Monetary Assessment of Restored Habitats as a Support Tool for Sustainable Landscape Management in Lowland Cultural Landscapes
Abstract
:1. Introduction
2. Study area and Methods
2.1. Kluk Study Site
2.2. Zajeci Study Site
2.3. Napajedla Study Site
2.4. Methods of Monetary Assessment of Habitats
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Biotope (Natura 2000) | Area (m2) | Description | Point value/m2 | Value CZK | Value EUR (25.57 CZK) | |
---|---|---|---|---|---|---|
Before mining | X3 (100) | 1186 | cultural meadows | 12 | 216896 | 8459 |
T1.1 (100) | 8800 | continental meadows | 33 | 4425696 | 172602 | |
T1.7 (100) | 10133 | continental meadows | 66 | 10192177 | 397495 | |
T1.1 (100) | 3401 | continental meadows | 33 | 1710431 | 66707 | |
M1.7 (100) | 12396 | sedge meadows | 26 | 4911791 | 191560 | |
X3 (100) | 32541 | cultural meadows | 12 | 5951098 | 232093 | |
M1.7 (100) | 10830 | sedge meadows | 26 | 4291279 | 167360 | |
M1.1 (100) | 5049 | reed | 28 | 2154509 | 84026 | |
L3.1 (100) | 1354 | floodplain forest | 47 | 969843 | 37824 | |
M1.7 (100) | 5486 | sedge meadows | 26 | 2173773 | 84777 | |
T1.7 (100) | 10881 | continental meadows | 66 | 10944545 | 426837 | |
M1.1 (100) | 5054 | reed | 28 | 2156643 | 84109 | |
L2.3B (100) | 335 | floodplain forest | 50 | 255270 | 9956 | |
K1 (20), M1.1 (40), M1.7 (40) | 512 | woody meadows | 28 | 218481 | 8521 | |
T1.1 (100) | 947 | rich mesotrophic meadow | 33 | 476265 | 18574 | |
K1 (100) | 1851 | brushland | 36 | 1015533 | 39606 | |
M1.1 (100) | 967 | reed | 28 | 412638 | 16093 | |
T1.1 (30), T1.9 (70) | 8651 | rich mesotrophic meadow | 54 | 7119427 | 277658 | |
T1.1 (50), T1.4 (50) | 19640 | rich mesotrophic meadow | 39.5 | 11822887 | 461093 | |
X3 (100) | 17673 | cultural meadows | 12 | 3232038 | 126049 | |
T1.1 (100) | 9740 | rich mesotrophic meadow | 33 | 4898441 | 191039 | |
X14 (100) | 12 | ruderal water body | 15 | 2743 | 107 | |
M1.7 (100) | 218 | sedge meadows | 26 | 86380 | 3369 | |
T1.4 (100) | 9631 | rich mesotrophic meadow | 46 | 6751716 | 263317 | |
M1.1 (100) | 18541 | reed | 28 | 7911816 | 308561 | |
T1.1 (40), T1.4 (30), T1.9 (30) | 6723 | rich mesotrophic meadow | 45.9 | 4702846 | 183411 | |
L2.3B (80), M1.7 (20) | 3893 | floodplain forest | 45.2 | 2681685 | 104586 | |
Total | 206445 | 101686847 | 3965787 | |||
Current state after mining (2019) | X7A 50, M1.1. 50 | 2748 | reed | 22.5 | 942289 | 36749 |
X7A 50, M1.1. 50 | 9426 | reed | 22.5 | 3232175 | 126055 | |
X7A 30, T1.1. 40, M1.7. 30 | 1407 | meadows | 26.1 | 559654 | 21827 | |
X7A 50, M1.1. 50 | 6833 | reed | 22.5 | 2343036 | 91378 | |
X6 70, T1.1. 20, M1.7. 10 | 10312 | manipulation area | 18.3 | 2875934 | 112161 | |
X6 | 1500 | gradual banks | 13 | 297180 | 11590 | |
X7A 30, T1.1. 40, M1.7. 30 | 36422 | meadows | 26.1 | 14487360 | 565007 | |
X7A 30, T1.1. 40, M1.7. 30 | 19180 | meadows | 26.1 | 7629114 | 297535 | |
X7A 50, M1.1. 50 | 10731 | reed | 22.5 | 3679660 | 143507 | |
X14 | 91124 | open water body | 15 | 20830946 | 812407 | |
