The Quality of Carrot after Field Biostimulant Application and after Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Storage Conditions
2.3. Laboratory Analysis Procedure
2.4. Statistical Analysis
3. Results and Discussion
3.1. Nitrate Content
3.2. Nitrite Content
3.3. Storage Effect
3.4. Daily Intake of Nitrates and Nitrites
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Briglia, N.; Petrozza, A.; Hoeberichts, F.A.; Verhoef, N.; Povero, G. Investigating the Impact of Biostimulants on the Row Crops Corn and Soybean Using High-Efficiency Phenotyping and Next Generation Sequencing. Agronomy 2019, 9, 761. [Google Scholar] [CrossRef] [Green Version]
- Colantoni, A.; Recchia, L.; Bernabei, G.; Cardarelli, M.; Rouphael, Y.; Colla, G. Analyzing the environmental impact of chemically-produced protein hydrolysate from leather waste vs. enzymatically-produced protein hydrolysate from legume grains. Agriculture 2017, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- D’Addabbo, T.; Laquale, S.; Perniola, M.; Candido, V. Biostimulants for Plant Growth Promotion and Sustainable Management of Phytoparasitic Nematodes in Vegetable Crops. Agronomy 2019, 9, 616. [Google Scholar] [CrossRef] [Green Version]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Giordano, M.; Rouphael, Y.; Colla, G.; Mori, M. Effect of Vegetal-and Seaweed Extract-Based Biostimulants on Agronomical and Leaf Quality Traits of Plastic Tunnel-Grown Baby Lettuce under Four Regimes of Nitrogen Fertilization. Agronomy 2019, 9, 571. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.H.; Lin, F.W.; Wu, C.W.; Chang, Y.S. Biostimulation of Maize (Zea mays) and Irrigation Management Improved Crop Growth and Water Use under Controlled Environment. Agronomy 2019, 9, 559. [Google Scholar] [CrossRef] [Green Version]
- Sandepogu, M.; Shukla, P.S.; Asiedu, S.; Yurgel, S.; Prithiviraj, B. Combination of Ascophyllum nodosum Extract and Humic Acid Improve Early Growth and Reduces Post-Harvest Loss of Lettuce and Spinach. Agriculture 2019, 9, 240. [Google Scholar] [CrossRef] [Green Version]
- EU. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003. Off. J. Eur. Union 2019, L 170. [Google Scholar]
- Kowalska, M.; Knapik, W.; Bogusz, M. Farm Education as a Component of Sustainable Development in Selected Countries of the European Union. Probl. Ekorozwoju Probl. Sustain. Dev. 2016, 11, 81–88. [Google Scholar]
- Ntshangase, N.; Muroyiwa, B.; Sibanda, M. Farmers’ perceptions and factors influencing the adoption of no-till conservation agriculture by small-scale farmers in Zashuke, KwaZulu-Natal Province. Sustainability 2018, 10, 555. [Google Scholar] [CrossRef] [Green Version]
- Prus, P. Sustainable Farming Production and its Impact on the Natural Environment—Case Study Based on a Selected Group of Farmers. In Proceedings of the 8th International Scientific Conference RURAL Development, Kaunas, Lithuania, 23–24 November 2017; pp. 1280–1285. [Google Scholar] [CrossRef] [Green Version]
- Prus, P.; Drzazdzynska, K. Farmers’ assessment of training services and the impact of agricultural advisory on selected developmental factors affecting farming. In Proceedings of the International Conference Economic Science for Rural Development, Jelgava, Latvia, 27–28 April 2017; p. 338, No 44. [Google Scholar]
