Influence of Relative Humidity on Germination and Metal Accumulation in Vigna radiata Exposed to Metal-based Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Seeds
2.2. Germination Experiment
- Percentage germination (%) = (Number of germinated seeds × 100) / total number of seeds.
- Relative germination rate = Germination rate in treatment / germination rate in control.
2.3. Metal Accumulation
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Navarro, E.; Baun, A.; Behra, R.; Hartmann, N.B.; Filser, J.; Miao, A.J.; Quigg, A.; Santschi, P.H.; Sigg, L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 2008, 17, 372–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulak, E.; Ognik, K.; Stępniowska, A.; Sembratowicz, I. The effect of administration of silver nanoparticles on silver accumulation in tissues and the immune and antioxidant status of chickens. J. Anim. Feed Sci. 2018, 27, 44–54. [Google Scholar] [CrossRef]
- Shvedova, A.A.; Pietroiusti, A.; Fadeel, B.; Kagan, V.E. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress. Toxicol. Appl. Pharmacol. 2012, 261, 121–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setyawati, M.I.; Tay, C.Y.; Leong, D.T. Effect of zinc oxide nanomaterials-induced oxidative stress on the p53 pathway. Biomaterials 2013, 34, 10133–10142. [Google Scholar] [CrossRef] [PubMed]
- Rico, C.M.; Majumdar, S.; Duarte-Gardea, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 2011, 59, 3485–3498. [Google Scholar] [CrossRef] [Green Version]
- Miralles, P.; Church, T.L.; Harris, A.T. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ. Sci. Technol. 2012, 46, 9224–9239. [Google Scholar] [CrossRef]
- Lee, H.L.; Mohammed, I.A.; Belmahi, M.; Assouar, M.B.; Rinnert, H.; Alnot, M. Thermal and optical properties of cds nanoparticles in thermotropic liquid crystal monomers. Materials (Basel) 2010, 3, 2069–2086. [Google Scholar] [CrossRef] [Green Version]
- Kumbhakar, D.V.; Datta, A.K.; Mandal, A.; Das, D.; Gupta, S.; Ghosh, B.; Halder, S.; Dey, S. Effectivity of copper and cadmium sulphide nanoparticles in mitotic and meiotic cells of Nigella sativa L. (black cumin)—Can nanoparticles act as mutagenic agents? J. Exp. Nanosci. 2016, 11, 823–839. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, B.; Datta, A.K.; Pramanik, A.; Kumbhakar, D.V.; Das, D.; Paul, R.; Biswas, J. Mutagenic Effectivity of Cadmium Sulphide and Copper Oxide Nanoparticles on Some Physiological and Cytological Attributes of Lathyrus sativus L. Cytologia 2017, 82, 267–271. [Google Scholar] [CrossRef]
- Atha, D.H.; Wang, H.; Petersen, E.J.; Cleveland, D.; Holbrook, R.D.; Jaruga, P.; Dizdaroglu, M.; Xing, B.; Nelson, B.C. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ. Sci. Technol. 2012, 46, 1819–1827. [Google Scholar] [CrossRef]
- Shaymurat, T.; Gu, J.; Xu, C.; Yang, Z.; Zhao, Q.; Liu, Y.; Liu, Y. Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): A morphological study. Nanotoxicology 2012, 6, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, B. Design and Construction of a Modified Rapid Sand Filter for Treatment of Raw Water. J. Res. 2017, 3, 9–13. [Google Scholar]
- Hoe, P.T.; Mai, N.C.; Lien, L.Q.; Ban, N.K.; Van Minh, C.; Chau, N.H.; Buu, N.Q.; Hien, D.T.; Van, N.T.; Hien, L.T.T.; et al. Germination responses of soybean seeds under Fe, ZnO, Cu and Co nanoparticle treatments. Int. J. Agric. Biol. 2018, 20, 1562–1568. [Google Scholar]