X14 | 6483 | vertical banks | 15 | 1482014 | 57799 | |
X6 70, T1.1. 20, M1.7. 10 | 10279 | manipulation area | 18.3 | 2866731 | 111803 | |
Total | 206445 | 61226093 | 2387818 | |||
Target biotopes according to BAP in five years | M1.1 | 2748 | reed | 28 | 1172627 | 45732 |
M1.1 | 9426 | reed | 28 | 4022263 | 156868 | |
M1.1. 80, T1.7. 20 | 1407 | rich mesotrophic meadow | 35.6 | 763359 | 29771 | |
M1.1 | 6833 | reed | 28 | 2915778 | 113715 | |
T1.1. 50, M1.7. 50 | 10312 | initial oligotrophic meadows | 29.5 | 4636069 | 180807 | |
M2.3. 80, L2.2. 10, M1.1. 10 | 1500 | vegetated gradual banks | 44.6 | 1019556 | 39763 | |
M1.1. 80, T1.7. 20 | 36422 | rich mesotrophic meadow | 35.6 | 19760538 | 770661 | |
M1.1. 80, T1.7. 20 | 19180 | rich mesotrophic meadow | 35.6 | 10405994 | 405834 | |
M1.1 | 10731 | reed | 28 | 4579132 | 178586 | |
V1 | 91124 | open water body | 47 | 65270299 | 2545542 | |
L2.2. 60, M2.3. 20, M1.1. 20 | 6483 | green vertical banks | 40.2 | 3971797 | 154900 | |
T1.1. 50, M1.7. 50 | 10279 | initial oligotrophic meadows | 29.5 | 4621233 | 180228 | |
Total | 206445 | 123138644 | 4802407 |
Biotope (Natura 2000) | Area (m2) | Description | Point value/m2 | Value CZK | Value EUR (25.57 CZK) | |
---|---|---|---|---|---|---|
Before mining | 211 | 121005 | arable land | 10.8 | 19916455 | 776742 |
Total | 121005 | 19916455 | 776742 | |||
Current state after mining (2019) | X14 | 86658 | open water body | 15 | 19810019 | 772591 |
X14 | 1193 | vertical banks | 15 | 272720 | 10636 | |
X6 | 5607 | gradual banks | 13 | 1110859 | 43323 | |
X6 | 27547 | manipulation area | 13 | 5457612 | 212847 | |
Total | 121005 | 26651209 | 1039397 | |||
Target biotopes according to BAP in five years | M1.1 50, M2.3. 50 | 1193 | vegetated vertical banks | 37.5 | 681800 | 26590 |
V1 | 86658 | open water body | 47 | 62071392 | 2420784 | |
M2.3 | 5607 | vegetated gradual banks | 47 | 4016182 | 156631 | |
T1.1. 60, K3 40 | 27547 | woody steppe | 33 | 13853937 | 540304 | |
Total | 121005 | 80623311 | 3144309 |
Biotope (Natura 2000) | Area (m2) | Description | Point value /m2 | Value CZK | Value EUR (25.57 CZK) | |
---|---|---|---|---|---|---|
Before mining | 211 | 242205 | arable land | 10.8 | 39865005 | 1554735 |
231 | 189 | arable land | 13.2 | 38021 | 1483 | |
Total | 242394 | 10.8 | 39903026 | 1556218 | ||
Current state after mining (2019) | X14 | 5434 | vertical banks | 15 | 1242212 | 48446 |
X6 | 1194 | manipulation area | 13 | 236555 | 9226 | |
X7A 50, X6 30, L2.2. 20 | 67535 | associated area | 20.8 | 21408055 | 834914 | |
X6 70, X7A 30 | 6632 | gradual banks | 14.2 | 1435218 | 55973 | |
X7A | 3906 | technical peninsula | 17 | 1011966 | 39467 | |
X14 | 136336 | open water body | 15 | 31166410 | 1215490 | |
X14 | 1758 | vertical banks | 15 | 401879 | 15673 | |
X6 80, X7A20 | 19599 | sown gradual banks | 13.8 | 4121905 | 160754 | |
Total | 242394 | 61024200 | 2379944 | |||
Target biotopes according to BAP in five years | M1.1 50, M2.3 50 | 5434 | vegetated vertical banks | 37.5 | 3105531 | 121116 |