- Fortune Business Insights. Biostimulant Market Size, Share and Industry Analysis by Source (Microbial and Non-Microbial), by Active Ingredients (Seaweed Extracts, Humic Substances, Vitamins & Amino Acids, Microbial Amendments, and Others), by Application (Foliar Treatment, Soil Treatment, and Seed Treatment), by Crop (Row Crops, Fruits & Vegetables, Turf & Ornamentals), and Regional Forecast 2019–2026; Report ID:FB/100414; Fortune Business Insights: Pune, Maharashtra, India, 2019. [Google Scholar]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates, unravelling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [Green Version]
- Grabowska, A.; Kunicki, E.; Sękara, A.; Kalisz, A.; Wojciechowska, R. The effect of cultivar and biostimulant treatment on the carrot yield and its quality. Veg. Crops Res. Bull. 2012, 77, 37–48. [Google Scholar] [CrossRef]
- Wierzbowska, J.; Cwalina-Ambroziak, B.; Głosek-Sobieraj, M.; Sienkiewicz, S. Yield and mineral content of edible carrot depending on cultivation and plant protection methods. Acta Sci. Pol. Hortorum Cultus 2017, 16, 75–86. [Google Scholar]
- Sekoli, M.M.S.; Pretorius, J.C.; Coetzer, G.M. Sugar and B-carotene accumulation in carrot (Daucus Carota, L.) tap roots as influenced by fertilization and biostimulant application under greenhouse conditions. Glob. J. Agric. Res. 2016, 4, 18–31. [Google Scholar]
- Rouphael, Y.; Colla, G. Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1655. [Google Scholar] [CrossRef] [Green Version]
- Jannin, L.; Arkoun, M.; Etienne, P.; Laine, P.; Goux, D.; Garnica, M.; Fuentes, M.; San Francisco, S.; Baigorri, R.; Cruz, F.; et al. Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. seaweed extract: Microarray analysis and physiological characterization of N, C, and S metabolisms. J. Plant Growth Regul. 2013, 32, 31–52. [Google Scholar] [CrossRef]
- Nair, P.; Kandasamy, S.; Zhang, J.; Ji, X.; Kirby, C.; Benkel, B.; Hodges, M.D.; Critchley, A.T.; Hiltz, D.; Prithiviraj, B. Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genom. 2012, 13, 643. [Google Scholar] [CrossRef] [Green Version]
- Szczepanek, M.; Wszelaczyńska, E.; Pobereżny, J.; Ochmian, I. Response of onion (Allium cepa L.) to the method of seaweed biostimulant application. Acta Sci. Pol. Hortorum Cultus 2017, 16, 113–122. [Google Scholar]
- Przybysz, A.; Gawrońska, H.; Gajc-Wolska, J. Biological mode of action of a nitrophenolates-based biostimulant: Case study. Front. Plant Sci. 2014, 5, 713. [Google Scholar] [CrossRef]
- Kocira, S.; Szparaga, A.; Kuboń, M.; Czerwińska, E.; Piskier, T. Morphological and biochemical responses of Glycine max (L.) Merr. to the use of seaweed extract. Agronomy 2019, 9, 93. [Google Scholar] [CrossRef] [Green Version]
- Szczepanek, M.; Wilczewski, E.; Pobereżny, J.; Wszelaczyńska, E.; Ochmian, I. Carrot root size distribution in response to biostimulant application. Acta Agric. Scand. Sect. B Soil Plant Sci. 2017, 67, 334–339. [Google Scholar] [CrossRef]
- Wszelaczyńska, E.; Szczepanek, M.; Pobereżny, J.; Kazula, M. Effect of biostimulant application and long-term storage on the nutritional value of carrot. Hortic. Bras. 2019, 37, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Hager, T.J.; Howard, L.R. Processing effects on carrot phytonutrients. HortScience 2006, 41, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Sušin, J.; Kmecl, V.; Gregorčič, A. A survey of nitrate and nitrite content of fruit and vegetables grown in Slovenia during 1996–2002. Food Addit. Contam. 2006, 23, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Ziarati, P.; Arbabi-Bidgoli, S. Investigation of cooking method on nitrate and nitrite contents in crops and vegetables and assess the associated health risk. Int. J. Plant Anim. Environ. Sci. 2014, 4, 46–52. [Google Scholar]