- Ko, K.-S.; Koh, D.-C.; Kong, I. Evaluation of the Effects of Nanoparticle Mixtures on Brassica Seed Germination and Bacterial Bioluminescence Activity Based on the Theory of Probability. Nanomaterials 2017, 7, 344. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.; Niazi, N.K. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 2017, 325, 36–58. [Google Scholar] [CrossRef] [Green Version]
- Limwiwattana, D.; Tongkhao, K.; Na Jom, K. Effect of Sprouting Temperature and Air Relative Humidity on Metabolic Profiles of Sprouting Black Gram (Vigna mungo L.). J. Food Process. Preserv. 2016, 40, 306–315. [Google Scholar] [CrossRef]
- Pramanik, A.; Datta, A.K.; Das, D.; Kumbhakar, D.V.; Ghosh, B.; Mandal, A.; Gupta, S.; Saha, A.; Sengupta, S. Assessment of Nanotoxicity (Cadmium Sulphide and Copper Oxide) Using Cytogenetical Parameters in Coriandrum sativum L. (Apiaceae). Cytol. Genet. 2018, 52, 299–308. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Chen, F.Q. Effects of Temperature and Humidity on the Germination of Two Pioneer Species in Ecological Restoration. Appl. Mech. Mater. 2012, 209–211, 1265–1268. [Google Scholar] [CrossRef]
- Das, D.; Datta, A.K.; Kumbhakar, D.V.; Ghosh, B.; Pramanik, A.; Gupta, S. Nanoparticle (Cds) interaction with host (sesamum indicum l.)—Its localization, transportation, stress induction and genotoxicity. J. Plant Interact. 2018, 13, 182–194. [Google Scholar] [CrossRef] [Green Version]
- Hahm, T.S.; Park, S.J.; Martin Lo, Y. Effects of germination on chemical composition and functional properties of sesame (Sesamum indicum L.) seeds. Bioresour. Technol. 2009, 100, 1643–1647. [Google Scholar] [CrossRef]
- Chhun, T.; Uno, Y.; Taketa, S.; Azuma, T.; Ichii, M.; Okamoto, T.; Tsurumi, S. Saturated humidity accelerates lateral root development in rice (Oryza sativa L.) seedlings by increasing phloem-based auxin transport. J. Exp. Bot. 2007, 58, 1695–1704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adhikari, T.; Kundu, S.; Biswas, A.K.; Kundu, S.; Tarafdar, J.C.; Rao, A.S. Effect of copper oxide nano particle on seed germination of selected crops. J. Agric. Sci. Technol. A 2012, 2, 815–823. [Google Scholar]
- Dhoke, S.K.; Mahajan, P.; Kamble, R.; Khanna, A. Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol. Dev. 2013, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Hajra, A.; Mondal, N.K. Effects of ZnO and TiO 2 nanoparticles on germination, biochemical and morphoanatomical attributes of Cicer arietinum L. Energy Ecol. Environ. 2017, 2, 277–288. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.W.; Mahendra, S.; Zodrow, K.; Li, D.; Tsai, Y.C.; Braam, J.; Alvarez, P.J.J. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ. Toxicol. Chem. 2010, 29, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Kuang, L.; He, X.; Bai, W.; Ding, Y.; Zhang, Z.; Zhao, Y.; Chai, Z. Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 2010, 78, 273–279. [Google Scholar] [CrossRef] [PubMed]
Physicochemical Property | CdO | CuO |
---|---|---|
Molecular mass | 128.4 | 79.55 |
Appearance | White | Black to brown |
Melting point (°C) | 900–1000 | 1201 |
Boiling point (°C) | 1559 | 2000 |
Density (g/cm3) | 8.15 | 6.31 |
Exact mass (g/mol) | 129.9 | 78.9 |
Particle Size (nm) | 20–80 | 1–30 |
Specific surface area (m2/g) | 10–50 | 100–200 |
Concentration (mg L−1) | Germination (%) | ||||
80% humidity | 70% humidity | ||||
24 h | 48 h | 24 h | 48 h | ||
Control | 100.0a | 100.0a | 66.7a | 70.0a | |
