Application of Fenton Method for the Removal of Organic Matter in Sewage Sludge at Room Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. The Effect of Initial pH Value
3.2. The Effect of H2O2 Dosage
3.3. The Effect of [H2O2]/[Fe2+] Molar Ratio
3.4. The Effect of Reaction Time
3.5. The Hevay Metal Content in the Solid Fraction after Fenton Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, J.; Liu, G.; Chen, B.; Song, D.; Qi, J.; Liu, X. Analysis of CO2 Emission for the Cement Manufacturing with Alternative Raw Materials: A LCA-based Framework. Energy Procedia 2014, 61, 2541–2545. [Google Scholar] [CrossRef] [Green Version]
- Merabtene, M.; Kacimi, L.; Clastres, P. Elaboration of geopolymer binders from poor kaolin and dam sludge waste. Heliyon 2019, 5, e01938. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Kumar, R.; Mehrotra, S.P. Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J. Mater. Sci. 2010, 45, 607–615. [Google Scholar] [CrossRef]
- Tchakoute, K.H.; Elimbi, A.; Mbey, J.A.; Ngally, S.C.J.; Njopwouo, D. The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: A comparative study. Constr. Build. Mater. 2012, 35, 960–969. [Google Scholar] [CrossRef]
- Somna, K.; Jaturapitakkul, C.; Kagitvichyanukul, P.; Chindaprasirt, P. NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel 2011, 90, 2118–2124. [Google Scholar] [CrossRef]
- Chen, J.H.; Huang, J.S.; Chang, Y.W. A preliminary study of reservoir sludge as a raw material of inorganic polymers. Constr. Build. Mater. 2009, 23, 3264–3296. [Google Scholar] [CrossRef]
- Gherghel, A.; Teodosiu, C.; De Gisi, S. A review on wastewater sludge valorisation and its challenges in the context of circular economy. J. Clean. Prod. 2019, 228, 244–263. [Google Scholar] [CrossRef]
- Tyagi, V.K.; Lo, S.L. Sludge: A waste or renewable source for energy and resources recovery. Renew. Sustain. Energy Rev. 2013, 25, 708–728. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Rajan, R. Removal of rhodamine B from a water medium using hydroxyl and sulphate radicals generated by iron loaded activated carbon. RSC Adv. 2016, 6, 5330–5340. [Google Scholar] [CrossRef]
- Xavier, S.; Gandhimathi, R.; Nidheesh, P.V.; Ramesh, S.T. Comparison of homogeneous and heterogeneous Fenton processes for the removal of reactive dye Magenta MB from aqueous solution. Desalin. Water Treat. 2015, 53, 109–118. [Google Scholar] [CrossRef]
- Alalm, M.G.; Tawfik, A.; Ookawara, S. Degradation of four pharmaceuticals by solar photo-Fenton process: Kinetics and costs estimation. J. Environ. Chem. Eng. 2015, 3, 46–51. [Google Scholar] [CrossRef]
- Mackul’ak, T.; Mosn´y, M.; Grabic, R.; Golovko, O.; Koba, O.; Biroˇsová, L. Fenton-like reaction: A possible way to efficiently remove illicit drugs and pharmaceuticals from wastewater. Environ. Toxicol. Pharm. 2015, 39, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Aytar, P.; Gedikli, S.; Sam, M.; Farizoˇglu, B.; Cabuk, A. Sequential treatment of olive oil mill wastewater with adsorption and biological and photo-Fenton oxidation. Envirron. Sci. Pollut. Res. 2013, 20, 3060–3067. [Google Scholar] [CrossRef] [PubMed]
- Justino, C.; Marques, A.G.; Duarte, K.R.; Duarte, A.C.; Pereira, R.; Rocha-Santos, T. Freitas, Degradation of phenols in olive oil mill wastewater by biological, enzymatic, and photo-Fenton oxidation. Environ. Sci. Pollut. Res. 2010, 17, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Laiju, A.R.; Sivasankar, T.; Nidheesh, P.V. Iron-loaded mangosteen as a heterogeneous Fenton catalyst for the treatment of landfill leachate. Environ. Sci. Pollut. Res. 2014, 21, 10900–10907. [Google Scholar] [CrossRef] [PubMed]