- Ayaz, A.; Topcu, A.; Yurdagul, M. Survey of nitrate and nitrite levels of fresh vegetables in Turkey. J. Food Technol. 2007, 5, 177–179. [Google Scholar]
- Karkleliene, R.; Radzevičius, A.; Bobinas, Č. Productivity and root-crop quality of Lithuanian carrot (Daucus sativus Rőhl.) Breeder lines. Proc. Latv. Acad. Sci. Sect. B 2009, 63, 63–65. [Google Scholar] [CrossRef] [Green Version]
- Kramer, M.; Maksymowicz-Kauna, A.; Baranski, R.; Nothnagel, T.; Carle, R.; Kammerer, D.R. Effects of cultivation year and growing location on the phenolic profile of differently coloured carrot cultivars. J. Appl. Bot. Food Qual. 2012, 85, 235–247. [Google Scholar]
- Tietze, M.; Burghardt, A.; Brągiel, P.; Mac, J. Content of nitrosamines in foodstuff. Ann. Univ. Lub. 2007, 25, 71–77. [Google Scholar]
- Wszelaczyńska, E.; Pobereżny, J.; Keutgen, A. Effect of genetic conditions, foliar fertilisation with magnesium and storage on the content of nitrates (V) and (III) in the storage roots in carrot. Environ. Prot. Nat. Res. 2014, 25, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Murawa, D.; Banaszkiewicz, B.; Majewska, E.; Błaszczuk, B.; Sulima, J. Nitrate and nitrite content in selected vegetables and potatoes commercially available in Olsztyn. Bromatol. Chem. Toksykol. 2008, 41, 67–71. [Google Scholar]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agric. 2005, 86, 10–17. [Google Scholar] [CrossRef]
- Gajewski, M.; Węglarz, Z.; Baker, M.; Kuczkowska, A.; Majewski, M.; Woreda, A. Quality of carrots grown for processing as affected by nitrogen fertilization and harvest term. Veg. Crops Res. Bull. 2009, 70, 135–144. [Google Scholar] [CrossRef]
- Burlingame, B.; Pineiro, M. The essential balance: Risks and benefits in food safety and quality. J. Food Compos. Anal. 2007, 20, 139–146. [Google Scholar] [CrossRef]
- Larsen, J. Risk assessment of chemicals in European traditional foods. Trends Food Sci. Techol. 2006, 17, 471–481. [Google Scholar] [CrossRef]
- Łozowicka, B. Chemical contaminants in plant food. Prog. Plant Prot. 2009, 49, 2071–2080. [Google Scholar]
- Commission Regulation (EU) No 1258/2011 of 2 December 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for nitrates in foodstuffs. Off. J. Eur. Union 2011, L 320/15.
- Bottex, B.; Dorne, J.L.C.M.; Carlander, D.; Benford, D.; Przyrembel, H.; Heppnera, C.; Kleinera, J.; Cockburnc, A. Risk—Benefit health assessment of food—Food fortification and nitrate in vegetables. Trends Food Sci. Techol. 2008, 19, 113–119. [Google Scholar] [CrossRef]
- Marks, N. Content of nitrates, nitrites and heavy metals in potato tubers depending on their storage period duration. Inżynieria Rolnicza 2009, 1, 183–187. [Google Scholar]
- Machha, A.; Schechter, A.N. Inorganic nitrate: A major player in the cardiovascular health benefits of vegetables? Nutr. Rev. 2012, 70, 367–372. [Google Scholar] [CrossRef]
- Szczepanek, M.; Siwik-Ziomek, A. P and K accumulation by rapeseed as affected by biostimulant under different NPK and S fertilization doses. Agronomy 2019, 9, 477. [Google Scholar] [CrossRef] [Green Version]
- Czeczko, R.; Mikos-Bielak, M. Effects of Asahi bio-stimulator application in the cultivation of different vegetable species. Ann. UMCS Agric. 2004, 59, 1073–1079. [Google Scholar]
- Baker, W.H.; Thompson, T.L. Determination of nitrate-nitrogen (NO3-N) in plant samples by selective ion electrode. In “Plant Analysis Reference Procedures for the Southern Region of the United States- Southern Cooperative Series Bulletin #368”; The University of Georgia: Athens, GA, USA, 1992; pp. 23–26. [Google Scholar]