T1.1. 80, X3 20 | 1194 | extensive orchard | 29.4 | 534979 | 20864 | |
T1.1 50, K3 30, L2.2 20 | 67535 | woody steppe | 34.8 | 35817322 | 1396876 | |
M2.3 | 6632 | vegetated gradual banks | 47 | 4750369 | 185264 | |
T1.1. | 3906 | rich mesothrophic meadow | 33 | 1964406 | 76612 | |
V1 | 136336 | open water body | 47 | 97654750 | 3808535 | |
M1.1 50, M2.3 50 | 1758 | vegetated vertical banks | 37.5 | 1004697 | 39183 | |
X7A 60, T1.1 40 | 19599 | meadow beach | 23.4 | 6989317 | 272583 | |
Total | 242394 | 151821371 | 5921033 |
References
- Kilianova, H.; Pechanec, V.; Brus, J.; Kirchner, K.; Machar, I. Analysis of the development of land use in the Morava River floodplain, with special emphasis on the landscape matrix. Morav. Geogr. Rep. 2017, 25, 46–59. [Google Scholar] [CrossRef] [Green Version]
- Simon, J.; Machar, I.; Bucek, A. Linking the historical research with the growth simulation model of hardwood floodplain forests. Pol. J. Ecol. 2014, 62, 273–288. [Google Scholar]
- Farina, A. Landscape Ecology and the General Theory of Resources: Comparing Two Paradigms. J. Landsc. Ecol. 2011, 4, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Oprsal, Z.; Harmacek, J.; Pavlík, P.; Machar, I. What factors can influence the expansion of protected areas around the world in the context of international environmental and development goals. Probl. Ekorozw. 2018, 13, 145–157. [Google Scholar]
- Harrison, P.; Berry, P.; Simpson, G.; Haslett, J.; Blicharska, M.; Bucur, M.; Dunford, R.; Egoh, B.; Garcia-Llorente, M.; Geamănă, N. Linkages between biodiversity attributes and ecosystem services: A systematic review. Ecosyst. Serv. 2014, 9, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Pechanec, V.; Vavra, A.; Hovorkova, M.; Brus, J.; Kilianova, H. Analyses of moisture parameters and biomass of vegetation cover in southeast Moravia. Int. J. Remote Sens. 2014, 35, 967–987. [Google Scholar] [CrossRef]
- Machar, I.; Vozenilek, V.; Kirchner, K.; Vlckova, V.; Bucek, A. Biogeographic model of climate conditions for vegetation zones in Czechia. Geogr. Prague 2017, 122, 64–82. [Google Scholar] [CrossRef] [Green Version]
- Sklenicka, P.; Zouhar, J.; Trpáková, I.; Vlasák, J. Trends in land ownership fragmentation during the last 230 years in Czechia, and a projection of future developments. Land Use Policy 2017, 67, 640–651. [Google Scholar] [CrossRef]
- Simon, J.; Machar, I.; Brus, J.; Pechanec, V. Combining a growth-simulation model with acoustic-wood tomography as a decision-support tool for adaptive management and conservation of forest ecosystems. Ecol. Inform. 2015, 30, 309–312. [Google Scholar] [CrossRef]
- Sklenicka, P. Classification of farmland ownership fragmentation as a cause of land degradation: A review on typology, consequences, and remedies. Land Use Policy 2016, 57, 694–701. [Google Scholar] [CrossRef] [Green Version]
- Macháček, J. Typology of Environmental Impacts of Artisanal and Small-Scale Mining in African Great Lakes Region. Sustainability 2019, 11, 3027. [Google Scholar] [CrossRef] [Green Version]