- Navarro, S.; Fenoll, J.; Vela, N.; Ruiz, E.; Navarro, G. Removal of ten pesticides from leaching water at pilot plant scale by photo-Fenton treatment. Chem. Eng. J. 2011, 167, 42–49. [Google Scholar] [CrossRef]
- Saini, R.; Raghunath, C.V.; Pandey, P.; Kumar, P. Optimization of Fenton oxidation for the removal of methyl parathion in aqueous solution. Perspect. Sci. 2016, 1980, 670–672. [Google Scholar] [CrossRef] [Green Version]
- Neyens, E.; Baeyens, J.; Weemaes, M.; De hyder, B. Pilot-scale peroxidation (H2O2) of sewage sludge. J. Hazard. Mater. 2003, 98, 91–106. [Google Scholar] [CrossRef]
- Neyens, E.; Baeyens, J.; Dewil, R.; De hyder, B. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. J. Hazard. Mater. 2004, 106, 83–92. [Google Scholar] [CrossRef]
- Lu, M.; Lin, C.; Liao, C.; Ting, W.; Huang, R. Influence of pH on the dewatering of activated sludge by Fenton’s reagent. Water Sci. Technol. 2001, 44, 327–332. [Google Scholar] [CrossRef]
- Tony, M.A.; Zhao, Y.Q.; Tayeb, A.M. Exploitation of Fenton and Fenton-like reagents as alternative conditioners for alum sludge conditioning. J. Environ. Sci. China 2009, 21, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Yang, J.; Shi, Y.; Li, Y.; He, S.; Yang, C.; Yao, H. Conditioning of sewage sludge by Fenton’s reagent combined with skeleton builders. Chemosphere 2012, 88, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, P.; Hu, H.; Zhang, Q.; Wu, Z.; Yang, J.; Yao, H. Combined effects of Fenton peroxidation and CaO conditioning on sewage sludge thermal drying. Chemosphere 2014, 117, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Yang, J.; Shi, Y.; Song, J.; Shi, Y.; Xiao, J.; Li, C.; Xu, X.; He, S.; Liang, S.; et al. Roles of iron species and pH optimization on sewage sludge conditioning with Fenton’s reagent and lime. Water Res. 2016, 95, 124–133. [Google Scholar] [CrossRef]
- Dewil, R.; Baeyens, J.; Appels, L. Enhancing the use of waste activated sludge as bio-fuel through selectively reducing its heavy metal content. J. Hazard. Mater. 2007, 144, 703–707. [Google Scholar] [CrossRef]
- Zhu, Y.; Zeng, G.; Zhang, P.; Zhang, C.; Ren, M.; Zhang, J.; Chen, M. Feasibility of bioleaching combined with Fenton-like reaction to remove heavy metals from sewage sludge. Bioresour. Technol. 2013, 142, 530–534. [Google Scholar] [CrossRef]
- Wen, H.; Lin, G.; Yu, H.; Qiao, X.; Zhang, D.; Ye, J. Radical assisted iron impregnation on preparing sewage sludge derived Fe/carbon as highly stable catalyst for heterogeneous Fenton reaction. Chem. Eng. J. 2018, 352, 837–846. [Google Scholar] [CrossRef]
- Mustapha Mohammed, B.; Abdul Aziz, A.R.; Anam, A. A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process Saf. Environ. 2019, 126, 119–140. [Google Scholar]
- Haber, F.; Weiss, J. On the catalysis of hydroperoxides. Naturwissenschaften 1932, 20, 948–950. [Google Scholar] [CrossRef]
- Fenton, H.J.H. Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 1894, 65, 899–911. [Google Scholar] [CrossRef] [Green Version]
- Koppenol, W.H. The centennial of the Fenton reaction. Free Radic. Biol. Med. 1993, 15, 645–651. [Google Scholar] [CrossRef]
- Coats, A.W.; Redfern, J.P. Thermogravimetric Analysis: A Review. Analyst 1963, 88, 906–924. [Google Scholar] [CrossRef]
- Greenan, N.S.; Mulvaney, R.L.; Sims, G.K. A microscale method for colorimetric determination of urea in soil extracts. Commun. Soil Sci. Plant Anal. 1995, 26, 2519–2529. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.L. CN. 103712930A. 2016. Available online: https://patentimages.storage.googleapis.com/f1/7b/b7/8f4603eaa51880/CN103712930A.pdf (accessed on 18 February 2020).