CdO | 0.1 | 93.3b | 100.0a | 60.0a | 63.3a |
1 | 80.0c | 100.0a | 40.0ab | 43.3ab | |
10 | 70.0d | 93.3a | 23.3b | 23.3b | |
CuO | 0.1 | 100.0a | 100.0a | 63.3a | 66.7a |
1 | 90.0b | 100.0a | 60.0a | 66.7a | |
10 | 53.3c | 96.7a | 60.0 a | 63.3a | |
CdO + CuO | 0.1 + 0.1 | 70.0b | 90.0ab | 56.7a | 60.0a |
1 + 1 | 70.0b | 93.3a | 56.7a | 60.0a | |
10 + 10 | 50.0c | 80.0c | 30.0b | 30.0b |
Exposure | Source of Variation | Df | F | P |
---|---|---|---|---|
CdO | Concentration | 3 | 6.667 | 0.004 |
Humidity | 1 | 108.516 | 0.000 | |
Concentration vs humidity | 3 | 3.914 | 0.028 | |
CuO | Concentration | 3 | 0.253 | 0.858 |
Humidity | 1 | 60.840 | 0.000 | |
Concentration vs humidity | 3 | 0.040 | 0.989 | |
CdO + CuO | Concentration | 3 | 10.591 | 0.000 |
Humidity | 1 | 84.045 | 0.000 | |
Concentration vs humidity | 3 | 1.500 | 0.253 |
Concentration (mg L−1) | 80% humidity | 70% humidity | |||
CdO | CuO | CdO | CuO | ||
Control | 37.67 ± 2.8a | - | 19.70 ± 1.65a | - | |
CdO | 0.1 | 83.13 ± 12.1b | - | 51.47 ± 5.50b | - |
1 | 100.9 ± 7.90c | - | 84.29 ± 10.04c | - | |
10 | 193.3 ± 8.02d | - | 126.47 ± 13.42d | - | |
Control | - | 46.0 ± 8.00a | - | 34.6 ± 9.45a | |
CuO | 0.1 | - | 208.5 ± 0.50b | - | 175.1 ± 6.92b |
1 | - | 260.3 ± 19.9c | - | 203.7 ± 6.86c | |
10 | - | 317.0 ± 10.15d | - | 206.4 ± 22.6c | |
Control | 37.67 ± 2.8a | 46.0 ± 8.00a | 19.70 ± 1.65a | 34.6 ± 9.45a | |
CdO + CuO | 0.1 + 0.1 | 78.8 ± 13.58b | 171.0 ± 13.58c | 72.97 ± 7.46b | 118.7 ± 6.25b |
1 + 1 | 82.17 ± 8.14b | 91.83 ± 17.32b | 47.67 ± 15.8c | 86.14 ± 8.47c | |
10 + 10 | 111.3 ± 13.05c | 96.66 ± 7.15b | 91.43 ± 3.98d | 57.66 ± 7.53d |
Exposure / Accumulation | Source of Variation | Df | F | P |
---|---|---|---|---|
CdO / Cd accumulation | Concentration | 3 | 245.01 | 0.000 |
Humidity | 1 | 89.18 | 0.000 | |
Concentration vs humidity | 3 | 11.00 | 0.000 | |
CuO / Cu accumulation | Concentration | 3 | 368.28 | 0.000 |
Humidity | 1 | 107.12 | 0.000 | |
Concentration vs humidity | 3 | 17.35 | 0.000 | |
CdO + CuO / Cd accumulation | Concentration | 3 | 59.57 | 0.000 |
Humidity | 1 | 25.02 | 0.000 | |
Concentration vs humidity | 3 | 2.25 | 0.121 | |
CdO + CuO / Cu accumulation | Concentration | 3 | 131.38 | 0.000 |
Humidity | 1 | 50.86 | 0.000 | |
Concentration vs humidity | 3 | 8.78 | 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, E.S.; Sivakumar, S.; Hong, S.-C.; Yi, P.-I.; Jang, S.-H.; Suh, J.-M. Influence of Relative Humidity on Germination and Metal Accumulation in Vigna radiata Exposed to Metal-based Nanoparticles. Sustainability 2020, 12, 1347. https://doi.org/10.3390/su12041347
Jung ES, Sivakumar S, Hong S-C, Yi P-I, Jang S-H, Suh J-M. Influence of Relative Humidity on Germination and Metal Accumulation in Vigna radiata Exposed to Metal-based Nanoparticles. Sustainability. 2020; 12(4):1347. https://doi.org/10.3390/su12041347
Chicago/Turabian StyleJung, Eun Sang, Subpiramaniyam Sivakumar, Sung-Chul Hong, Pyong-In Yi, Seong-Ho Jang, and Jeong-Min Suh. 2020. "Influence of Relative Humidity on Germination and Metal Accumulation in Vigna radiata Exposed to Metal-based Nanoparticles" Sustainability 12, no. 4: 1347. https://doi.org/10.3390/su12041347
APA StyleJung, E. S., Sivakumar, S., Hong, S. -C., Yi, P. -I., Jang, S. -H., & Suh, J. -M. (2020). Influence of Relative Humidity on Germination and Metal Accumulation in Vigna radiata Exposed to Metal-based Nanoparticles. Sustainability, 12(4), 1347. https://doi.org/10.3390/su12041347