- Walker, L.R. Integration of the study of natural and anthropogenic disturbances using severity gradients. Austral Ecol. 2011, 36, 916–922. [Google Scholar] [CrossRef]
- Van Andel, J.; Aronson, J. Restoration Ecology: The New Frontier; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Palmer, M.A.; Zedler, J.B.; Falk, D.A. Foundations of Restoration Ecology; Island Press: Washington, DC, USA, 2016. [Google Scholar]
- Machar, I.; Vozenilek, V.; Simon, J.; Pechanec, V.; Brus, J.; Fulnecek, P.; Vitek, T. Joining of the historical research and future prediction as a support tool for the assessment of management strategy for European beech-dominated forests in protected areas. Nat. Conserv. 2017, 51–78. [Google Scholar] [CrossRef] [Green Version]
- Clewell, A.F.; Aronson, J. Ecological Restoration: Principles, Values, and Structure of an Emerging Profession; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Farber, S.; Costanza, R.; Childers, D.L.; Erickson, J.; Gross, K.; Grove, M.; Hopkinson, C.S.; Kahn, J.; Pincetl, S.; Troy, A. Linking ecology and economics for ecosystem management. Bioscience 2006, 56, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Sonter, L.J.; Ali, S.H.; Watson, J.E. Mining and biodiversity: Key issues and research needs in conservation science. Proc. R. Soc. B 2018, 285, 20181926. [Google Scholar] [CrossRef]
- Larondelle, N.; Haase, D. Valuing post-mining landscapes using an ecosystem services approach—An example from Germany. Ecol. Indic. 2012, 18, 567–574. [Google Scholar] [CrossRef]
- Li, X.; Stainback, G.; Barton, C.; Yang, J. Valuing the environmental benefits from reforestation on reclaimed surface mines in Appalachia. J. Am. Soc. Min. Reclam 2018, 7, 1–29. [Google Scholar]
- Pechanec, V.; Machar, I.; Pohanka, T.; Opršal, Z.; Petrovič, F.; Švajda, J.; Šálek, L.; Chobot, K.; Filippovová, J.; Cudlín, P. Effectiveness of Natura 2000 system for habitat types protection: A case study from the Czech Republic. Nat. Conserv. 2018, 24, 21–41. [Google Scholar] [CrossRef]
- Salekl, L.; Sivacioglu, A.; Topacoglu, O.; Zahradnile, D.; Jerabkoval, L.; Machar, I. Crowns of old remnant oak standards. Fresenius Environ. Bull. 2017, 26, 4023–4032. [Google Scholar]
- Prach, K.; Tolvanen, A. How Can We Restore Biodiversity and Ecosystem Services in Mining and Industrial Sites; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Pitz, C.; Mahy, G.; Vermeulen, C.; Marlet, C.; Séleck, M. Developing biodiversity indicators on a stakeholders’ opinions basis: The gypsum industry Key Performance Indicators framework. Environ. Sci. Pollut. Res. 2016, 23, 13661–13671. [Google Scholar] [CrossRef]
- Brus, J.; Pechanec, V.; Machar, I. Depiction of uncertainty in the visually interpreted land cover data. Ecol. Inform. 2018, 47, 10–13. [Google Scholar] [CrossRef]
- Whisenant, S. Repairing Damaged Wildlands: A Process-Orientated, Landscape-Scale Approach; Cambridge University Press: Cambridge, UK, 1999; Volume 1. [Google Scholar]