- Walling, C. Fenton’s reagent revisited. Acc. Chem. Res. 1975, 8, 125–131. [Google Scholar] [CrossRef]
- Katsiris, N.; Kouzeli-Katsiri, A. Bound water content of biological sludges in relation to filtration and dewatering. Water Res. 1987, 21, 1319–1327. [Google Scholar] [CrossRef]
- Fishbacher, A.; Sonntag, C.V.; Schmidt, T.C. Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe(II) ratios. Chemosphere 2017, 182, 738–744. [Google Scholar] [CrossRef]
Element | Cu | Cr | Ba | Al | Si | Fe |
---|---|---|---|---|---|---|
content (wt %) | 0.41 | 0.28 | 1.2 | 11.6 | 27.1 | 20.8 |
Factors | Levels | ||||
---|---|---|---|---|---|
i | ii | iii | iv | v | |
pH | 3 | 5 | 7 | 8 | 9 |
H2O2(M) | 1.03 | 2.06 | 3.09 | 4.12 | 5.15 |
Fe2+(mM) | 1.72 | 2.06 | 2.58 | 3.43 | 5.15 |
[H2O2]/[Fe2+] | 1000 | 1500 | 2000 | 2500 | 3000 |
Removal of Organic Matter (%) | |||||
---|---|---|---|---|---|
pH | H2O2 Dosage | ||||
1.03 M | 2.06 M | 3.09 M | 4.12 M | 5.15 M | |
3 | 47.1 ± 1.2 | 49.5 ± 0.3 | 54.9 ± 0.7 | 59.6 ± 1.4 | 74.8 ± 2.0 |
5 | 48.0 ± 1.1 | 52.3 ± 1.1 | 55.8 ± 1.1 | 59.2 ± 1.3 | 78.1 ± 1.2 |
7 | 48.5 ± 0.8 | 52.9 ± 1.2 | 53.5 ± 0.8 | 64.2 ± 0.2 | 79.1 ± 0.9 |
8 | 42.1 ± 1.3 | 56.2 ± 0.5 | 57.6 ± 1.3 | 62.9 ± 0.9 | 69.9 ± 1.1 |
9 | 41.8 ± 1.6 | 45.2 ± 0.6 | 36.2 ± 1.6 | 63.2 ± 2.0 | 69.8 ± 1.3 |
Elements | Cu | Cr | Ba | Al | Si | Fe |
---|---|---|---|---|---|---|
Wt % | 0.32 | 0.26 | 1.17 | 39.4 | 18.4 | 40.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-J.; Fan, T.-Y.; Wang, L.-P.; Cheng, T.-W.; Chen, S.-S.; Yuan, M.-H.; Cheng, S. Application of Fenton Method for the Removal of Organic Matter in Sewage Sludge at Room Temperature. Sustainability 2020, 12, 1518. https://doi.org/10.3390/su12041518
Chen Y-J, Fan T-Y, Wang L-P, Cheng T-W, Chen S-S, Yuan M-H, Cheng S. Application of Fenton Method for the Removal of Organic Matter in Sewage Sludge at Room Temperature. Sustainability. 2020; 12(4):1518. https://doi.org/10.3390/su12041518
Chicago/Turabian StyleChen, Yan-Jhang, Tang-Yu Fan, Li-Pang Wang, Ta-Wui Cheng, Shiao-Shing Chen, Min-Hao Yuan, and Shikun Cheng. 2020. "Application of Fenton Method for the Removal of Organic Matter in Sewage Sludge at Room Temperature" Sustainability 12, no. 4: 1518. https://doi.org/10.3390/su12041518
APA StyleChen, Y. -J., Fan, T. -Y., Wang, L. -P., Cheng, T. -W., Chen, S. -S., Yuan, M. -H., & Cheng, S. (2020). Application of Fenton Method for the Removal of Organic Matter in Sewage Sludge at Room Temperature. Sustainability, 12(4), 1518. https://doi.org/10.3390/su12041518