- Burt, T.P.; Heathwaite, A.L.; Trudgill, S.T. Nitrate: Process, Pattern and Management; Wiley: Chichester, UK, 1993; pp. 10–28. [Google Scholar]
- Grudzińska, M.; Zgórska, K. Effect of preliminary and thermal processing on the content of nitrate in vegetables. Rocz. Ochr. Środ. 2005, 7, 233–241. [Google Scholar]
- Bender, I.; Ess, M.; Matt, D.; Moor, U.; Tõnutare, T.; Luik, A. Quality of organic and conventional carrots. Agron. Res. 2009, 7, 572–577. [Google Scholar]
- Gajewski, M.; Szymczak, P.; Bajer, M. The accumulation of chemical compounds in storage roots by carrots of different cultivars during vegetation period. Acta Sci. Pol. Hortorum Cultus 2009, 8, 69–78. [Google Scholar]
- Anyszka, Z.; Ekner, K. The influence of some herbicides on yield and chemical composition of baby carrots. Roczniki AR w Poznaniu 2007, 383, 417–420. [Google Scholar]
- Dobrzański, A.; Anyszka, Z.; Elkner, K. Response of carrots to application of natural extracts from seaweed (sargassum sp.)—Algaminoplant and from leonardite—Humiplant. J. Res. Appl. Agric. Eng 2008, 53, 53–58. [Google Scholar]
- Szczepanek, M.; Wilczewski, E.; Pobereżny, J.; Wszelaczyńska, E.; Keutgen, A.; Ochmian, I. Effect of biostimulants and storage on microelement content in storage roots of carrot. J. Elem. 2015, 20, 1021–1031. [Google Scholar] [CrossRef]
- Smoleń, S.; Sady, W.; Ledwożyw-Smoleń, I.; Strzetelski, P.; Liszka-Skoczylas, M.; Rożek, S. Quality of fresh and stored carrots depending on iodine and nitrogen fertilization. Food Chem. 2014, 159, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, C.A.; Haliniarz, M.; Kołodziej, B.; Harasim, E.; Tomczyńska-Mleko, M. Content of some chemical components in carrot (Daucus carota L.) roots depending on growth stimulators and stubble crops. J. Elem. 2015, 20, 933–943. [Google Scholar] [CrossRef] [Green Version]
- Wrzodak, A.; Elkner, K. Sensory quality of fresh and stored carrots from organic farming. Veg. Crops Res. Bull. 2010, 50, 93–101. [Google Scholar]
- Gajewska, M.; Czajkowska, A.; Bartodziejska, B. The content of nitrates (III) and (V) in selected vegetables on detail sale in Lodz region. Environ. Prot. Nat. Res. 2009, 40, 388–395. [Google Scholar]
- Wrona, P. Quality changes of carrot which occur during storing. Agric. Eng. 2012, 2, 337–345. [Google Scholar]
- Amr, A.; Hadidi, N. Effect of cultivar and harvest date on nitrate (NO3) and nitrite (NO2) content of selected vegetables grown under open field and greenhouse conditions in Jordan. J. Food Compos. Anal. 2001, 14, 59–67. [Google Scholar] [CrossRef]
- Pobereżny, J.; Wszelaczyńska, E.; Wichrowska, D.; Jaskulski, D. Content of nitrates in potato tubers depending on the organic matter, soil fertilizer, cultivation simplifications applied and storage. Chil. J. Agric. Res. 2015, 75, 42–49. [Google Scholar] [CrossRef]
Month | Precipitation (mm) | Air temperature (°C) | ||||||
---|---|---|---|---|---|---|---|---|
2009 | 2010 | 2011 | 1949–2011 | 2009 | 2010 | 2011 | 1949–2011 | |
April | 16.3 | 33.8 | 13.5 | 27.4 | 11.5 | 7.8 | 10.5 | 7.4 |
May | 85.3 | 92.6 | 38.4 | 43.2 | 12.3 | 11.5 | 13.5 | 12.7 |
June | 57.4 | 18.1 | 100.8 | 53.7 | 14.5 | 16.7 | 17.7 | 16.3 |
July | 118.0 | 107.4 | 132.5 | 73.1 | 18.6 | 21.6 | 17.5 | 18.0 |
August | 17.6 | 150.7 | 67.7 | 53.2 | 13.2 | 18.4 | 17.7 | 17.5 |
September | 34.4 | 74.7 | 37.0 | 41.1 | 13.7 | 12.2 | 14.3 | 13.2 |