- Helm, D.; Hepburn, C. The economic analysis of biodiversity: An assessment. Oxf. Rev. Econ. Policy 2012, 28, 1–21. [Google Scholar] [CrossRef]
- Machar, I.; Kulhavy, A.; Sejak, J.; Pechanec, V. Conservation effectiveness and monetary value of floodplain forests habitats in the Czech Republic. Rep. For. Res. Zpravy Lesn. Vyzk. 2018, 63, 206–213. [Google Scholar]
- Sejak, J.; Dejmal, I.; Petricek, V.; Cudlin, P.; Michal, I.; Cerny, K.; Kucera, T.; Vyskot, I.; Strejcek, J.; Cudlinova, E. Valuation and Pricing Biotopes of the Czech Republic; Czech Environmental Institute: Prague, Czech Republic, 2003. [Google Scholar]
- Pechanec, V.; Machar, I.; Sterbova, L.; Prokopova, M.; Kilianova, H.; Chobot, K.; Cudlin, P. Monetary valuation of natural forest habitats in protected areas. Forests 2017, 8, 427. [Google Scholar] [CrossRef] [Green Version]
- Deutscher, J.; Kupec, P.; Bajer, A. Biodiversity Action Plan as a means of sustaining ecological stability of opencast gravel mining sites. In Proceedings of the Public Recreation and Landscape Protection—With Nature Hand in Hand, Brno, Czech Republic, 1–3 May 2017. [Google Scholar]
- Chytrý, M.; Kučera, T.; Kočí, M.; Grulich, V.; Lustyk, P. Katalog Biotopů České Republiky (Habitat Catalogue of the Czech Republic); Agency of Nature Conservation and Landscape Protection: Prague, Czech Republic, 2010; Volume 2, 445p. [Google Scholar]
- Cílek, V.; Gremlica, T.; Lepšová, A.; Volf, O.; Vrabec, V.; Zavadil, V. Industriální Krajina a Její Přirozená Obnova: Právní Východiska a Rekultivační Metodika Oblastí Narušených Těžbou; Novela Bohemica: Prague, Czech Republic, 2013; 110p. [Google Scholar]
- Pechanec, V.; Brus, J.; Kilianova, H.; Machar, I. Decision support tool for the evaluation of landscapes. Ecol. Inform. 2015, 30, 305–308. [Google Scholar] [CrossRef]
- Prach, K. Ecological Restoration: Principles, Values, and Structure of an Emerging Profession. Restor. Ecol. 2008, 16, 730. [Google Scholar] [CrossRef]
- Christie, M.; Martin-López, B.; Church, A.; Siwicka, E.; Szymonczyk, P.; Sauterel, J.M. Understanding the diversity of values of “Nature’s contributions to people”: Insights from the IPBES Assessment of Europe and Central Asia. Sustain. Sci. 2019, 14, 1267–1282. [Google Scholar] [CrossRef] [Green Version]
- Miko, L. Nature and landscape protection in the European context. In Ochrana Prirody a Krajiny v Ceske Republice, Vols I and II, Czech Republic; Machar, I., Drobilova, L., Eds.; Palacky University Olomouc: Olomouc, Czech Republic, 2012; Volume 1, pp. 43–49. [Google Scholar]
- Lacková, E.; Kasovská, K.; Cmielová, L. Concept of reclamation management of the ash pond trinec (The Czech Republic). Int. Multidiscip. Sci. Geoconference Sgem Surv. Geol. Min. Ecol. Manag. 2012, 5, 185–192. [Google Scholar]
- Šebelíková, L.; Řehounková, K.; Prach, K. Spontaneous revegetation vs. forestry reclamation in post-mining sand pits. Environ. Sci. Pollut. Res. 2016, 23, 13598–13605. [Google Scholar]
