved Oxygen
3.2. The Spatial Distribution of Nutrients
4. Discussion
4.1. Sources and Geochemical Characteristics of Nutrients in Zhanjiang Bay
4.2. Strong Decomposition Occurred in the Inner Bay
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Garmendia, M.; Revilla, M.; Borja, Á.; Franco, J.; Bald, J.; Valencia, V. Eutrophication Assessment in Basque Estuaries: Comparing a North American and a European Method. Estuaries Coasts 2012, 35, 991–1006. [Google Scholar] [CrossRef]
- Junxiang, L.; Fajun, J.; Ke, K.E.; Mingben, X.U.; Fu, L.; Bo, C. Nutrients distribution and trophic status assessment in the northern Beibu Gulf, China. Chin. J. Oceanol. Limnol. 2014, 32, 1128–1144. [Google Scholar]
- Lao, Q.; Chen, F.; Liu, G.; Chen, C.; Jin, G.; Zhu, Q.; Wei, C.; Zhang, C. Isotopic evidence for the shift of nitrate sources and active biological transformation on the western coast of Guangdong Province, South China. Mar. Pollut. Bull. 2019, 142, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Diaz, R.J.; Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 2008, 321, 926–929. [Google Scholar] [CrossRef] [PubMed]
- Whitall, D.; Bricker, S.; Ferreira, J.; Nobre, A.M.; Simas, T.; Silva, M. Assessment of Eutrophication in Estuaries: Pressure–State–Response and Nitrogen Source Apportionment. Environ. Manage. 2007, 40, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Xu, M.N.; Wan, X.S.; Yang, J.Y.T.; Trull, T.W.; Dai, M.; Kao, S.J. Dual Isotope Measurements Reveal Zoning of Nitrate Processing in the Summer Changjiang (Yangtze) River Plume. Geophys. Res. Lett. 2017, 44, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Chen, J.; Li, H.; Jin, H.; Gao, S.; Ji, Z.; Zhu, Y.; Ran, L.; Zhang, J.; Liao, Y. Sources of nitrate in Xiangshan Bay (China), as identified using nitrogen and oxygen isotopes. Estuar. Coast. Shelf Sci. 2018, 207, 109–118. [Google Scholar] [CrossRef]
- Chai, C.; Yu, Z.; Song, X.; Cao, X. The Status and Characteristics of Eutrophication in the Yangtze River (Changjiang) Estuary and the Adjacent East China Sea, China. Hydrobiologia 2006, 563, 313–328. [Google Scholar] [CrossRef]
- Dong-Yang, F.U.; Yang, F.; Xiao-Jun, L. Assessment and Variation of Temporal and Spatial of Key Factors of Water Quality in Coastal Area of the Leizhou Peninsula. J. Guangdong Ocean Univ. 2014, 34, 58–64. (in Chinese). [Google Scholar]
- Dai, M.; Wang, L.; Guo, X.; Zhai, W.; Li, Q.; He, B.; Kao, S.J. Nitrification and inorganic nitrogen distribution in a large perturbed river/estuarine system: The Pearl River Estuary, China. Biogeosciences 2008, 5, 1227–1244. [Google Scholar] [CrossRef] [Green Version]
- Ye, F.; Ni, Z.; Xie, L.; Wei, G.; Jia, G. Isotopic evidence for the turnover of biological reactive nitrogen in the Pearl River Estuary, south China. J. Geophys. Res. Biogeosci. 2015, 120, 661–672. [Google Scholar] [CrossRef]
- Barbieri, M.; Giuseppe, S.; Angela, N. Soil pollution: Anthropogenic versus geogenic contributions over large areas of the Lazio region. J. Geochem. Explor. 2018, 195, 78–86. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, F.; Chen, C.; Sun, X.; Shi, Y.; Zhao, H.; Chen, F. Spatial distribution and correlation characteristics of heavy metals in the seawater, suspended particulate matter and sediments in Zhanjiang Bay, China. PLoS ONE 2018, 13, e0201414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Zhang, Y.; Sun, X. Spatiotemporal distribution of eutrophication and its relationship with environmental factors in Zhanjiang sea bay area. Environ. Sci. Technol. 2015, 38, 90–96. (In Chinese) [Google Scholar]
- Chengfei, J.; Dongyang, F.; Qiang, L. Thermohaline structure and ecological characteristics of the Zhanjiang Bay and its estuary in autumn. Acta Oceanol. Sin. 2016, 38, 20–31. (In Chinese) [Google Scholar]
- Xi-Bin, L.I.; Xiao-Yan, S.; Fu-Xin, N. Numerical study on the water exchange of a semi-closed bay. Mar. Sci. Bull. 2012, 31, 248–254. (In Chinese) [Google Scholar]
- Chen, D.; Yan, J. A Characteristic and Impact on Water Environment Current in the Gulf Sea Area of Zhanjiang. Sci. Technol. Eng. 2006, 14, 2100–2103. (In Chinese) [Google Scholar]
- Lorenzen, C.J. Determination of chlorophyll and pheopigments:spectrophotometric equations. Limnol. Oceanogr. 1967, 12, 343–346. [Google Scholar] [CrossRef]
- Justić, D.; Rabalais, N.N.; Turner, R.E.; Dortch, Q. Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences. Estuar. Coast. Shelf Sci. 1995, 40, 339–356. [Google Scholar] [CrossRef]