Biostimulant | Date and Rate of Biostimulant Application (dm3 ha−1) | ||
---|---|---|---|
1st Applicationin 4-Leaf Phase | 14 Days After 1st Application | 28 DaysAfter 1st Application | |
Control | - | - | - |
Kelpak 1 | 3 | - | - |
Kelpak 2 | 2 | - | - |
Kelpak 3 | 3 | 2 | - |
Kelpak 4 | 2 | 2 | - |
Kelpak 5 | 3 | 2 | 2 |
Kelpak 6 | 2 | 2 | 2 |
Kelpak 7 | 3 | - | 2 |
Kelpak 8 | 2 | - | 2 |
Asahi | 0.5 | 0.5 | - |
Biostimulant | After Harvest | CV (%) | After Storage | CV (%) |
---|---|---|---|---|
Control | 223.7±10.3a | 4.62 | 215.7±10.1a | 4.68 |
Kelpak 1 | 241.0±4.0abc | 1.65 | 226.0±10.4a | 4.59 |
Kelpak 2 | 248.0±5.8abc | 2.33 | 232.8±9.5ab | 4.10 |
Kelpak 3 | 250.3±13.4abc | 5.37 | 241.4±17.4ab | 7.20 |
Kelpak 4 | 256.1±19.3abc | 7.52 | 246.9±25.4ab | 10.30 |
Kelpak 5 | 286.0±14.5c | 5.07 | 268.7±15.9b | 5.92 |
Kelpak 6 | 272.6±16.5bc | 6.06 | 238.0±3.5ab | 1.46 |
Kelpak 7 | 268.3±29.8bc | 11.12 | 246.5±38.1ab | 15.44 |
Kelpak 8 | 265.2±17.36bc | 6.51 | 233.7±21.7ab | 9.30 |
Asahi | 235.0±31.61abc | 1.47 | 225.8±5.1a | 2.26 |
Total mean | 254.6±22.3 | 8.75 | 237.5±21.0 | 8.82 |
Biostimulants mean | 258.0±20.5 | 7.96 | 240.0±20.5 | 8.55 |
Kelpak mean | 260.9±20.0 | 7.65 | 241.7±21.1 | 8.72 |
Biostimulant | After Harvest | CV (%) | After Storage | CV (%) |
---|---|---|---|---|
Control | 1.04±0.07a | 6.68 | 1.02±0.08a | 7.30 |
Kelpak 1 | 1.30±0.06abc | 4.62 | 1.22±0.07abc | 6.65 |
Kelpak 2 | 1.37±0.07abc | 4.85 | 1.28±0.11abcd | 8.90 |
Kelpak 3 | 1.66±0.28cde | 17.00 | 1.57±0.32bcd | 20.18 |
Kelpak 4 | 1.52±0.19bcde | 12.62 | 1.42±0.21abcd | 14.43 |
Kelpak 5 | 1.79±0.09e | 4.97 | 1.65±0.19cd | 11.78 |
Kelpak 6 | 1.77±0.17de | 9.63 | 1.67±0.16d | 9.76 |
Kelpak 7 | 1.39±0.04abcd | 2.88 | 1.30±0.08abcd | 5.38 |
Kelpak 8 | 1.48±0.07bcde | 4.49 | 1.43±0.09abcd | 5.18 |
Asahi | 1.25±0.03abc | 2.36 | 1.18±0.06ab | 4.81 |
Total mean | 1.46±0.25 | 17.47 | 1.37±0.24 | 17.70 |
Biostimulants mean | 1.50±0.22 | 14.76 | 1.41±0.23 | 15.77 |
Kelpak mean | 1.53±0.21 | 14.01 | 1.44±0.20 | 15.15 |
Daily Intake (DI) | ||||
---|---|---|---|---|
Biostimulant | Nitrates | Nitrites | ||
After Harvest | After Storage | After Harvest | After Storage | |
Control | 12.3 | 11.9 | 0.06 | 0.06 |
Kelpak 1 | 13.3 | 12.4 | 0.07 | 0.07 |
Kelpak 2 | 13.6 | 12.8 | 0.08 | 0.07 |
Kelpak 3 | 13.8 | 13.3 | 0.09 | 0.09 |
Kelpak 4 | 14.1 | 13.6 | 0.08 | 0.08 |
Kelpak 5 | 15.7 | 14.8 | 0.10 | 0.09 |
Kelpak 6 | 15.0 | 13.1 | 0.10 | 0.09 |
Kelpak 7 | 14.8 | 13.6 | 0.08 | 0.07 |
Kelpak 8 | 14.6 | 12.9 | 0.08 | 0.08 |
Asahi | 12.9 | 12.4 | 0.07 | 0.06 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pobereżny, J.; Szczepanek, M.; Wszelaczyńska, E.; Prus, P. The Quality of Carrot after Field Biostimulant Application and after Storage. Sustainability 2020, 12, 1386. https://doi.org/10.3390/su12041386
Pobereżny J, Szczepanek M, Wszelaczyńska E, Prus P. The Quality of Carrot after Field Biostimulant Application and after Storage. Sustainability. 2020; 12(4):1386. https://doi.org/10.3390/su12041386
Chicago/Turabian StylePobereżny, Jarosław, Małgorzata Szczepanek, Elżbieta Wszelaczyńska, and Piotr Prus. 2020. "The Quality of Carrot after Field Biostimulant Application and after Storage" Sustainability 12, no. 4: 1386. https://doi.org/10.3390/su12041386
APA StylePobereżny, J., Szczepanek, M., Wszelaczyńska, E., & Prus, P. (2020). The Quality of Carrot after Field Biostimulant Application and after Storage. Sustainability, 12(4), 1386. https://doi.org/10.3390/su12041386