- Walker, L.R.; Hölzel, N.; Marrs, R.; del Moral, R.; Prach, K. Optimization of intervention levels in ecological restoration. Appl. Veg. Sci. 2014, 17, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Prach, K.; Hobbs, R.J. Spontaneous succession versus technical reclamation in the restoration of disturbed sites. Restor. Ecol. 2008, 16, 363–366. [Google Scholar] [CrossRef]
- Prach, K.; Pyšek, P. Using spontaneous succession for restoration of human-disturbed habitats: Experience from Central Europe. Ecol. Eng. 2001, 17, 55–62. [Google Scholar] [CrossRef]
- De Steven, D. Experiments on mechanisms of tree establishment in old-field succession: Seedling emergence. Ecology 1991, 72, 1066–1075. [Google Scholar] [CrossRef]
- Pyšek, P. Dominant species exchange during succession in reclaimed habitats: A case study from areas deforested by air pollution. For. Ecol. Manag. 1992, 54, 27–44. [Google Scholar] [CrossRef]
- Řehounková, K.; Čížek, L.; Řehounek, J.; Šebelíková, L.; Tropek, R.; Lencová, K.; Bogusch, P.; Marhoul, P.; Máca, J. Additional disturbances as a beneficial tool for restoration of post-mining sites: A multi-taxa approach. Environ. Sci. Pollut. Res. 2016, 23, 13745–13753. [Google Scholar] [CrossRef]
- Cudlín, P.; Prokopová, M.; Francírková, T.; Buresová, R. System NATURA 2000 utilization for purposes of biotope valuation. Ekológia 2005, 24, 52–68. [Google Scholar]
- Lorne, F.T.; Dilling, P. Creating values for sustainability: Stakeholders engagement, incentive alignment, and value currency. Econ. Res. Int. 2012, 2012, 142910. [Google Scholar] [CrossRef] [Green Version]
- Heneberg, P.; Bogusch, P.; Řehounek, J. Sandpits provide critical refuge for bees and wasps (Hymenoptera: Apocrita). J. Insect Conserv. 2013, 17, 473–490. [Google Scholar] [CrossRef]
- Laurence, D. Mine closure and the community. Min. Environ. Manag. 2001, 9, 10–12. [Google Scholar]
Biotope (Natura 2000) | Area (m2) | Value CZK | |
---|---|---|---|
Before | X3 (100) | 1186 | 216896 |
T1.1 (100) | 8800 | 4425696 | |
T1.7 (100) | 10133 | 10192177 | |
T1.1 (100) | 3401 | 1710431 | |
M1.7 (100) | 12396 | 4911791 | |
X3 (100) | 32541 | 5951098 | |
M1.7 (100) | 10830 | 4291279 | |
M1.1 (100) | 5049 | 2154509 | |
L3.1 (100) | 1354 | 969843 | |
M1.7 (100) | 5486 | 2173773 | |
T1.7 (100) | 10881 | 10944545 | |
M1.1 (100) | 5054 | 2156642 | |
L2.3B (100) | 335 | 255270 | |
K1 (20), M1.1 (40), M1.7 (40) | 512 | 218481 | |
T1.1 (100) | 947 | 476265 | |
K1 (100) | 1851 | 1015533 | |
M1.1 (100) | 967 | 412638 | |
T1.1 (30), T1.9 (70) | 8651 | 7119427 | |
T1.1 (50), T1.4 (50) | 19640 | 11822887 | |
X3 (100) | 17673 | 3232038 | |
T1.1 (100) | 9740 | 4898441 | |
X14 (100) | 12 | 2743 | |
M1.7 (100) | 218 | 86380 | |
T1.4 (100) | 9631 | 6751716 | |
M1.1 (100) | 18541 | 7911816 | |
T1.1 (40), T1.4 (30), T1.9 (30) | 6723 | 4702846 | |
L2.3B (80), M1.7 (20) | 3893 | 2681685 | |
Total | 206445 | 101686846 | |
Current state | X7A 50, M1.1. 50 | 2748 | 942289 |
X7A 50, M1.1. 50 | 9426 | 3232175 | |
X7A 30, T1.1. 40, M1.7. 30 | 1407 | 559654 | |
X7A 50, M1.1. 50 | 6833 | 2343036 | |
X6 70, T1.1. 20, M1.7. 10 | 10312 | 2875934 | |