- Dai, M.; Guo, X.; Zhai, W.; Yuan, L.; Wang, B.; Wang, L.; Cai, P.; Tang, T.; Cai, W.J. Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought. Mar. Chem. 2006, 102, 159–169. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Han, G.; Zong, H.; Zhang, Z. The geochemical characteristics and the source of heavy metals in the sediment for the Gulf of Tonkin. Acta Oceanol. Sin. 2013, 35, 72–81. [Google Scholar]
- Huang, X.P.; Huang, L.M.; Yue, W.Z. The characteristics of nutrients and eutrophication in the Pearl River estuary, South China. Mar. Pollut. Bull. 2003, 47, 30–36. [Google Scholar] [CrossRef]
- Ye, F.; Jia, G.; Xie, L.; Wei, G.; Xu, J. Isotope constraints on seasonal dynamics of dissolved and particulate N in the Pearl River Estuary, south China. J. Geophys. Res. Oceans 2016, 121, 8689–8705. [Google Scholar]
- Yang, Y.; Yan-Dong, X.U.; Wang, F.Y.; Wei, X. A Numerical Hydrodynamic and Transport Model in the West Coast of Guangdong Province. Sci. Technol. Eng. 2015, 19, 86–91. (In Chinese) [Google Scholar]
- Chen, F.; Jia, G.; Chen, J. Nitrate sources and watershed denitrification inferred from nitrate dual isotopes in the Beijiang River, south China. Biogeochemistry 2009, 94, 163–174. [Google Scholar] [CrossRef]
- Zhiqiang, L.; Shijun, W.; Jie, L.; Shibing, Z. The impact of maximum possible reclamation on hydrodynamic environment in Zhanjiang Bay. Pearl Rive 2017, 38, 24–30. [Google Scholar]
- Kendall, C. Tracing nitrogen sources and cycling in catchments. Isotope Tracers Catchment Hydrol. 1998, 519–576. [Google Scholar] [CrossRef]
- Zhang, M.; Zhi, Y.; Shi, J.; Wu, L. Apportionment and uncertainty analysis of nitrate sources based on the dual isotope approach and a Bayesian isotope mixing model at the watershed scale. Sci. Total Environ. 2018, 11, 321. [Google Scholar] [CrossRef]
- Chen, F.; Lao, Q.; Jia, G.; Chen, C.; Zhu, Q.; Zhou, X. Seasonal variations of nitrate dual isotopes in wet deposition in a tropical city in China. Atmos. Environ. 2019, 196, 1–9. [Google Scholar] [CrossRef]
- Bianchi, T.S.; Thornton, D.C.O.; Yvon-Lewis, S.A.; King, G.M.; Curtis, J. Positive priming of terrestrially derived dissolved organic matter in a freshwater microcosm system. Geophys. Res. Lett. 2015, 42, 5460–5467. [Google Scholar] [CrossRef]
T | S | pH | DO | Chla | SiO32− | PO43− | DIN | AOU | ||
---|---|---|---|---|---|---|---|---|---|---|
The inner bay | T | 1 | 0.401 | 0.09 | −0.181 | 0.288 | 0.321 | −0.238 | −0.438 | 0.053 |
S | 1 | 0.451 | 0.107 | 0.021 | −0.207 | −0.592 * | −0.543 * | −0.221 | ||
pH | 1 | 0.415 | −0.386 | −0.793 ** | −0.635 * | −0.529 * | −0.458 | |||
DO | 1 | −0.559 * | −0.560 * | −0.527 * | −0.335 | −0.989 ** | ||||
Chla | 1 | 0.722 ** | 0.363 | 0.082 | 0.528 * | |||||
SiO32− | 1 | 0.564 * | 0.365 | 0.545 * | ||||||
PO43− | 1 | 0.565 * | 0.595 * | |||||||
DIN | 1 | 0.417 | ||||||||
AOU | 1 | |||||||||
The outer bay | T | 1 | −0.151 | 0.574 ** | −0.522 ** | −0.494 ** | 0.269 | −0.389 * | −0.012 | 0.507 ** |
S | 1 | 0.263 | −0.546 | 0.267 | 0.419 | −0.537 | 0.671 * | 0.540 | ||
pH | 1 | −0.932 ** | −0.411 | 0.382 | −0.365 | 0.363 | 0.934 ** | |||
DO | 1 | 0.320 | −0.578 * | 0.416 | -0.622 * | −1.000 ** | ||||
Chla | 1 | −0.352 | −0.353 | 0.093 | −0.316 | |||||
SiO32− | 1 | 0.233 | 0.784 ** | 0.581 * | ||||||
PO43- | 1 | −0.105 | −0.407 | |||||||
DIN | 1 | 0.627 * | ||||||||
AOU | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, D.; Zhong, Y.; Chen, F.; Yu, G.; Zhang, X. Analysis of Dissolved Oxygen and Nutrients in Zhanjiang Bay and the Adjacent Sea Area in Spring. Sustainability 2020, 12, 889. https://doi.org/10.3390/su12030889
Fu D, Zhong Y, Chen F, Yu G, Zhang X. Analysis of Dissolved Oxygen and Nutrients in Zhanjiang Bay and the Adjacent Sea Area in Spring. Sustainability. 2020; 12(3):889. https://doi.org/10.3390/su12030889
Chicago/Turabian StyleFu, Dongyang, Yafeng Zhong, Fajin Chen, Guo Yu, and Xiaolong Zhang. 2020. "Analysis of Dissolved Oxygen and Nutrients in Zhanjiang Bay and the Adjacent Sea Area in Spring" Sustainability 12, no. 3: 889. https://doi.org/10.3390/su12030889
APA StyleFu, D., Zhong, Y., Chen, F., Yu, G., & Zhang, X. (2020). Analysis of Dissolved Oxygen and Nutrients in Zhanjiang Bay and the Adjacent Sea Area in Spring. Sustainability, 12(3), 889. https://doi.org/10.3390/su12030889