X6 | 1500 | 297180 | |
X7A 30, T1.1. 40, M1.7. 30 | 36422 | 14487360 | |
X7A 30, T1.1. 40, M1.7. 30 | 19180 | 7629114 | |
X7A 50, M1.1. 50 | 10731 | 3679660 | |
X14 | 91124 | 20830946 | |
X14 | 6483 | 1482014 | |
Total | 206445 | 58359363 | |
Target biotopes | M1.1 | 2748 | 1172627 |
M1.1 | 9426 | 4022263 | |
M1.1. 80, T1.7. 20 | 1407 | 763359 | |
M1.1 | 6833 | 2915778 | |
T1.1. 50, M1.7. 50 | 10312 | 4636069 | |
M2.3. 80, L2.2. 10, M1.1. 10 | 1500 | 1019556 | |
M1.1. 80, T1.7. 20 | 36422 | 19760538 | |
M1.1. 80, T1.7. 20 | 19180 | 10405994 | |
M1.1 | 10731 | 4579132 | |
V1 | 91124 | 65270299 | |
L2.2. 60, M2.3. 20, M1.1. 20 | 6483 | 3971797 | |
T1.1. 50, M1.7. 50 | 10279 | 4621233 | |
Total | 206445 | 123138645 |
Biotope (Natura 2000) | Area (m2) | Value CZK | |
---|---|---|---|
Before | 211 | 121005 | 19916455 |
Total | 121005 | 19916455 | |
Current state | X14 | 86658 | 19810019 |
X14 | 1193 | 272720 | |
X6 | 5607 | 1110859 | |
X6 | 27547 | 5457612 | |
Total | 121005 | 26651210 | |
Target biotopes | M1.1 50, M2.3. 50 | 1193 | 681800 |
V1 | 86658 | 62071392 | |
M2.3 | 5607 | 4016182 | |
T1.1. 60, K3 40 | 27547 | 13853937 | |
Total | 121005 | 80623311 |
Biotope (Natura 2000) | Area (m2) | Value CZK | |
---|---|---|---|
Before | 211 | 242205 | 39865005 |
231 | 189 | 38021 | |
Total | 242394 | 39903026 | |
Current state | X14 | 5434 | 1242212 |
X6 | 1194 | 236555 | |
X7A 50, X6 30, L2.2. 20 | 67535 | 21408055 | |
X6 70, X7A 30 | 6632 | 1435218 | |
X7A | 3906 | 1011966 | |
X14 | 136336 | 31166410 | |
X6 80, X7A20 | 19599 | 4121905 | |
Total | 242394 | 60622321 | |
Target biotopes | M1.1 50, M2.3 50 | 5434 | 3105531 |
T1.1. 80, X3 20 | 1194 | 534979 | |
T1.1 50, K3 30, L2.2 20 | 67535 | 35817322 | |
M2.3 | 6632 | 4750369 | |
T1.1. | 3906 | 1964406 | |
V1 | 136336 | 97654750 | |
M1.1 50, M2.3 50 | 1758 | 1004697 | |
X7A 60, T1.1 40 | 19599 | 6989317 | |
Total | 242394 | 151821371 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brus, J.; Deutscher, J.; Bajer, A.; Kupec, P.; Olišarová, L. Monetary Assessment of Restored Habitats as a Support Tool for Sustainable Landscape Management in Lowland Cultural Landscapes. Sustainability 2020, 12, 1341. https://doi.org/10.3390/su12041341
Brus J, Deutscher J, Bajer A, Kupec P, Olišarová L. Monetary Assessment of Restored Habitats as a Support Tool for Sustainable Landscape Management in Lowland Cultural Landscapes. Sustainability. 2020; 12(4):1341. https://doi.org/10.3390/su12041341
Chicago/Turabian StyleBrus, Jan, Jan Deutscher, Aleš Bajer, Petr Kupec, and Lucie Olišarová. 2020. "Monetary Assessment of Restored Habitats as a Support Tool for Sustainable Landscape Management in Lowland Cultural Landscapes" Sustainability 12, no. 4: 1341. https://doi.org/10.3390/su12041341
APA StyleBrus, J., Deutscher, J., Bajer, A., Kupec, P., & Olišarová, L. (2020). Monetary Assessment of Restored Habitats as a Support Tool for Sustainable Landscape Management in Lowland Cultural Landscapes. Sustainability, 12(4), 1341. https://doi.org/10.3390/su12041341